CN113842903A - 一种光催化降解甲醛复合材料及其制备方法及应用 - Google Patents

一种光催化降解甲醛复合材料及其制备方法及应用 Download PDF

Info

Publication number
CN113842903A
CN113842903A CN202111259844.4A CN202111259844A CN113842903A CN 113842903 A CN113842903 A CN 113842903A CN 202111259844 A CN202111259844 A CN 202111259844A CN 113842903 A CN113842903 A CN 113842903A
Authority
CN
China
Prior art keywords
composite material
formaldehyde
photocatalytic degradation
parts
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111259844.4A
Other languages
English (en)
Inventor
余习文
高峰
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Zewen Environmental Protection Technology Co ltd
Original Assignee
Anhui Zewen Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Zewen Environmental Protection Technology Co ltd filed Critical Anhui Zewen Environmental Protection Technology Co ltd
Priority to CN202111259844.4A priority Critical patent/CN113842903A/zh
Publication of CN113842903A publication Critical patent/CN113842903A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种光催化降解甲醛复合材料及其制备方法及应用,原料包括钛酸正四丁酯、无水乙醇、活性炭粉、尿素和碳酸钾;制备步骤如下:按质量份数取30~50份钛酸四丁正酯溶于200~300份的无水乙醇中,再加入活性炭粉100~200份放在磁力搅拌器上搅拌6~10h,然后放入电热恒温鼓风干燥箱80~120℃中烘干,烘干后得到混合样品;将混合样品加入尿素30~50份,碳酸钾10~20份,混合均匀得到前驱体;将前驱体在400~600℃条件下反应120~480min,然后冷却至室温得到终产物;将终产物放入蒸馏水中洗涤5~6次,然后烘干,得到光催化降解甲醛复合材料。本发明提高了复合材料的光催化降解甲醛的效果,解决了光催化降解甲醛技术在室内操作存在局限性的问题。

Description

一种光催化降解甲醛复合材料及其制备方法及应用
技术领域
本发明属于环保材料制备技术领域,尤其涉及一种光催化降解甲醛复合材料及其制备方法及应用。
背景技术
随着现代科技水平高速发展,人们的生活水平和质量也逐渐提高,越来越多的人开始关注环境安全和保护的问题。众所周知,很多人一天之中大部分时间都是在室内度过的,因此,室内环境污染问题对人们显得尤为严峻。
目前,室内环境污染的主要来自装修建材散发出的甲醛,它存在于木地板、乳胶漆、海绵床垫等建材中,在使用过程中会长期释放甲醛。甲醛可以说是人和其他动物室内健康生活的头号公敌,它被世界卫生组织国际致癌研究机构列为一级致癌物,其无色,对人类眼、鼻、喉有刺激性作用,低浓度吸入,会导致头晕目眩、咳嗽、咽部不适、恶心等症状,从而诱发支气管炎,咽炎等疾病,影响呼吸系统和神经系统;长期摄入甲醛,有致癌风险,如鼻咽癌、结肠癌和血液病等。在信息化时代下,世界各地报导的关于室内空气污染造成人类疾病的事例屡见不鲜,因此,解决空气中甲醛污染问题刻不容缓。
目前在室内空气污染净化处理方面主要采取物理吸附、贵金属催化、光催化方法。物理吸附法一般依靠活性炭或改性活性炭的吸附性,去除空气中的有害物质,大多数种类的活性炭都存在去除污染无选择性、吸附容量小、吸附饱和后易脱附造成二次污染以及对低浓度甲醛等污染物去除效果差等缺陷,因此,完全依靠活性炭类净化空气是无法达到呼吸健康的要求。贵金属催化法对于室内空气污染物质的去除效果较好,但其使用的银、铂、钯等贵重金属大大提高了使用贵金属催化法净化空气的成本,且贵金属在催化降解空气污染物的同时,可能会造成人体重金属中毒。光催化法去除室内空气污染具有高效、经济、无毒害等优势,对于低浓度的甲醛仍有很好的去除效果,但其在室内受到的局限较大,其催化降解条件需在光照条件下进行。
针对以上技术问题,本发明公开了一种光催化降解甲醛复合材料及其制备方法及应用,本发明制备的光催化降解甲醛复合材料复合过程简单,比表面积比一般商品活性炭要大,吸附性能也更佳,通过简单的处理,使得材料具有良好的光催化降解甲醛的效果,解决了光催化降解甲醛技术在室内操作存在局限性的问题。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种光催化降解甲醛复合材料及其制备方法及应用,以解决现有技术中光催化降解甲醛技术在室内操作存在局限性,且一般活性炭对于室内甲醛吸附效果不佳,难以达到室内甲醛去除的高标准。本发明制备的光催化降解甲醛复合材料复合过程简单,比表面积比一般商品活性炭要大,吸附性能也更佳,通过简单的处理,使得材料具有良好的光催化降解甲醛的效果,解决了光催化降解甲醛技术在室内操作存在局限性的问题。
为解决上述技术问题,本发明提供了一种光催化降解甲醛复合材料,包括原料钛酸正四丁酯、无水乙醇、活性炭粉、尿素和碳酸钾,各原料的质量组分为:
Figure BDA0003325138000000021
光催化降解甲醛复合材料的比表面积为610~630m2/g,总孔容为0.47~0.50m3/g,孔径主要在0~50nm范围内,平均孔径为3~4nm。
优选的,光催化降解甲醛复合材料的pH值在6~8范围内。
优选的,光催化降解甲醛复合材料对于甲醛的去除率为85~95%。
优选的,光催化降解甲醛复合材料中锐钛矿型二氧化钛所占比例在59%~73%范围内。
本发明还公开了一种光催化降解甲醛复合材料的制备方法,其特征在于,包括如下制备步骤:
S1、碳化热解:按质量份数取30~50份钛酸正四丁酯溶于200~300份的无水乙醇中,再加入活性炭粉100~200份放在磁力搅拌器上搅拌6~10h,然后放入电热恒温鼓风干燥箱中在80~120℃的温度下烘干,烘干后得到混合样品;
S2、浸渍:在混合样品中加入尿素30~50份,碳酸钾10~20份,混合均匀得到前驱体;
S3、二次热解:将前驱体置于惰性气体环境中,设置初始温度20~30℃,升温速率3~5℃ /min,温度上升至400~600℃时,保温120~480min,惰性气体的流量为20~50mL/min,然后自然降至室温,得到终产物;
S4、洗涤烘干:将终产物放入蒸馏水中洗涤5~6次,然后烘干,得到光催化降解甲醛复合材料。
优选的,步骤S1中,钛酸正四丁酯为分析纯。
优选的,步骤S3中,惰性气体为氮气。
优选的,步骤S1和步骤S2中,活性炭粉的比表面积在800~1200㎡/g范围内,活性炭粉、尿素和碳酸钾均为150~200目。
优选的,步骤S4中,光催化降解甲醛复合材料的粒径为0.05~0.10mm。
本发明还公开了一种光催化降解甲醛复合材料在降低污染空气中的甲醛含量方面的应用。
本发明相比现有技术具有以下优点:
本发明在制备光催化降解甲醛复合材料时,通过设置合适的制备温度和掺杂的比例,使光催化降解甲醛技术和活性炭吸附甲醛技术结合,从而解决了光催化技术存在的局限性问题和活性炭吸附技术存在的低浓度甲醛去除效果差的问题。
本发明制备的光催化降解甲醛复合材料吸附容量大,吸附性强,表面积使用率高,且在光催化降解甲醛过程中,无毒无害,安全环保,并且能够很好地去除低浓度污染,保证空气质量。
本发明制备的空气净化用光催化降解甲醛复合材料复合过程简单,比表面积比一般商品活性炭要大,吸附性能也更佳,通过简单的处理,使得材料具有良好的光催化降解甲醛的效果。
附图说明
图1是光催化降解甲醛复合材料的制备流程图;
图2是光催化降解甲醛复合材料的氮气吸脱附曲线图;
图3是光催化降解甲醛复合材料的孔径分布曲线图;
图4是光催化降解甲醛复合材料的扫描电镜图;
图5是光催化降解甲醛复合材料的红外光谱图;
图6是光催化降解甲醛复合材料的XRD图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下实施例中光催化降解甲醛复合材料采取如下的方法进行评价:
(1)甲醛的去除率:将所需测试样品倒出搅拌均匀,称100克装入已备好的注塑框架中,保证密闭性良好,然后装入空气净化机中,用塑料袋罩住整个空气净化机;最后在3m3箱体中注入一定量的检测溶液,加热10分钟使之完全挥发(同时开启搅拌风机)后,关闭加热器,抽样测其初始浓度,之后撤去净化机上的塑料袋,开启净化风机并开始计时,记录30分钟后的净化情况。实验温度达25士2℃。
(2)测试仪器:3m3有机玻璃箱、拌风机、温湿度计、宝健KJ625F-BJ10009空气净化机、美国Interscan公司的4160甲醛分析仪。
(3)使用Nanosem 430型场发射扫描电子显微镜分析样品材料的表面结构性质和表面孔道分布。
(4)使用3H-2000PS1型自动氮吸附分析仪测定样品材料的比表面积和孔容等结构参数。
(5)样品的相纯度和晶体结构由DX-2600X型射线衍射仪进行表征分析。
(6)红外光谱是由370FT-1R型傅立叶红外光谱仪对样品材料中的官能团进行分析。
实施例1
实施例1公开一种光催化降解甲醛复合材料,包括原料钛酸正四丁酯、无水乙醇、活性炭粉、尿素和碳酸钾,各原料的质量组分为:
Figure BDA0003325138000000041
光催化降解甲醛复合材料的比表面积为610~630m2/g,总孔容为0.47~0.50m3/g,孔径主要在0~50nm范围内,平均孔径为3~4nm,光催化降解甲醛复合材料的pH值在6~8范围内,光催化降解甲醛复合材料对于甲醛的去除率为85~95%,光催化降解甲醛复合材料中锐钛矿型二氧化钛所占比例在59%~73%范围内。
本实施例还公开了一种光催化降解甲醛复合材料的制备方法,包括如下制备步骤:
S1、碳化热解:按质量份数取50份钛酸正四丁酯溶于300份的无水乙醇中,再加入活性炭粉150份放在磁力搅拌器上搅拌8h,然后放入电热恒温鼓风干燥箱中在120℃的温度下烘干,烘干后得到混合样品,钛酸正四丁酯为分析纯,活性炭粉的比表面积在800~1200㎡/g 范围内;
S2、浸渍:在混合样品中加入尿素30份,碳酸钾10份,混合均匀得到前驱体,活性炭粉、尿素和碳酸钾均为150~200目;
S3、二次热解:将前驱体置于惰性气体环境中,设置初始温度20℃,升温速率5℃/min,温度上升至400℃时,保温360min,惰性气体的流量为30mL/min,然后自然降至室温,得到终产物,惰性气体为氮气;
S4、洗涤烘干:将终产物放入蒸馏水中洗涤6次,然后烘干,得到光催化降解甲醛复合材料,记为TC1,光催化降解甲醛复合材料的粒径为0.05~0.10mm。
本实施例还公开了一种光催化降解甲醛复合材料在降低污染空气中的甲醛含量方面的应用。
实施例2
实施例2公开了公开一种光催化降解甲醛复合材料,包括原料钛酸正四丁酯、无水乙醇、活性炭粉、尿素和碳酸钾,各原料的质量组分为:
Figure BDA0003325138000000051
光催化降解甲醛复合材料的比表面积为610~630m2/g,总孔容为0.47~0.50m3/g,孔径主要在0~50nm范围内,平均孔径为3~4nm,光催化降解甲醛复合材料的pH值在6~8范围内,光催化降解甲醛复合材料对于甲醛的去除率为85~95%,光催化降解甲醛复合材料中锐钛矿型二氧化钛所占比例在59%~73%范围内。
本实施例还公开了一种光催化降解甲醛复合材料的制备方法,包括如下制备步骤:
S1、碳化热解:按质量份数取50份钛酸正四丁酯溶于300份的无水乙醇中,再加入活性炭粉150份放在磁力搅拌器上搅拌8h,然后放入电热恒温鼓风干燥箱中在120℃的温度下烘干,烘干后得到混合样品,钛酸正四丁酯为分析纯,活性炭粉的比表面积在800~1200㎡/g 范围内;
S2、浸渍:在混合样品中加入尿素50份,碳酸钾20份,混合均匀得到前驱体,活性炭粉、尿素和碳酸钾均为150~200目;
S3、二次热解:将前驱体置于惰性气体环境中,设置初始温度20℃,升温速率5℃/min,温度上升至500℃时,保温360min,惰性气体的流量为30mL/min,然后自然降至室温,得到终产物,惰性气体为氮气;
S4、洗涤烘干:将终产物放入蒸馏水中洗涤6次,然后烘干,得到光催化降解甲醛复合材料,记为TC2,光催化降解甲醛复合材料的粒径为0.05~0.10mm。
本实施例还公开了一种光催化降解甲醛复合材料在降低污染空气中的甲醛含量方面的应用。
实施例3
实施例3公开了公开一种光催化降解甲醛复合材料,包括原料钛酸正四丁酯、无水乙醇、活性炭粉、尿素和碳酸钾,各原料的质量组分为:
Figure BDA0003325138000000061
光催化降解甲醛复合材料的比表面积为610~630m2/g,总孔容为0.47~0.50m3/g,孔径主要在0~50nm范围内,平均孔径为3~4nm,光催化降解甲醛复合材料的pH值在6~8范围内,光催化降解甲醛复合材料对于甲醛的去除率为85~95%,光催化降解甲醛复合材料中锐钛矿型二氧化钛所占比例在59%~73%范围内。
本实施例还公开了一种光催化降解甲醛复合材料的制备方法,如图1所示,包括如下制备步骤:
S1、碳化热解:按质量份数取30份钛酸正四丁酯溶于200份的无水乙醇中,再加入活性炭粉150份放在磁力搅拌器上搅拌8h,然后放入电热恒温鼓风干燥箱中在120℃的温度下烘干,烘干后得到混合样品,钛酸正四丁酯为分析纯,活性炭粉的比表面积在800~1200㎡/g 范围内;
S2、浸渍:在混合样品中加入尿素50份,碳酸钾20份,混合均匀得到前驱体,活性炭粉、尿素和碳酸钾均为150~200目;
S3、二次热解:将前驱体置于惰性气体环境中,设置初始温度20℃,升温速率5℃/min,温度上升至600℃时,保温360min,惰性气体的流量为30mL/min,然后自然降至室温,得到终产物,惰性气体为氮气;
S4、洗涤烘干:将终产物放入蒸馏水中洗涤6次,然后烘干,得到光催化降解甲醛复合材料,记为TC3,光催化降解甲醛复合材料的粒径为0.05~0.10mm。
本实施例还公开了一种光催化降解甲醛复合材料在降低污染空气中的甲醛含量方面的应用。
(一)分别测试光催化降解甲醛复合材料TC1、TC2、TC3的氮气吸脱附性能、孔径分布及孔结构参数,氮气吸脱附性能曲线图如图2所示,孔径分布图如图3所示,孔结构参数表见表1。
表1光催化降解甲醛复合材料TC1、TC2、TC3的孔结构参数表
Figure BDA0003325138000000071
其中,Dap(nm)表示平均孔径,单位为nm;SBET(m2/g)表示比表面积,单位为m2/g;Smic(m2/g)表示微孔比表面积,单位为m2/g;Vt(cm3/g)表示总孔容,单位为cm3/g; Vmic(cm3/g)表示微孔孔容,单位为cm3/g。
由图2光催化降解甲醛复合材料TC1、TC2、TC3的氮气吸脱附曲线图,可以看出在0–0.1相对分压下,光催化降解甲醛复合材料TC1、TC2、TC33对氮气的吸附量快速增加,说明有小于2nm的微孔存在;0.1~0.4相对分压下,复合材料TC1、TC2、TC3对氮气的吸附量保持平衡,说明有大量2~50nm的中孔;在相对压力下高的情况下,光催化降解甲醛复合材料TC1、TC2、TC3吸附曲线和脱附曲线不再重合,二者出现了明显的滞后环现象,为I型和 IV型特征的结合,说明存在一定量的微孔和中孔。
由图3光催化降解甲醛复合材料TC1、TC2、TC3的氮气孔径分布图可以看出微孔、中孔分布,说明光催化降解甲醛复合材料TC1、TC2、TC3同时具备微孔和介孔结构;复合材料TC1、 TC2、TC3孔径分布在0~50nm范围内。
由表1可知,空气净化用光催化降解甲醛复合材料TC1、TC2、TC3的比表面积为610~630m2/g,总孔容为0.47~0.50m3/g,平均孔径为3~4nm;随着制备温度的升高,复合材料TC1、TC2、TC3的比表面积先增大后减小,TC2的比表面积最大;复合材料TC1、TC2、TC3既含有微孔部分,也含有介孔部分。
(二)空气净化用光催化降解甲醛复合材料TC1、TC2、TC3扫描电镜图见图4。
由图4空气净化用光催化降解甲醛复合材料TC1、TC2、TC3的扫描电镜图可知,该复合材料的表面有很多的附着物,是二氧化钛的颗粒聚集体,因为炭表面会有比较明显的孔道,在图中不能够明显的看出炭的孔道结构。经分析是因为活性炭对二氧化钛微球的吸附力比较大,尿素和碳酸钾可以增加复合材料的分散性,使所形成的结构为不规则型。经过推测发现是因为活性炭粉有很大部分能够强力吸附二氧化钛微粒,所以在图上可以看到一个较大的粒子,其表面附着着很多的微粒。可以看到材料表面分布着一些孔道,这些孔道连接着活性炭内部的孔道,内部丰富的孔道结构对于吸附不同种类的气体有着不同的作用,有利于对甲醛的有效去除。
(三)空气净化用光催化降解甲醛复合材料TC2的红外光谱图见图5。
分析图5空气净化用光催化降解甲醛复合材料TC2可知,从图形中可以明显的看出复合材料中有很多的含氧官能团结构(C=O,C-OH,C-O-C)的吸收峰,说明复合材料TC2的氧化程度很好。位于900cm-1处有明显的Ti-O-Ti峰,这就可以说明在热解反应中活性炭与二氧化钛的结合是通过化学键的形式。
(四)空气净化用光催化降解甲醛复合材料TC1、TC2、TC3的XRD图见图6。
分析空气净化用光催化降解甲醛复合材料TC1、TC2、TC3的XRD图可知,由下往上a-e分别表示的是活性炭、TC1、TC2、TC3、二氧化钛的XRD光谱图。对比PDF标准卡片可以看出,在2θ为25.366°,38.012°,48.125°,54.012°,55.038°,63.732°处有明显的锐钛矿型特征峰,复合材料TC1、TC2、TC3中的二氧化钛都为锐钛矿晶型。在图中可以看出25°附近(101)晶面衍射峰,可能是由于活性炭在制备时出现少量的石墨。在二氧化钛图中,25°附近有两个峰,而在复合材料的图中只有一个峰(101),因为高温下复合材料中的部分官能团热解反应被还原为石墨,而峰是因为重叠没有显示出来。由公式XR=1/(1+10265IA/IR) (XA-锐钛矿相含量)可计算出锐钛矿型和金红石型所占比例。复合材料TC1、TC2、TC3中锐钛矿型二氧化钛所占比例分别为61.54%,72.05%,59.29%。
(五)空气净化用光催化降解甲醛复合材料TC1、TC2、TC3的pH值分别为7.74、7.68、7.79
(六)空气净化用光催化降解甲醛复合材料TC1、TC2、TC3的对甲醛的去除率和重复测试性能详细见表2:
表2复合材料TC1、TC2、TC3的对甲醛的去除率表
Samples 初始浓度(ppm) 结束浓度(ppm) 去除率(%) 重复10次后去除率(%)
TC<sub>1</sub> 1.652 0.101 93.9 84.2
TC<sub>2</sub> 1.719 0.047 97.3 90.3
TC<sub>3</sub> 1.735 0.095 94.5 83.3
空气净化用光催化降解甲醛复合材料TC1、TC2、TC3对甲醛有很好的去除率,分别为93.9%、97.3%、94.5%%。在重复10次过后,空气净化用光催化降解甲醛复合材料TC1、TC2、TC3对甲醛的去除率仍然很高,分别为84.2%,90.3%,83.3%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光催化降解甲醛复合材料,其特征在于,包括原料钛酸正四丁酯、无水乙醇、活性炭粉、尿素和碳酸钾,各原料的质量组分为:
Figure FDA0003325137990000011
所述光催化降解甲醛复合材料的比表面积为610~630m2/g,总孔容为0.47~0.50m3/g,孔径主要在0~50nm范围内,平均孔径为3~4nm。
2.根据权利要求1所述的一种光催化降解甲醛复合材料,其特征在于,所述光催化降解甲醛复合材料的pH值在6~8范围内。
3.根据权利要求1所述的一种光催化降解甲醛复合材料,其特征在于,所述光催化降解甲醛复合材料对于甲醛的去除率为85~95%。
4.根据权利要求1所述的一种光催化降解甲醛复合材料,其特征在于,所述光催化降解甲醛复合材料中锐钛矿型二氧化钛所占比例在59%~73%范围内。
5.一种如权利要求1-4中任一项所述的光催化降解甲醛复合材料的制备方法,其特征在于,包括如下制备步骤:
S1、碳化热解:按质量份数取30~50份钛酸正四丁酯溶于200~300份的无水乙醇中,再加入活性炭粉100~200份放在磁力搅拌器上搅拌6~10h,然后放入电热恒温鼓风干燥箱中在80~120℃的温度下烘干,烘干后得到混合样品;
S2、浸渍:在所述混合样品中加入尿素30~50份,碳酸钾10~20份,混合均匀得到前驱体;
S3、二次热解:将所述前驱体置于惰性气体环境中,设置初始温度20~30℃,升温速率3~5℃/min,温度上升至400~600℃时,保温120~480min,然后自然降至室温,得到终产物,所述惰性气体的流量为20~50mL/min;
S4、洗涤烘干:将所述终产物放入蒸馏水中洗涤5~6次,然后烘干,得到光催化降解甲醛复合材料。
6.根据权利要求5所述的一种光催化降解甲醛复合材料的制备方法,其特征在于,步骤S1中,所述钛酸正四丁酯为分析纯。
7.根据权利要求5所述的一种光催化降解甲醛复合材料的制备方法,其特征在于,步骤S3中,所述惰性气体为氮气。
8.根据权利要求5所述的一种光催化降解甲醛复合材料的制备方法,其特征在于,步骤S1和步骤S2中,所述活性炭粉的比表面积在800~1200㎡/g范围内,所述活性炭粉、尿素和所述碳酸钾均为150~200目。
9.根据权利要求5所述的一种光催化降解甲醛复合材料的制备方法,其特征在于,步骤S4中,所述光催化降解甲醛复合材料的粒径为0.05~0.10mm。
10.一种如权利要求1-4中任一项所述的一种光催化降解甲醛复合材料在降低污染空气中的甲醛含量方面的应用。
CN202111259844.4A 2021-10-28 2021-10-28 一种光催化降解甲醛复合材料及其制备方法及应用 Pending CN113842903A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111259844.4A CN113842903A (zh) 2021-10-28 2021-10-28 一种光催化降解甲醛复合材料及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111259844.4A CN113842903A (zh) 2021-10-28 2021-10-28 一种光催化降解甲醛复合材料及其制备方法及应用

Publications (1)

Publication Number Publication Date
CN113842903A true CN113842903A (zh) 2021-12-28

Family

ID=78983448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111259844.4A Pending CN113842903A (zh) 2021-10-28 2021-10-28 一种光催化降解甲醛复合材料及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN113842903A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583250A (zh) * 2004-06-03 2005-02-23 上海交通大学 掺氮二氧化钛光催化剂的制备方法
CN103100378A (zh) * 2011-11-09 2013-05-15 上海纳米技术及应用国家工程研究中心有限公司 一种活性碳纤维负载二氧化钛光催化剂的制备方法
CN104368325A (zh) * 2014-12-04 2015-02-25 东北林业大学 一种光降解甲醛蜂窝活性炭的制备方法
CN108786732A (zh) * 2018-06-20 2018-11-13 陈正新 一种TiO2/生物质活性炭复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583250A (zh) * 2004-06-03 2005-02-23 上海交通大学 掺氮二氧化钛光催化剂的制备方法
CN103100378A (zh) * 2011-11-09 2013-05-15 上海纳米技术及应用国家工程研究中心有限公司 一种活性碳纤维负载二氧化钛光催化剂的制备方法
CN104368325A (zh) * 2014-12-04 2015-02-25 东北林业大学 一种光降解甲醛蜂窝活性炭的制备方法
CN108786732A (zh) * 2018-06-20 2018-11-13 陈正新 一种TiO2/生物质活性炭复合材料的制备方法

Similar Documents

Publication Publication Date Title
WO2016041380A1 (zh) 一种在常温下净化空气的适用性负载型催化剂
CN102198405B (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
CN107185535B (zh) 一种无光除醛催化剂、包含所述催化剂的除醛体系及其用途
KR101319064B1 (ko) 포름알데히드, 일산화탄소, 메탄올 및 수소 산화 제거용 백금 촉매의 제조 방법
CN102702807B (zh) 一种光催化复合涂料及其制备方法
CN106381682B (zh) 一种高吸附-光催化性能的纳米二氧化钛/活性炭纤维毡三维多孔材料及其制备方法
CN102895969A (zh) 一种甲醛室温氧化催化剂的制备方法
CN113548686B (zh) 一种二氧化铈纳米材料及其制备方法和应用
CN112111211B (zh) 环保涂料
CN112121790A (zh) 核壳结构型锰系催化剂及其制备方法
CN105327699A (zh) 一种空气净化材料
CN110975870A (zh) 一种铜钴复合氧化物催化剂的制备方法及其应用
CN101898149A (zh) 一种具有吸附-低温催化双功能的负载型纳米金属银催化剂、制备方法及其应用
CN107376904B (zh) 室温除甲醛和tvoc的催化剂及其制备方法
CN113842898A (zh) 一种空气净化用吸附碱性废气和VOCs的复合材料及其制备方法及应用
CN106345403A (zh) 一种催化甲醛的硅藻土基复合材料及其制备方法和应用
CN113842903A (zh) 一种光催化降解甲醛复合材料及其制备方法及应用
CN113617202A (zh) 一种具有红外热效应的复合型有机气体污染物净化剂及其制备方法
CN108993533B (zh) 一种甲苯低温燃烧催化剂的制备方法及甲苯低温燃烧催化剂
KR101625464B1 (ko) 일산화탄소의 제거를 위한 구리망간산화물이 담지된 메조포러스 실리카 촉매의 제조방법
CN114887655B (zh) 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用
CN109985520B (zh) 一种消除甲苯的多孔氧化铜/铁酸铜催化剂的制备方法及应用
CN114887617A (zh) 一种富含氧空位且表面功能化的氧化锰/碳复合催化剂及其制备方法和在去除甲醛中的应用
CN114653356A (zh) 镧掺杂二氧化铈催化剂材料的制备方法和去甲醛复合物
CN108380202A (zh) 一种常温高效甲醛反应催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211228

RJ01 Rejection of invention patent application after publication