CN113832489A - 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法 - Google Patents

泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法 Download PDF

Info

Publication number
CN113832489A
CN113832489A CN202111294067.7A CN202111294067A CN113832489A CN 113832489 A CN113832489 A CN 113832489A CN 202111294067 A CN202111294067 A CN 202111294067A CN 113832489 A CN113832489 A CN 113832489A
Authority
CN
China
Prior art keywords
nickel
copper
preparation
manganese
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111294067.7A
Other languages
English (en)
Other versions
CN113832489B (zh
Inventor
王劲松
李智敏
徐明丽
张正富
辛思思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111294067.7A priority Critical patent/CN113832489B/zh
Publication of CN113832489A publication Critical patent/CN113832489A/zh
Application granted granted Critical
Publication of CN113832489B publication Critical patent/CN113832489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • C25D5/40Nickel; Chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明实施例公开了一种泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法,该制备方法包括如下步骤:⑴对泡沫镍进行预处理,以去除其表面的镍氧化物;⑵将水溶性的锰盐、铜盐和镍盐按预定比例溶于去离子水中,得到前驱体溶液,并调节前驱体溶液的pH为酸性;⑶以预处理过的泡沫镍作为工作电极,在前驱体溶液中进行电沉积而在泡沫镍上负载镍铜锰金属纳米粒子;其中,沉积电位为‑0.5~‑1.2V。本发明通过掺杂催化惰性的金属Cu优化Ni活性位对*H的吸附能,同时加入电极电位远低于Ni和Cu的Mn元素,促进Ni/Ni(OH)2结构形成,具有制备工艺简单、成本低、效率高的优点,且所制备的催化剂对碱性HER反应具有极佳的电催化性能。

Description

泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法
技术领域
本发明属于电催化技术领域;更具体地,是涉及一种用于氢析出反应的非贵金属纳米电催化剂及其制备方法。
背景技术
近年来,氢能源由于高能量密度和高清洁度受到广泛关注。现有的制氢技术中,电解水制氢可谓最具发展潜力,因为水解产物只有氧气和氢气,不仅对环境零污染,还可以作为燃料电池的原料,所以电解水既能从根本上减少环境污染问题,还能解决人类所面临的能源危机。
但是,电解水阴极侧的氢析出反应(hydrogen evolution reaction,HER)需要提供远高于理论的电势来克服反应动力学限制(特别是碱性条件下),由此造成了电能的浪费和较低的能源转换效率。目前,相对高效的析氢催化剂为铂基贵金属催化剂,但由于其稀缺性及高昂的成本,导致无法实现大规模生产。同时,铂基催化剂在碱性环境中的活性也远低于酸性环境。所以,寻找在地壳中储量丰富,且在碱性环境下仍具有高活性和耐久性的析氢反应电催化剂,在水电解的可扩展应用中具有至关重要的意义。
电解水析氢分为两个步骤,首先电解液中的H2O分子解离形成反应中间体吸附氢(*H)吸附在催化剂表面,接着吸附氢从催化剂表面脱附形成氢气(H2)。因此,提升碱性HER活性关键在于同时加速水分子的解离和*H的吸/脱附。基于非贵金属和非金属材料的碱性HER电催化剂已经有大量的研究报道,在这些材料中,由于Ni对H的吸附能约为-0.3eV,可以作为*H吸/脱附位点,而氢氧化镍具有优异的水解离能力,使得由Ni和Ni(OH)2构成的多组分界面结构表现出良好的碱性HER活性和稳定性。但现有技术中制备Ni/Ni(OH)2结构存在工艺复杂、成本高和效率低的问题,同时由于Ni对*H的吸附能较强,导致Ni/Ni(OH)2活性需进一步改善。
发明内容
针对现有技术的以上缺陷或改进需求,本发明的主要目的在于提供一种泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法,不仅具有工艺简单、成本低和效率高的优点,而且在碱性条件下对HER反应具有极佳的电催化性能。
为实现上述目的,本发明的第一方面提供了一种泡沫镍负载镍铜锰金属纳米电催化剂的制备方法,包括如下步骤:
⑴对泡沫镍进行预处理,以去除其表面的镍氧化物;
⑵将水溶性的锰盐、铜盐和镍盐按预定比例溶于去离子水中,得到前驱体溶液,并调节前驱体溶液的pH为酸性;
⑶以预处理过的泡沫镍作为工作电极,在前驱体溶液中进行电沉积而在泡沫镍上负载镍铜锰金属纳米粒子;其中,电沉积的沉积电位为-0.5~-1.2V。
根据本发明的一种具体实施方式,步骤⑴所述的预处理包括依次对泡沫镍进行酸洗、水洗和真空干燥。其中,酸洗可以采用盐酸,例如浓度为6mol/L的盐酸。
根据本发明的一种具体实施方式,所述水溶性的锰盐、铜盐和镍盐分别为硫酸锰、硫酸铜和硫酸镍。
根据本发明的一种具体实施方式,前驱体溶液中锰、铜和镍的摩尔比为0.9~1.8:1.5~0.6:4。
根据本发明的一种具体实施方式,前驱体溶液中锰、铜和镍的总摩尔浓度为3~8mol/L。
根据本发明的一种具体实施方式,步骤⑵采用硫酸铵作为pH调节剂。
根据本发明的一种具体实施方式,步骤⑵调节前驱体溶液的pH为4~5。
根据本发明的一种具体实施方式,步骤⑶的电沉积时间为300~1500s。
本发明的制备方法中,通过掺杂催化惰性的金属Cu优化Ni活性位对*H的吸附能,同时加入电极电位远低于Ni和Cu的Mn元素,使Mn以氢氧化物形式存在,促使一步合成Ni/Ni(OH)2结构,由此解决了现有技术存在的制备工艺复杂、成本高和效率低的技术问题,且所制备的催化剂即使在碱性条件下也具有极佳的析氢催化性能。
为了实现上述主要目的,本发明的第二方面提供了一种用于碱性HER反应的泡沫镍负载镍铜锰金属纳米电催化剂,其根据上述的任意一种制备方法得到。
本发明提供的泡沫镍负载镍铜锰金属纳米电催化剂用一步电沉积技术制备而成,具有制作工艺简单、成本低和效率高的优点,且即使在碱性条件下也具有极佳的电催化活性和稳定性。
为了更清楚地说明本发明的目的、技术方案和优点,下面结合附图和具体实施方式对本发明作进一步的详细说明。
附图说明
图1a、1b和1c分别为Ni、Cu和Mn三种金属的Pourbaix图;
图2为实施例1制得的NiCuMn催化剂的电沉积图;
图3a和3b分别为本发明预处理好的多孔泡沫镍及实施例1所制备NiCuMn催化剂的实物图;
图4为实施例1制得的NiCuMn催化剂的FESEM图及EDS能谱图;
图5是本发明实施例1制得的NiCuMn催化剂、对比例1制得的Ni催化剂、对比例2制得的NiCu催化剂及对比例3制得的NiMn催化剂的XRD图;
图6是本发明实施例1制得的NiCuMn催化剂的HAADF-STEM图;
图7a和7b分别为参考样Ni箔和Ni(OH)2,以及本发明发明实施例1制得的NiCuMn催化剂、对比例2制得的NiCu催化剂和对比例3制得的NiMn催化剂,在Ni K边的XANES谱和Ni K边的EXAFS数据对应的K3加权傅立叶变换曲线;
图8是实施例1制得的NiCuMn催化剂、对比例1制得的Ni催化剂、对比例2制得的NiCu催化剂的价带谱图;
图9为实施例1至5所制得镍铜锰催化剂的线性扫描伏安曲线图;
图10是实施例1制得的NiCuMn催化剂、对比例1制得的Ni催化剂、对比例2制得的NiCu催化剂、对比例3制得的NiMn催化剂及预处理好的多孔泡沫镍(NF)的线性扫描伏安曲线图;
图11是实施例1制得的NiCuMn催化剂的稳定性测试图。
具体实施方式
本发明实施例公开了一种泡沫镍负载镍铜锰金属纳米电催化剂的制备方法,包括如下步骤:
⑴对泡沫镍进行预处理,以去除其表面的镍氧化物;具体的,可以先裁剪得到尺寸为1cm*1cm的泡沫镍,再将裁剪好的泡沫镍放入盐酸中超声清洗,去除其表面的NiOx层,然后用去离子水多次清洗去除其表面残余的酸,最后再真空干燥备用。
⑵将水溶性的锰盐、铜盐和镍盐按预定比例溶于去离子水中,得到前驱体溶液,并调节前驱体溶液的pH为酸性。其中,水溶性的锰盐、铜盐和镍盐可以为硫酸锰、硫酸铜和硫酸镍,并采用硫酸铵作为pH调节剂,调节前驱体溶液为弱酸性,优选为4~5。其中,前驱体溶液中锰、铜和镍的摩尔比优选为0.9~1.8:1.5~0.6:4,锰、铜和镍的总摩尔浓度优选为3~8mol/L。
⑶以预处理过的泡沫镍作为工作电极,在前驱体溶液中进行恒电位沉积而在泡沫镍上负载镍铜锰金属纳米粒子。具体的,可以在如下的三电极体系下进行电沉积:以泡沫镍为工作电极,饱和Ag/AgCl为参比电极,石墨棒为对电极。其中,沉积电位可以为-0.5~-1.2V,电沉积时间可以为300~1500s。
图1a、1b和1c为分别为Ni、Cu和Mn三种金属的Pourbaix图,可以看出在酸性条件下提供低于-0.5V的低电压即可将镍离子和铜离子还原,而需提供低于-1.2V的高电压才可还原出金属锰。因此,有理由认为在含有Ni、Cu和Mn金属盐的混合溶液中,在pH为4~5、-0.5~-1.2V的沉积电位下可生成Ni和Cu单质,而Mn为离子态形式存在。本发明中,所描述的电位都是相对于标准氢电极电位。
本发明实施例采用简单的一步电沉积方法,控制沉积电位为-0.5~-1.2V,并通过调节电解液pH为酸性,使电极电势较高的Ni2+和Cu2+还原位Ni和Cu单质,形成NiCu合金,优化Ni对*H的吸/脱附;而电极电势较低的Mn2+以氢氧化物形式存在,促进Ni/Ni(OH)2结构形成,由此提升催化剂的催化性能。
以下,根据具体实施例和对比例更详细地描述本发明。
实施例1
实施例1中泡沫镍负载镍铜锰金属纳米电催化剂的制备包括如下步骤:
⑴将泡沫镍裁剪成1cm*1cm的尺寸,放入浓度为6mol/L的盐酸中超声10min,用去离子水进行数次清洗,在60℃下真空干燥2小时备用。其中,使用盐酸是为了去除表面的氧化物(NiOx),去离子水反复清洗是为了去除泡沫镍上残留的盐酸。
⑵将1.2mmol的五水合硫酸铜(CuSO4﹒5H2O),1.2mmol的一水合硫酸锰(MnSO4﹒H2O),4mmol的六水合硫酸镍(NiSO4﹒6H2O)和2.6mmol硫酸铵((NH4)2SO4),分散于100ml去离子水中,超声20分钟即可得到混合均匀、pH为4~5的电化学沉积电解液。其中,硫酸铵的主要作用是调节溶液pH,五水合硫酸铜提供铜源,一水合硫酸锰提供锰源,六水合硫酸镍提供镍源。
⑶采用三电极体系,以步骤⑴中预处理好的泡沫镍作为工作电极,石墨棒作为对电极,饱和Ag/AgCl作为参比电极,置入步骤⑵的电解液中,在-200mA cm-2的电流密度下保持800秒,即得到NiCuMn催化剂。
如图2所示,实施例1中电沉积电位大约为-0.5~-1V,该沉积条件并未达到Mn2+的还原电位,Mn以离子态形式存在,而Ni2+和Cu2+已被还原。
实施例2-5
实施例2-5的制备流程与实施例1中NiCuMn催化剂一致,区别仅在于改变Cu和Mn的配比。具体的,实施例2-5将Cu与Mn的摩尔量分别调整为1.5mmol与0.9mmol、0.9mmol与1.5mmol、0.6mmol与1.8mmol、0.3mmol与2.1mmol,在此不做赘述。
对比例1-3
对比例1至3分别为:泡沫镍负载镍金属纳米催化剂(Ni)、泡沫镍负载镍铜金属纳米催化剂(NiCu)、泡沫镍负载镍锰金属纳米催化剂(NiMn)。
对比例1-3的具体制备步骤均与实施例1中NiCuMn催化剂的制备工艺相同,区别仅在于制备Ni催化剂时,沉积液中未加入铜源(CuSO4﹒5H2O)和锰源(MnSO4﹒H2O),相应的NiCu催化剂制备时未加入锰源(MnSO4﹒H2O),而NiMn催化剂则未加入铜源(CuSO4﹒5H2O),在此不再赘述。
催化剂结构与形貌分析
图3a和3b分别为预处理好的多孔泡沫镍及实施例1所制备NiCuMn催化剂的实物图,对比两张图可看出在多孔泡沫镍上沉积有一层十分明显的黑色物质。图4为实施例1所制备NiCuMn催化剂的FESEM图,可以看出多孔泡沫镍上负载了均匀的球状颗粒,颗粒大小约为200纳米,其多孔形态不仅提供了丰富的活性位点,而且还有利于电荷传输和气泡的排空。
图5为Ni、NiCu、NiMn、NiCuMn催化剂的XRD图,从图中可观察到NiCu和NiCuMn催化剂在43.9°处均出现了NiCu合金的衍射峰,且相比于Ni催化剂中Ni的衍射峰也整体发生小角度偏移,说明Cu加入后与Ni形成了NiCu合金;而Mn的加入并未改变衍射峰的位置,但是能观察到衍射峰强度明显减弱,同时NiMn合金未显示XRD衍射峰,说明Mn促进非晶相形成。
进一步地,通过NiCuMn催化剂的HAADF-STEM图(图6)可以看出该样品中存在结晶相Ni和非晶相Ni(OH)2;Ni/Ni(OH)2结构进一步通过同步辐射吸收谱得到证实。
图7a和7b分别为参考样Ni箔和Ni(OH)2,以及本发明制备的NiCu、NiMn、NiCuMn催化剂,在Ni K边的XANES谱和Ni K边的EXAFS数据对应的K3加权傅立叶变换曲线,从图7a中可以看出NiCu的XANES光谱的前线位于8335eV,接近于参考镍箔(位于约8336eV),NiMn几乎与位于8341eV的Ni(OH)2重合,NiCuMn位于8337eV处介于二者之间,这证明了NiCu的主要镍相是金属镍,NiMn中镍主要以氢氧化物形式存在,而NiCuMn中则既有二价镍(氢氧化镍)也有金属镍;从7b图可以看出NiCuMn的Ni-Ni峰显示出比Ni箔略小的R空间,表明一个Ni原子被一个Cu原子所取代,从而导致晶格畸变。
图8为Ni、NiCu、NiCuMn催化剂的价带谱图,可以看出NiCu形成合金后,d带中心相比于其他催化剂有明显下移,而已证实d带中心的位置与催化剂对*H中间体的吸附有关,下移说明其对*H中间体吸附有所削弱,即NiCu形成合金后优化了Ni对*H的吸/脱附。
碱性HER反应电催化性能测试
在浓度为1mol/L的KOH溶液、扫描速率为2mV/s的条件下,以所制备催化剂为工作电极,石墨棒为对电极,饱和Ag/AgCl为参比电极,测试实施1至5所制备催化剂的电催化性能。如图9所示,可以看出当Cu的占比逐渐增多时,催化剂的性能逐渐提高,相应的Mn占比增多时,性能变差。其中,当Ni、Cu和Mn的摩尔比为0.9~1.8:1.5~0.6:4时,催化剂均具有较佳的HER电催化活性;当Mn、Cu和Ni的摩尔比为1.2:1.2:4时(实施例1)催化剂的电催化性能最佳。
图10为Ni、NiCu、NiMn、NiCuMn催化剂及预处理好的多孔泡沫镍(NF)的线性扫描伏安曲线(LSV),可以看出在电流密度为10mA cm-2下,实施例1制备的NiCuMn催化剂具有非常低地过电位,仅为17mV,根据以往研究数据商业Pt/C的过电位一般在30mV左右,可见实施例1制备的催化剂性能优于商业Pt/C。
图11为NiCuMn催化剂的稳定性测试图,分别测试了10、50、100mA cm-2的电流密度下的稳定性,随着测试时间的延长,催化性能几乎保持稳定,可见实施例1制备的催化剂具有优异的稳定性。
综上所述,即使在碱性环境下,本发明的泡沫镍负载镍铜锰纳米电催化剂对于HER反应也具有优异的催化活性和稳定性。并且,该泡沫镍负载镍铜锰纳米电催化剂可以通过一步电沉积法制备,具有制备工艺简单、成本低、效率高的优点。
虽然以上通过具体实施例描绘了本发明,但应当理解的是,本领域普通技术人员在不脱离本发明的范围内,凡依照本发明所作的同等改变,应为本发明的保护范围所涵盖。

Claims (10)

1.泡沫镍负载镍铜锰金属纳米电催化剂的制备方法,包括如下步骤:
⑴对泡沫镍进行预处理,以去除其表面的镍氧化物;
⑵将水溶性的锰盐、铜盐和镍盐按预定比例溶于去离子水中,得到前驱体溶液,并调节所述前驱体溶液的pH为酸性;
⑶以预处理过的泡沫镍作为工作电极,在所述前驱体溶液中进行电沉积而在所述泡沫镍上负载镍铜锰金属纳米粒子;其中,所述电沉积的沉积电位为-0.5~-1.2V。
2.根据权利要求1所述的制备方法,其中,步骤⑴所述的预处理包括依次对泡沫镍进行酸洗、水洗和真空干燥。
3.根据权利要求1所述的制备方法,其中,所述水溶性的锰盐、铜盐和镍盐分别为硫酸锰、硫酸铜和硫酸镍。
4.根据权利要求1所述的制备方法,其中,所述前驱体溶液中锰、铜和镍的摩尔比为0.9~1.8:1.5~0.6:4。
5.根据权利要求1所述的制备方法,其中,所述前驱体溶液中锰、铜和镍的总摩尔浓度为3~8mol/L。
6.根据权利要求1所述的制备方法,其中,步骤⑵采用硫酸铵作为pH调节剂。
7.根据权利要求1所述的制备方法,其中,步骤⑵调节所述前驱体溶液的pH为4~5。
8.根据权利要求1所述的制备方法,其中,步骤⑶的电沉积时间为300~1500s。
9.根据权利要求1所述的制备方法,其中,步骤⑶在如下的三电极体系下进行电沉积:以泡沫镍为工作电极,饱和Ag/AgCl为参比电极,石墨棒为对电极。
10.一种用于碱性HER反应的泡沫镍负载镍铜锰金属纳米电催化剂,根据权利要求1至9任一项所述的制备方法得到。
CN202111294067.7A 2021-11-03 2021-11-03 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法 Active CN113832489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111294067.7A CN113832489B (zh) 2021-11-03 2021-11-03 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111294067.7A CN113832489B (zh) 2021-11-03 2021-11-03 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113832489A true CN113832489A (zh) 2021-12-24
CN113832489B CN113832489B (zh) 2023-07-14

Family

ID=78966905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111294067.7A Active CN113832489B (zh) 2021-11-03 2021-11-03 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113832489B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230873A (zh) * 2023-01-09 2023-06-06 青海昊清建筑工程有限公司 一种钠氢碱性二次电池、正极及负极催化剂
CN116282230A (zh) * 2023-03-27 2023-06-23 昆明理工大学 一种硫掺杂镍铁氢氧化物超薄纳米片的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924260A (zh) * 2014-04-14 2014-07-16 太原理工大学 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
WO2016161205A1 (en) * 2015-03-31 2016-10-06 Yujie Sun Bifunctional water splitting catalysts and associated methods
CN109225252A (zh) * 2018-09-29 2019-01-18 陕西科技大学 一种锰镍双金属氢氧化物双功能电催化剂的制备方法
CN109628952A (zh) * 2018-12-31 2019-04-16 武汉工程大学 一种泡沫镍负载银掺杂镍基双金属氢氧化物电催化析氢催化剂及其制备方法
WO2021128282A1 (zh) * 2019-12-27 2021-07-01 江南大学 一种铁钴镍铜基高熵合金电解水催化材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924260A (zh) * 2014-04-14 2014-07-16 太原理工大学 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
WO2016161205A1 (en) * 2015-03-31 2016-10-06 Yujie Sun Bifunctional water splitting catalysts and associated methods
CN109225252A (zh) * 2018-09-29 2019-01-18 陕西科技大学 一种锰镍双金属氢氧化物双功能电催化剂的制备方法
CN109628952A (zh) * 2018-12-31 2019-04-16 武汉工程大学 一种泡沫镍负载银掺杂镍基双金属氢氧化物电催化析氢催化剂及其制备方法
WO2021128282A1 (zh) * 2019-12-27 2021-07-01 江南大学 一种铁钴镍铜基高熵合金电解水催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINSONG WANG等: ""Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickel-Based Alloys for Highly Efficient Alkaline Hydrogen Evolution"", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》, vol. 61, no. 30, pages 1 - 10 *
ZHIMIN LI等: ""Boosting elementary steps kinetics towards energetic alkaline hydrogen evolution via dual sites on phase-separated Ni-Cu-Mn/hydroxide"", 《CHEMICAL ENGINEERING JOURNAL》, vol. 451, pages 1 - 9 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230873A (zh) * 2023-01-09 2023-06-06 青海昊清建筑工程有限公司 一种钠氢碱性二次电池、正极及负极催化剂
CN116230873B (zh) * 2023-01-09 2024-05-10 青海师范大学 一种钠氢碱性二次电池、正极及负极催化剂
CN116282230A (zh) * 2023-03-27 2023-06-23 昆明理工大学 一种硫掺杂镍铁氢氧化物超薄纳米片的制备方法

Also Published As

Publication number Publication date
CN113832489B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
Yu et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects
Zhang et al. Zn electrode with a layer of nanoparticles for selective electroreduction of CO 2 to formate in aqueous solutions
Li et al. Mn doped CoP nanoparticle clusters: an efficient electrocatalyst for hydrogen evolution reaction
US9255334B2 (en) Hydrogen evolution reaction catalyst
CN111686764B (zh) 一种Fe-Ni(OH)2/Ni3S2@NF异质结构及其制备方法和应用
CN113373476B (zh) 一种磷掺杂的单金属元素电子结构可调的双金属硒化物电催化剂材料及其制备方法与应用
CN111883367B (zh) 一种Cu掺杂氢氧化钴纳米片阵列结构材料及其制备方法和应用
CN113832489B (zh) 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法
CN108823591B (zh) 一种镍铁联硒化合物及其制备方法和应用
CN112080759A (zh) 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
Chen et al. Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting
Zhou et al. Synthesis of flower-like nickel–iron–chromium nanostructure compound deposited stainless steel foil as an efficient binder-free electrocatalyst for water splitting
CN111774073A (zh) 一种Ag纳米粒子负载硫化镍纳米片薄膜结构材料及其制备方法和应用
CN110983373A (zh) 一种负载型复合硫化物析氢催化剂及其制备方法和应用
Zhang et al. Electrochemical conversion of CO 2 into HCOO− in a synergistic manner by a nanocomposite of Zn 2 SnO 4/ZnO
Cao et al. Facile fabrication of amorphous NiFeP nanosheets to promote urea oxidation reaction for energy-saving hydrogen production
Mohammadpour et al. Ni3S2 nanosheets decorated on NiCo2O4 flakes-arrays directional growth of Ni foam for enhanced electrochemical hydrogen generation
CN114150345A (zh) 利用电化学氧化提升NiCu合金催化性能的方法
CN114318410A (zh) 一种钴基电解水催化剂及其制备方法和在电解水中的应用
CN114990627B (zh) 一种NiFe LDHs-NiFe合金梯度过渡催化材料及其应用
CN115094475B (zh) 具有高性能析氧催化活性的电极材料及其制备方法
CN115094469B (zh) 一种微量Cu掺杂的多孔NiFe析氧电催化剂的制备方法
CN114990619B (zh) 一种非晶态NiOOH/Ni3S2异质结构型镍基复合物催化剂及其制备方法和应用
CN115011997B (zh) 一种自支撑中空糖葫芦状电催化剂及其制备方法和应用
US20240117512A1 (en) Water electrolysis catalyst with core-shell structure and method for preparing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant