CN113838927A - 一种电荷等离子体SiGe异质结双极晶体管 - Google Patents

一种电荷等离子体SiGe异质结双极晶体管 Download PDF

Info

Publication number
CN113838927A
CN113838927A CN202110985799.4A CN202110985799A CN113838927A CN 113838927 A CN113838927 A CN 113838927A CN 202110985799 A CN202110985799 A CN 202110985799A CN 113838927 A CN113838927 A CN 113838927A
Authority
CN
China
Prior art keywords
undoped
region
electrode
emitter
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110985799.4A
Other languages
English (en)
Other versions
CN113838927B (zh
Inventor
金冬月
贾晓雪
张万荣
曹路明
刘圆圆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110985799.4A priority Critical patent/CN113838927B/zh
Publication of CN113838927A publication Critical patent/CN113838927A/zh
Application granted granted Critical
Publication of CN113838927B publication Critical patent/CN113838927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors

Abstract

本发明公开了一种电荷等离子体SiGe异质结双极晶体管,为npn型晶体管。采用SiGe材料制备基区,与未掺杂的Si发射区和Si集电区形成异质结,通过有效改变发射结处能带结构来提高器件的电流增益。同时考虑到金属镉的功函数为4.07eV,易于与未掺杂的Si形成良好的金‑半接触,有效诱导产生n型电荷等离子体,且具有优良的导电性,较好的抗熔焊性,以及优异的抗拉强度和高耐磨性等优点,因此本发明采用金属镉作为发射极和集电极的电极材料,用于调节发射极和集电极下方对应发射区和集电区内n型载流子浓度。通过上述结构的有效配合,实现了晶体管电流增益、击穿电压和特征频率的同步提高。

Description

一种电荷等离子体SiGe异质结双极晶体管
技术领域
本发明涉及电荷等离子体SiGe异质结双极晶体管,特别是适用于显示器驱动电路、高速混合信号、以及低功耗无线集成电路等领域的电荷等离子体SiGe异质结双极晶体管。
背景技术
与传统的绝缘体上硅(SOI)基双极晶体管相比,电荷等离子体双极晶体管无需掺杂工艺,仅通过采用具有不同功函数的金属材料作为电极与未掺杂的Si形成良好的金-半接触,有效诱导产生电荷等离子体,即可形成双极型晶体管,因此具有制备工艺简单、无需掺杂和热退火,且与成熟的CMOS工艺相兼容等优点,将在高速混合模拟集成电路领域扮演越来越重要的角色。
图1示出了常规电荷等离子体双极晶体管纵向剖面示意图,其中发射区、基区和集电区均为未掺杂的本征Si材料,采用金属Zr作为发射极电极和集电极电极,采用金属Pt作为基极电极,通过金-半接触在Si材料一侧分别诱导产生n型和p型电荷等离子体,从而形成了同质结双极晶体管,且发射区和集电区保持相同的电子浓度。为了有效提高器件的电流处理能力,常规电荷等离子体双极晶体管的发射极和集电极电极选用了与Si功函数差较大(0.68V)的Zr作为电极金属,来有效提高发射区一侧电子浓度,进而提高器件的电流增益。但是集电区一侧电子浓度也会相应增大,此时击穿电压将大幅减小,不利于电荷等离子体双极晶体管在高速混合模拟集成电路中的应用。可见如何设计出一种兼具高电流增益和高击穿电压的电荷等离子体双极晶体管,具有重要的理论和实际意义。
发明内容
本发明公开了一种电荷等离子体SiGe异质结双极晶体管,为npn型晶体管。
本发明的一种电荷等离子体SiGe异质结双极晶体管,其特征在于:所述晶体管包括Si衬底(20),SiO2埋氧层(21),以及位于所述SiO2埋氧层(21)上方的未掺杂的Si发射区(22),未掺杂的SiGe基区(23)和未掺杂的Si集电区(24);SiO2隔离层(28)分别位于所述未掺杂的Si发射区(22)和未掺杂的Si集电区(24)的正上方,基极Pt电极(26)位于所述未掺杂的SiGe基区(23)的正上方且与其相接触,发射极Cd电极(25)位于SiO2埋氧层(21)的上方且分别与未掺杂的Si发射区(22)及其上方的SiO2隔离层(28)相接触,集电极Cd电极(27)位于SiO2埋氧层(21)的上方且分别与未掺杂的Si集电区(24)及其上方的SiO2隔离层(28)相接触。
所述晶体管发射极Cd电极(25)在未掺杂的Si发射区(22)中形成n型电荷等离子体;基极Pt电极(26)在未掺杂的SiGe基区(23)中形成p型电荷等离子体;集电极Cd电极(27)在未掺杂的Si集电区(24)中形成n型电荷等离子体,最终形成npn型晶体管。
所述Si衬底(20)厚度介于20nm到40nm之间;所述SiO2埋氧层(21)厚度介于20nm到40nm之间;所述未掺杂的Si发射区(22)、未掺杂的SiGe基区(23)以及未掺杂的Si集电区(24)的厚度相等且均介于10nm到20nm之间;所述未掺杂的Si发射区(22)和未掺杂的Si集电区(24)宽度相等,均介于60nm到80nm之间;所述未掺杂的SiGe基区(23)宽度介于50nm到70nm之间,其中Ge组分的含量介于0.05-0.2之间;所述SiO2隔离层(28)厚度介于1nm到5nm之间,宽度介于60nm到80nm之间;发射极(25)和集电极(27)电极的厚度相等,均介于12nm到30nm之间,长度相等,均介于65nm到75nm之间;基极(26)电极的厚度介于2nm到10nm之间,长度介于55nm到65nm之间。
与常规电荷等离子体双极晶体管相比,所述晶体管通过采用未掺杂的SiGe基区(23)来改变发射结处的能带结构,可有效提高电流增益,此时发射极和集电极电极可以选取与Si功函数差较小(0.66V)的Cd作为电极金属,来有效降低集电区一侧的电子浓度,从而提高了器件的击穿电压。本发明所述的一种电荷等离子体SiGe异质结双极晶体管实现了电流增益和击穿电压的同步提高,有效拓展了器件在高速混合模拟集成电路领域的应用范围。
附图说明
结合附图所进行的下列描述,可进一步理解本发明的目的和优点。在这些附图中:
图1示例了常规电荷等离子体双极晶体管纵向剖面示意图;
图2示例了本发明实施例的纵向剖面示意图;
图3示例了本发明实施例对发射结处能带结构的改善;
图4示例了本发明实施例对器件电流增益的改善;
图5示例了本发明实施例对器件击穿电压BVCEO的改善;
图6示例了本发明实施例对器件击穿电压BVCBO的改善;
图7示例了本发明实施例对器件特征频率的改善。
具体实施方式
本发明实施例以Ge组分含量为0.1的电荷等离子体SiGe异质结双极晶体管为例,对本发明内容进行具体表述。本发明涉及领域并不限制于此。
实施示例:
本发明实施例公开的电荷等离子体SiGe异质结双极晶体管,图2示例了其纵向剖面示意图,其中包括Si衬底(20),厚度为25nm;SiO2埋氧层(21),厚度为25nm;未掺杂的SiGe基区(23),Ge组分为0.1,厚度为15nm,宽度为60nm;未掺杂的Si发射区(22)和未掺杂的Si集电区(24),厚度均为15nm,宽度均为70nm;其中所述未掺杂的SiGe基区(23)、Si发射区(22)以及Si集电区(24)位于SiO2埋氧层(21)的上方;SiO2隔离层(28)分别位于所述未掺杂的Si发射区(22)和未掺杂的Si集电区(24)的正上方,厚度均为2.5nm,宽度均为70nm;基极Pt电极(26)位于所述未掺杂的SiGe基区(23)的正上方并相接触,厚度为5nm,宽度为60nm;发射极Cd电极(25)位于SiO2埋氧层(21)的上方且分别与未掺杂的Si发射区(22)及其上方的SiO2隔离层(28)相接触,总厚度为20nm,总长度为70nm;集电极Cd电极(27)SiO2埋氧层(21)的上方且分别与未掺杂的Si集电区(24)及其上方的SiO2隔离层(28)相接触,总厚度为20nm,总长度为70nm。
为了更好地体现电荷等离子体SiGe异质结双极晶体管的性能,对本发明实施例和常规器件的电流增益,击穿电压BVCEO、BVCBO,以及特征频率进行了对比。
图3示例了本发明实施例对发射结处能带结构的改善。可以看出,与常规电荷等离子体双极晶体管相比,本发明实施例中SiGe基区的引入会有效降低电子在发射结处的势垒高度,从而增大了发射结的注入效率,提高了电流增益。
图4示例了在VCE=1.5V,VBE=1V的条件下,本发明实施例对器件电流增益的改善。可以看出,与常规电荷等离子体双极晶体管相比,本发明实施例的峰值电流增益(β)为3987.25,与常规电荷等离子体双极晶体管相比,改善了193.61%。
图5示例了本发明实施例对器件击穿电压BVCEO的改善。可以看到,本发明实施例的击穿电压BVCEO为0.6V,与常规电荷等离子体双极晶体管相比,改善了71.43%。
图6示例了本发明实施例对器件击穿电压BVCBO的改善。可以看到,本发明实施例的击穿电压BVCBO为6.13V,与常规电荷等离子体双极晶体管相比,改善了33.26%。
图7示例了在VCE=1.5V,VBE=1V的条件下,本发明实施例对器件特征频率的改善。可以看出,本发明实施例的峰值特征频率fT为89.09GHz,与常规电荷等离子体双极晶体管相比,本发明实施例的峰值特征频率fT提高了31.96GHz,并且集电极电流IC在10-4~0.1mA范围内变化时,本发明实施例的特征频率fT均高于常规器件的特征频率。
上述结果均显示了本发明实施例的优越性,本发明对设计和制造电荷等离子体SiGe异质结双极晶体管具有重要的理论和实际意义。

Claims (3)

1.一种电荷等离子体SiGe异质结双极晶体管,其特征在于:
包括Si衬底(20),SiO2埋氧层(21),以及位于所述SiO2埋氧层(21)上方的未掺杂的Si发射区(22),未掺杂的SiGe基区(23)和未掺杂的Si集电区(24);SiO2隔离层(28)分别位于所述未掺杂的Si发射区(22)和未掺杂的Si集电区(24)的正上方,基极Pt电极(26)位于所述未掺杂的SiGe基区(23)的正上方且与其相接触,发射极Cd电极(25)位于SiO2埋氧层(21)的上方且分别与未掺杂的Si发射区(22)及其上方的SiO2隔离层(28)相接触,集电极Cd电极(27)位于SiO2埋氧层(21)的上方且分别与未掺杂的Si集电区(24)及其上方的SiO2隔离层(28)相接触。
2.根据权利要求1所述的一种电荷等离子体SiGe异质结双极晶体管,其特征在于:
发射极Cd电极(25)在未掺杂的Si发射区(22)中形成n型电荷等离子体;基极Pt电极(26)在未掺杂的SiGe基区(23)中形成p型电荷等离子体;集电极Cd电极(27)在未掺杂的Si集电区(24)中形成n型电荷等离子体,最终形成npn型晶体管。
3.根据权利要求1所述的一种电荷等离子体SiGe异质结双极晶体管,其特征在于:
所述Si衬底(20)厚度介于20nm到40nm之间;所述SiO2埋氧层(21)厚度介于20nm到40nm之间;所述未掺杂的Si发射区(22)、未掺杂的SiGe基区(23)以及未掺杂的Si集电区(24)的厚度相等且均介于10nm到20nm之间;所述未掺杂的Si发射区(22)和未掺杂的Si集电区(24)宽度相等,均介于60nm到80nm之间;所述未掺杂的SiGe基区(23)宽度介于50nm到70nm之间,其中Ge组分的含量介于0.05-0.2之间;所述SiO2隔离层(28)的厚度介于1nm到5nm之间,宽度介于60nm到80nm之间;发射极(25)和集电极(27)电极的厚度相等,均介于12nm到30nm之间,长度相等,均介于65nm到75nm之间;基极(26)电极的厚度介于2nm到10nm之间,长度介于55nm到65nm之间。
CN202110985799.4A 2021-08-26 2021-08-26 一种电荷等离子体SiGe异质结双极晶体管 Active CN113838927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110985799.4A CN113838927B (zh) 2021-08-26 2021-08-26 一种电荷等离子体SiGe异质结双极晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110985799.4A CN113838927B (zh) 2021-08-26 2021-08-26 一种电荷等离子体SiGe异质结双极晶体管

Publications (2)

Publication Number Publication Date
CN113838927A true CN113838927A (zh) 2021-12-24
CN113838927B CN113838927B (zh) 2023-09-19

Family

ID=78961213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110985799.4A Active CN113838927B (zh) 2021-08-26 2021-08-26 一种电荷等离子体SiGe异质结双极晶体管

Country Status (1)

Country Link
CN (1) CN113838927B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013982A1 (de) * 2005-03-26 2006-10-05 Atmel Germany Gmbh Verfahren zur Herstellung eines Bipolartransistors und nach einem derartigen Verfahren hergestellter Bipolartransistor
US20110215858A1 (en) * 2010-03-05 2011-09-08 Infineon Technologies Austria Ag Controlling the recombination rate in a bipolar semiconductor component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013982A1 (de) * 2005-03-26 2006-10-05 Atmel Germany Gmbh Verfahren zur Herstellung eines Bipolartransistors und nach einem derartigen Verfahren hergestellter Bipolartransistor
US20110215858A1 (en) * 2010-03-05 2011-09-08 Infineon Technologies Austria Ag Controlling the recombination rate in a bipolar semiconductor component

Also Published As

Publication number Publication date
CN113838927B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US6849871B2 (en) Fully-depleted-collector silicon-on-insulator (SOI) bipolar transistor useful alone or in SOI BiCMOS
KR101616271B1 (ko) 단극성 헤테르 접합-공핍 층 트랜지스터
TWI246196B (en) Semiconductor device
CN102148255B (zh) 具有隧穿介质层的栅控肖特基结场效应晶体管及形成方法
CN102054870A (zh) 一种半导体结构及其形成方法
CN107808899A (zh) 具有混合导电模式的横向功率器件及其制备方法
JP2005150531A (ja) 半導体装置
CN102694030B (zh) 具有石墨烯纳米带异质结构的隧穿场效应晶体管
JP5160071B2 (ja) ヘテロ接合バイポーラトランジスタ
CN1312778C (zh) 半导体装置
US6812533B2 (en) SOI based bipolar transistor having a majority carrier accumulation layer as subcollector
JP2004207583A (ja) 半導体装置
JP3507830B1 (ja) 半導体装置
CN113838927B (zh) 一种电荷等离子体SiGe异质结双极晶体管
JPH0658918B2 (ja) ヘテロ接合バイポーラトランジスタ
CN110556420B (zh) 一种掺杂浓度可调的横向SiGe异质结双极晶体管
JP3163815B2 (ja) 半導体装置
CN108010962B (zh) 具有高特征频率-击穿电压优值的SOI SiGe异质结双极晶体管
JP3030070B2 (ja) 半導体装置
US7023072B2 (en) Bipolar transistor
CN102420243B (zh) 锗硅异质结双极晶体管及制造方法
US6847063B2 (en) Semiconductor device
CN110676313A (zh) 台面结构PNP型肖特基集电区SOI SiGe HBT结构及其制备方法
JP2005012170A (ja) 半導体装置
CN113838926B (zh) 一种具有高压和高增益模式的高频横向双极晶体管电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant