CN113830787B - 一种多级孔mfi型纳米沸石分子筛及其制备方法与应用 - Google Patents

一种多级孔mfi型纳米沸石分子筛及其制备方法与应用 Download PDF

Info

Publication number
CN113830787B
CN113830787B CN202010585514.3A CN202010585514A CN113830787B CN 113830787 B CN113830787 B CN 113830787B CN 202010585514 A CN202010585514 A CN 202010585514A CN 113830787 B CN113830787 B CN 113830787B
Authority
CN
China
Prior art keywords
molecular sieve
zeolite molecular
mfi type
solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010585514.3A
Other languages
English (en)
Other versions
CN113830787A (zh
Inventor
王有和
彭志华
王日升
邢伟
张忠东
汪毅
阎子峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
China University of Petroleum East China
Original Assignee
Petrochina Co Ltd
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd, China University of Petroleum East China filed Critical Petrochina Co Ltd
Priority to CN202010585514.3A priority Critical patent/CN113830787B/zh
Publication of CN113830787A publication Critical patent/CN113830787A/zh
Application granted granted Critical
Publication of CN113830787B publication Critical patent/CN113830787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种多级孔MFI型纳米沸石分子筛及其制备方法与应用,其中,所述多级孔MFI型纳米沸石分子筛为微‑介复合多级孔MFI型纳米沸石分子筛,所述分子筛为颗粒状,所述颗粒是由纳米薄片垂直交叉共生,进而堆积形成的。本发明所提供的分子筛为一种形貌特殊、孔道结构稳定、介孔分布相对集中且呈多级孔分布的由纳米薄片垂直交叉共生堆积而成的MFI型沸石分子筛。

Description

一种多级孔MFI型纳米沸石分子筛及其制备方法与应用
技术领域
本发明涉及一种多级孔MFI型纳米沸石分子筛及其制备方法与应用,属于分子筛合成技术领域。
背景技术
MFI型沸石分子筛因其具有均匀规则的微孔孔道尺寸,高的水热稳定性,强的酸性等特点,可作为催化剂或催化剂载体广泛应用于现代化工生产中。然而,传统的MFI型沸石分子筛由于微孔孔径的限制,使其在催化有大分子参与的反应时,物料难以高效扩散,严重影响了其催化性能。相比于传统块状分子筛,片层状分子筛很大程度地改善了上述状况,片层分子筛不仅能够有效缩短扩散路径,还可以通过片层堆积形成部分稳定的介孔,减小扩散阻力,从而提高反应的催化速率且延长催化寿命。因此开发出一种新型多级孔片层状MFI型沸石分子筛材料成为研究领域中的一个迫切的愿望。
为达到上述目的,Ryoo等人[Na K,Jo C,Kim J,et al.Directing zeolitestructures into hierarchically nanoporous architectures[J].Science,2011,333(6040):328-332.]通过水热合成法,分别使用大分子季铵盐及季铵碱作为双功能结构导向剂,合成了片层厚度为2nm的多层及单层的片层状MFI型沸石分子筛,极大地缩短了扩散路径,提高了传质效率。虽然该片层分子筛中引入了二氧化硅柱进行柱撑,但由于其片层为平行结构,仍存在较为严重的结构塌陷问题。朱智洪等人在专利CN104229827A和CN104402020A中使用了四季铵盐头基的bola型阳离子表面活性剂作为结构导向剂合成了中微双孔的beta和ZSM-5分子筛。陈汇勇等在专利CN108002402B中通过使用含有联苯基的长链大分子季铵盐,与TPAOH协同作用,合成得到了具有千层饼状形貌的微-介复合MFI型纳米分子筛。谢鲜梅等在专利CN109399660A和CN106185972A中公开了一种季铵盐类双子表面活性剂{[C12H25(CH3)2N+(CH2)2N+(CH3)2C2H5][Br-]2}合成多级孔分子筛的制作方法。王林英等人在专利CN105712379A中公开了一种合成多级孔MFI分子筛的方法,该方法在聚季铵盐和少量微孔模板剂的协同作用下,合成得到了多级孔MFI分子筛。
上述方法所制备的微-介复合多级孔MFI型沸石分子筛,都没有得到本发明中所提及的沸石纳米片垂直插接所形成的多级孔MFI分子筛,且其有序的孔道结构极易塌陷,孔径分布较广,不利于MFI型沸石分子筛在催化领域的应用。
发明内容
为了解决上述的缺点和不足,本发明的一个目的在于提供一种多级孔MFI型纳米沸石分子筛。
本发明的另一个目的还在于提供以上所述多级孔MFI型纳米沸石分子筛的制备方法。
本发明的又一个目的还在于提供以上所述多级孔MFI型纳米沸石分子筛作为催化剂或催化剂载体的应用。
为了实现以上目的,一方面,本发明提供了一种多级孔MFI型纳米沸石分子筛,其中,所述多级孔MFI型纳米沸石分子筛为微-介复合多级孔MFI型纳米沸石分子筛,所述分子筛为颗粒状,所述颗粒是由纳米薄片垂直交叉共生,进而堆积形成的。
在以上所述的分子筛中,优选地,所述纳米薄片的厚度为20-30nm。
在以上所述的分子筛中,优选地,所述颗粒的直径为1-2μm。
优选地,所述分子筛的总比表面积为165-430m2·g-1,介孔比表面积为40-210m2·g-1,介孔孔径为3.6-4.2nm、总孔容为0.12-0.32cm3·g-1,介孔孔容为0.06-0.2cm3·g-1
本发明所提供的分子筛为一种形貌特殊、孔道结构稳定、介孔分布相对集中且呈多级孔分布的由纳米薄片垂直交叉共生堆积而成的MFI型沸石分子筛。
另一方面,本发明还提供了以上所述多级孔MFI型纳米沸石分子筛的制备方法,其中,所述制备方法包括:
(1)将三分支的双季铵盐型表面活性剂与氢氧化钠加入到去离子水中,混合均匀后得到;
(2)将硅源缓慢滴入所述A液中,继续搅拌一段时间后形成初始凝胶;
(3)将所述初始凝胶调节pH至预设数值后进行水热晶化反应,反应结束后得到结晶产物;
(4)将所述结晶产物常压过滤并用去离子水充分洗涤,再依次进行干燥、焙烧后得到所述多级孔MFI型纳米沸石分子筛。
在以上所述的制备方法中,优选地,步骤(1)中,所述三分支的双季铵盐型表面活性剂的结构通式如下式1)所示:
C3N3-{[p-C6H4-CH2-N+(CH3)2-CnH2n-N+(CH3)2CmH2m+1][Br-]2}3 式1);
式1)中,n为3-8中的整数,m为3-8中的整数。
在以上所述的制备方法中,优选地,步骤(1)中,所述三分支的双季铵盐型表面活性剂的结构式如下式2)所示:
Figure BDA0002554482540000031
在所述多级孔MFI型纳米沸石分子筛的制备过程中,以所述三分支的双季铵盐型表面活性剂作为双功能模板剂(以下简称BiF-SDA),其中,每个分支上的双季铵盐头中的一个(内侧,即靠近内核三苯基均三嗪基团侧)起到稳定胶束结构并导向生成介孔的作用,另一个(外侧,即远离内核三苯基均三嗪基团侧)则导向生成微孔分子筛;另外,由于本领域目前常采用的双分支型模板剂的导向结果多为平行的层状沸石结构,焙烧后易出现严重的结构坍塌现象,本发明所用的双功能模板剂通过第三分支的引入,导向垂直异向成晶,起到柱撑效果,可防止分子筛在焙烧后出现严重的结构坍塌,使分子筛的结构稳定性显著提高;介孔的引入缩短了物料在分子筛孔道中的扩散距离,有效提高了其催化效率,减少了积碳的生成。
在以上所述的制备方法中,优选地,所述三分支的双季铵盐型表面活性剂采用包括如下步骤的制备方法制得:
i.将4-氰基溴苄在氮气保护和冰水浴下缓慢加入三氟甲磺酸中,移除冰水,搅拌反应,之后将反应所得反应液缓慢倒入冰水中,并用氨水调节体系pH至中性,过滤并用丙酮洗涤,得到白色固体产品;
ii.将所述白色固体产品和N与N之间的连接碳数为3-8的四甲基二胺溶于乙腈/甲苯混合溶液中,搅拌回流,充分冷却后,过滤并用无水乙醚洗涤,得中间产品;
iii.将所述中间产品和碳数为3-8的1-溴代烷烃溶于乙腈中,回流,充分冷却后,过滤并用无水乙醚洗涤,再经真空干燥后得到所述三分支的双季铵盐型表面活性剂(淡黄色粉末)。
在以上所述的制备方法中,优选地,步骤i中,所述4-氰基溴苄与三氟甲磺酸的摩尔比为1:2-4;
步骤ii中,所述白色固体产品和N与N之间的连接碳数为3-8的四甲基二胺的摩尔比为1:15-45;
步骤iii中,所述中间产品和碳数为3-8的1-溴代烷烃的摩尔比为1:3-6。
在以上所述的制备方法中,优选地,步骤i中,所述搅拌反应为室温搅拌反应10-14h;更优选为12h。
在以上所述的制备方法中,优选地,步骤ii中,所述搅拌回流时间为24-48h;更优选为36h。
在以上所述的制备方法中,优选地,步骤ii中,乙腈/甲苯混合溶液中乙腈和甲苯的体积比为1:1。
在以上所述的制备方法中,优选地,步骤iii中,所述回流时间为24-48h;更优选为36h。
在以上所述的制备方法中,优选地,步骤(1)中,将三分支的双季铵盐型表面活性剂与氢氧化钠加入到去离子水中,于60-80℃水浴下加热搅拌8-12小时得到A液;更优选地,于80℃水浴下加热搅拌8-12小时得到A液。
优选地,所述制备方法还包括:将铝源溶解在去离子水中得到B液;
于室温搅拌下,将B液、A液及硅源混合,得到混合液,继续搅拌一段时间后形成初始凝胶。
其中,本发明对B液、A液及硅源的加入顺序不做具体要求,本领域技术人员可以根据现场作业需要合理设置B液、A液及硅源这三种组分的添加顺序,只要保证可以实现本发明的目的即可;
如在本发明具体实施方式中,可于室温搅拌下,将B液加入A液中得到混合液,再将硅源缓慢滴入所述混合液中,继续搅拌一段时间后形成初始凝胶;
也可以将B液、硅源滴加到A液中得到混合液,再继续搅拌一段时间后形成初始凝胶。
在以上所述的制备方法中,优选地,步骤(1)中,所述铝源包括异丙醇铝、拟薄水铝石、偏铝酸钠、硫酸铝及氢氧化铝中的一种或几种的组合。
当将本发明制备得到的多级孔MFI型纳米沸石分子筛用作催化剂或催化剂载体时,如需要无酸性的催化剂或者催化剂载体,则在多级孔MFI型纳米沸石分子筛制备过程中可不添加铝源。
在以上所述的制备方法中,优选地,步骤(2)中,所述继续搅拌一段时间为继续搅拌12-24h;更优选为24h。
在以上所述的制备方法中,优选地,步骤(2)中,所述硅源包括正硅酸四乙酯、硅溶胶、白炭黑及硅酸中的一种或几种的组合。
在以上所述的制备方法中,优选地,步骤(2)中,所述初始凝胶中各组分的摩尔配比为:三分支的双季铵盐型表面活性剂:SiO2:Al2O3:Na2O:H2O=2:50:0-0.5:10-15:4000;其中,硅源以SiO2计,铝源以Al2O3计,氢氧化钠以Na2O计。
在以上所述的制备方法中,优选地,步骤(3)中,采用浓度为1-3mol/L的硫酸溶液将所述初始凝胶调节pH至预设数值。
在以上所述的制备方法中,优选地,步骤(3)中,采用浓度为1-3mol/L的硫酸溶液将所述初始凝胶调节pH至10.5-12。
在以上所述的制备方法中,优选地,步骤(3)中,水热晶化反应的温度为140-160℃,时间为4-6d,转速为40-60rpm。
在以上所述的制备方法中,优选地,步骤(4)中,所述干燥为100-120℃干燥10-14h。
在以上所述的制备方法中,优选地,步骤(4)中,所述焙烧为500-600℃焙烧5-7h。
又一方面,本发明还提供了以上所述的多级孔MFI型纳米沸石分子筛作为催化剂或催化剂载体的应用;其中,所述催化剂例如可以为MTP反应(甲醇制丙烯反应)催化剂、脱硝催化剂或者丙烯环氧化催化剂等等。
与现有技术相比,本发明可取得以下预料不到的技术效果:
(1)本发明通过采用三分支的双季铵盐型表面活性剂作为双功能模板剂,一次性合成得到了具有多种孔径规格的MFI型纳米沸石分子筛,其中,所述表面活性剂内核三苯基均三嗪基团通过π-π堆积相互作用实现了模板剂在凝胶合成体系中的自组装,从而达到对分子筛的形貌及孔道结构进行调控的目的;通过第三分支的引入,导向垂直异向成晶,起到柱撑效果,防止了分子筛在焙烧后出现严重的结构坍塌,使分子筛的结构稳定性显著提高。
(2)本发明所提供的由纳米薄片堆积而成的微-介复合多级孔MFI型纳米沸石分子筛形貌新颖,为厚度均匀的纳米薄片垂直交叉共生堆叠而成的颗粒。
(3)本发明所提供的由纳米薄片堆积而成的微-介复合多级孔MFI型纳米沸石分子筛中,既有介孔,又有MFI结构微孔沸石孔壁,且分子筛孔道结构稳定,介孔分布相对集中,介孔孔径可达3.6-4.2nm,有效提高了大分子反应物的可接近性,与普通微孔MFI型沸石分子筛相比,孔容和比表面积更大,使其具备更高的催化活性。
(4)本发明所提供的多级孔MFI型纳米沸石分子筛可以作为催化剂或催化剂载体;在多级孔MFI型纳米沸石分子筛制备过程中,可通过改变硅源及铝源的用量,实现对SiO2/Al2O3的调节,进而可以改变沸石分子筛内部酸性位点含量,使其在相应的催化反应中达到优异的催化性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例2-4制备得到的样品A、样品B以及样品C的广角XRD谱图。
图2为本发明实施例2-4制备得到的样品A、样品B以及样品C的N2吸脱附等温线。
图3为本发明实施例2-4制备得到的样品A、样品B以及样品C的BJH模型拟合的孔径分布曲线。
图4a为本发明实施例2制备得到的样品A的SEM图(×5000)。
图4b为本发明实施例2制备得到的样品A的SEM图(×12000)。
图4c为本发明实施例3制备得到的样品B的SEM图(×5000)。
图4d为本发明实施例3制备得到的样品B的SEM图(×15000)。
图4e为本发明实施例4制备得到的样品C的SEM图(×15000)。
图4f为本发明实施例4制备得到的样品C的SEM图(×40000)。
图5a为本发明实施例2制备得到的样品A的TEM图(0.5μm)。
图5b为本发明实施例2制备得到的样品A的TEM图(20nm)。
图5c为本发明实施例3制备得到的样品B的TEM图(1μm)。
图5d为本发明实施例3制备得到的样品B的TEM图(50nm)。
图6a为本发明实施例1中制备得到的三分支的双季铵盐型表面活性剂的FT-IR谱图。
图6b为本发明实施例1中制备得到的三分支的双季铵盐型表面活性剂的C13-NMR谱图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合以下具体实施例对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
模板剂制备实施例
实施例1
本实施例提供了一种三分支的双季铵盐型表面活性剂的制备方法,其中,所述制备方法包括以下具体步骤:
i.将(3g,15.3mmol)4-氰基溴苄在氮气保护和冰水浴下缓慢加入(4.05mL,45.9mmol)三氟甲磺酸中,移除冰水,室温搅拌反应12h,之后将反应所得反应液缓慢倒入冰水中,并用氨水调节体系pH至中性,过滤并用丙酮洗涤,得白色固体产品。
ii.将15mmol(8.805g)的白色固体产品和450mmol(77.4g)的四甲基己二胺溶于360mL乙腈/甲苯(体积比为1:1)的混合溶液中,搅拌回流36h,充分冷却后,过滤并用无水乙醚洗涤三次,得中间产品。
iii.将15mmol的中间产品和45mmol的1-溴己烷溶于150mL的乙腈中,搅拌回流36h,充分冷却后,过滤并用无水乙醚洗涤三次,充分真空干燥,得淡黄色粉末,即为三分支的双季铵盐型表面活性剂,其结构式如下式2)所示:
Figure BDA0002554482540000081
对本实施例制备得到的所述淡黄色粉末分别进行FT-IR及固体C13-NMR分析,所得FT-IR谱图及固体C13-NMR谱图分别如图6a及图6b所示,图6a及图6b可证实本实施例制备得到的三分支的双季铵盐型表面活性剂确实具有如以上式2)所示的结构。
分子筛制备实施例
实施例2
本实施例提供了一种多级孔MFI型纳米沸石分子筛的制备方法,其中,所述制备方法包括以下具体步骤:
(1)室温下将0.64g实施例1制备得到的三分支的双季铵盐型表面活性剂、0.20gNaOH加入到14.4g去离子水中,磁力搅拌下水浴加热至80℃,恒温10h,得到均匀的混合液A;然后,在剧烈搅拌下将2.08g正硅酸四乙酯(TEOS)滴加到混合液A中,移至室温下搅拌24h,形成初始凝胶,初始凝胶的摩尔组成为:三分支的双季铵盐型表面活性剂:SiO2:Na2O:H2O=2:50:12.5:4000;其中,硅源以SiO2计,氢氧化钠以Na2O计;
(2)采用浓度为2mol/L的硫酸溶液将所述初始凝胶调节pH至12,将所得混合物转移至带有聚四氟乙烯内胆的水热反应釜中,将之固定于均相反应器夹套中,恒温150℃下水热晶化反应5天,转速为50rpm;
(3)待反应结束,将釜取出,水冷降至室温,将反应所得结晶产物常压过滤并用去离子水充分洗涤,将洗涤后的产品置于110℃恒温干燥箱中干燥12小时;
(4)将干燥后的产品置于马弗炉中,空气气氛下550℃焙烧6小时去除模板剂,得到多级孔MFI型纳米沸石分子筛,记为样品A。
实施例3
本实施例提供了一种多级孔MFI型纳米沸石分子筛的制备方法,其中,所述制备方法包括以下具体步骤:
(1)室温下将0.64g实施例1制备得到的三分支的双季铵盐型表面活性剂、0.20gNaOH加入到14.4g去离子水中,磁力搅拌下水浴加热至80℃,恒温10h,得到均匀的混合液A;然后,在剧烈搅拌下将2.08g正硅酸四乙酯(TEOS)滴加到混合液A中,移至室温下搅拌24h,形成初始凝胶,初始凝胶的摩尔组成为:三分支的双季铵盐型表面活性剂:SiO2:Na2O:H2O=2:50:12.5:4000;其中,硅源以SiO2计,氢氧化钠以Na2O计;
(2)采用浓度为2mol/L的硫酸溶液将所述初始凝胶调节pH至11.5,将所得混合物转移至带有聚四氟乙烯内胆的水热反应釜中,将之固定于均相反应器夹套中,恒温150℃下水热晶化反应5天,转速为50rpm;
(3)待反应结束,将釜取出,水冷降至室温,将反应所得结晶产物常压过滤并用去离子水充分洗涤,将洗涤后的产品置于110℃恒温干燥箱中干燥12小时;
(4)将干燥后的产品置于马弗炉中,空气气氛下550℃焙烧6小时去除模板剂,得到多级孔MFI型纳米沸石分子筛,记为样品B。
实施例4
本实施例提供了一种多级孔MFI型纳米沸石分子筛的制备方法,其中,所述制备方法包括以下具体步骤:
(1)室温下将0.64g实施例1制备得到的三分支的双季铵盐型表面活性剂、0.20gNaOH加入到12.4g去离子水中,磁力搅拌下水浴加热至80℃,恒温10h,得到均匀的混合液,记为A液;
将0.0082g NaAlO2溶于2g去离子水中,记为B液;
在室温(25℃)剧烈搅拌下将B液、2.08g TEOS滴加到A液中,移至室温下搅拌24h,形成初始凝胶,初始凝胶的摩尔组成为:三分支的双季铵盐型表面活性剂:SiO2:Al2O3:Na2O:H2O=2:50:0.25:12.5:4000;其中,硅源以SiO2计,铝源以Al2O3计,氢氧化钠以Na2O计。
(2)采用浓度为2mol/L的硫酸溶液将所述初始凝胶调节pH至12,将所得混合物转移至带有聚四氟乙烯内胆的水热反应釜中,将之固定于均相反应器夹套中,恒温150℃下水热晶化反应5天,转速为50rpm;
(3)待反应结束,将釜取出,水冷降至室温,将反应所得反应物过滤并用去离子水充分洗涤,将洗涤后的产品置于110℃恒温干燥箱中干燥12小时;
(4)将干燥后的产品置于马弗炉中,空气气氛下550℃焙烧6小时去除模板剂,得到多级孔MFI型纳米沸石分子筛,记为样品C。
表征与性能测试
对实施例2-4中制备得到的多级孔MFI型纳米沸石分子筛(即实施例2-4中制备得到的样品A、样品B和样品C)分别进行表征与性能测试,具体如下:
1、物相结构分析
图1为本发明实施例2-4制备得到的样品A、样品B以及样品C的广角XRD谱图,由图1可见,本发明实施例2-4制备得到的样品A、样品B以及样品C均具有典型的MFI型分子筛特征衍射峰,说明样品A、样品B以及样品C均具有MFI骨架结构,并且图谱中无明显杂衍射峰出现,也不存在无定形的硅铝物质,说明样品A-样品C具有较高结晶度。综上所述,本发明实施例2-4制备得到的样品A、样品B以及样品C确实为MFI型沸石分子筛。
2、孔结构性质
图2为本发明实施例2-4制备得到的样品A、样品B以及样品C的N2吸脱附等温线,由图2可知,样品A-样品C均出现了较为明显的滞后回环,说明本发明实施例2-4制备得到的样品A-样品C中存在一定量的介孔,属于多级孔MFI型沸石分子筛。
图3为根据脱附BJH模型计算得到的本发明实施例2-4制备得到的样品A、样品B以及样品C的孔径分布曲线,表1所示为本发明实施例2-4制备得到的样品A、样品B以及样品C的比表面积和孔容参数数据。
由图3可知,样品的介孔孔径分布主要集中在2-10nm(优选为3.6-4.2nm)之间,基本遵循正态分布规则,表明本发明实施例合成得到的样品中存在孔径尺寸较为均一的介孔结构。
表1实施例2-4制备得到的样品A、样品B以及样品C的比表面积和孔容参数
Figure BDA0002554482540000111
3、微观结构分析
图4a-图4f分别为本发明实施例2-4制备得到的样品A、样品B以及样品C的SEM图,由图4a-图4f可以看出,本发明实施例合成得到的MFI沸石分子筛样品形貌规整、颗粒大小相近,晶粒直径约为1-2μm,颗粒为由三维共生的厚度约为20nm的纳米薄片堆叠而成,纳米薄片层间形成的空隙可作为介孔孔道,进而可增强反应物在分子筛中的扩散。
图5a-图5d分别为本发明实施例2-4制备得到的样品A、样品B的TEM图,从图5a-图5d中可以看出,样品内部明显地存在沿着不同方向的晶体生长纹路,说明这两个样品确实是由纳米薄片通过晶格参数相似的(100)晶面与(010)晶面垂直交叉共生堆叠而成的,且薄片厚度均匀,普遍集中在20-30nm之间,由此可以确定本发明所提供的材料是一种由纳米薄片垂直交叉共生堆积而成的微-介复合多级孔MFI型纳米沸石分子筛。
以上所述,仅为本发明的具体实施例,不能以其限定发明实施的范围,所以其等同组件的置换,或依本发明专利保护范围所作的等同变化与修饰,都应仍属于本专利涵盖的范畴。另外,本发明中的技术特征与技术特征之间、技术特征与技术发明之间、技术发明与技术发明之间均可以自由组合使用。

Claims (23)

1.一种多级孔MFI型纳米沸石分子筛,其特征在于,所述多级孔MFI型纳米沸石分子筛为微-介复合多级孔MFI型纳米沸石分子筛,所述分子筛为颗粒状,所述颗粒是由纳米薄片垂直交叉共生,进而堆积形成的;
所述多级孔MFI型纳米沸石分子筛的制备方法包括:
(1)将三分支的双季铵盐型表面活性剂与氢氧化钠加入到去离子水中,混合均匀后得到A液;
步骤(1)中,所述三分支的双季铵盐型表面活性剂的结构通式如下式1)所示:
C3N3-{[p-C6H4-CH2-N+(CH3)2-CnH2n-N+(CH3)2CmH2m+1][Br-]2}3 式1);
式1)中,n为3-8中的整数,m为3-8中的整数;
(2)将硅源缓慢滴入所述A液中,继续搅拌一段时间后形成初始凝胶;
(3)将所述初始凝胶调节pH至预设数值后进行水热晶化反应,反应结束后得到结晶产物;
(4)将所述结晶产物常压过滤并用去离子水充分洗涤,再依次进行干燥、焙烧后得到所述多级孔MFI型纳米沸石分子筛。
2.根据权利要求1所述的分子筛,其特征在于,所述纳米薄片的厚度为20-30nm。
3.根据权利要求1所述的分子筛,其特征在于,所述颗粒的直径为1-2μm。
4.根据权利要求1-3任一项所述的分子筛,其特征在于,所述分子筛的总比表面积为165-430m2·g-1,介孔比表面积为40-210m2·g-1,介孔孔径为3.6-4.2nm、总孔容为0.12-0.32cm3·g-1,介孔孔容为0.06-0.2cm3·g-1
5.权利要求1-4任一项所述的多级孔MFI型纳米沸石分子筛的制备方法,其特征在于,所述制备方法包括:
(1)将三分支的双季铵盐型表面活性剂与氢氧化钠加入到去离子水中,混合均匀后得到A液;
步骤(1)中,所述三分支的双季铵盐型表面活性剂的结构通式如下式1)所示:
C3N3-{[p-C6H4-CH2-N+(CH3)2-CnH2n-N+(CH3)2CmH2m+1][Br-]2}3 式1);
式1)中,n为3-8中的整数,m为3-8中的整数;
(2)将硅源缓慢滴入所述A液中,继续搅拌一段时间后形成初始凝胶;
(3)将所述初始凝胶调节pH至预设数值后进行水热晶化反应,反应结束后得到结晶产物;
(4)将所述结晶产物常压过滤并用去离子水充分洗涤,再依次进行干燥、焙烧后得到所述多级孔MFI型纳米沸石分子筛。
6.根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述三分支的双季铵盐型表面活性剂的结构式如下式2)所示:
Figure FDA0003866012290000021
7.根据权利要求5或6所述的制备方法,其特征在于,所述三分支的双季铵盐型表面活性剂采用包括如下步骤的制备方法制得:
i.将4-氰基溴苄在氮气保护和冰水浴下缓慢加入三氟甲磺酸中,移除冰水,搅拌反应,之后将反应所得反应液缓慢倒入冰水中,并用氨水调节体系pH至中性,过滤并用丙酮洗涤,得到白色固体产品;
ii.将所述白色固体产品和N与N之间的连接碳数为3-8的四甲基二胺溶于乙腈/甲苯混合溶液中,搅拌回流,充分冷却后,过滤并用无水乙醚洗涤,得中间产品;
iii.将所述中间产品和碳数为3-8的1-溴代烷烃溶于乙腈中,回流,充分冷却后,过滤并用无水乙醚洗涤,再经真空干燥后得到所述三分支的双季铵盐型表面活性剂。
8.根据权利要求7所述的制备方法,其特征在于,步骤i中,所述4-氰基溴苄与三氟甲磺酸的摩尔比为1:2-4;
步骤ii中,所述白色固体产品和N与N之间的连接碳数为3-8的四甲基二胺的摩尔比为1:15-45;
步骤iii中,所述中间产品和碳数为3-8的1-溴代烷烃的摩尔比为1:3-6。
9.根据权利要求7所述的制备方法,其特征在于,步骤i中,所述搅拌反应为室温搅拌反应10-14h。
10.根据权利要求7所述的制备方法,其特征在于,步骤ii中,所述搅拌回流时间为24-48h。
11.根据权利要求7或10所述的制备方法,其特征在于,步骤ii中,乙腈/甲苯混合溶液中乙腈和甲苯的体积比为1:1。
12.根据权利要求7所述的制备方法,其特征在于,步骤iii中,所述回流时间为24-48h。
13.根据权利要求5或6所述的制备方法,其特征在于,步骤(1)中,将三分支的双季铵盐型表面活性剂与氢氧化钠加入到去离子水中,于60-80℃水浴下加热搅拌8-12小时得到A液。
14.根据权利要求5所述的制备方法,其特征在于,所述制备方法还包括:将铝源溶解在去离子水中得到B液;
于室温搅拌下,将B液、A液及硅源混合,得到混合液,继续搅拌一段时间后形成初始凝胶。
15.根据权利要求14所述的制备方法,其特征在于,步骤(1)中,所述铝源包括异丙醇铝、拟薄水铝石、偏铝酸钠、硫酸铝及氢氧化铝中的一种或几种的组合。
16.根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述继续搅拌一段时间为继续搅拌12-24h。
17.根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述硅源包括正硅酸四乙酯、硅溶胶、白炭黑及硅酸中的一种或几种的组合。
18.根据权利要求5、14-15及17任一项所述的制备方法,其特征在于,步骤(2)中,所述初始凝胶中各组分的摩尔配比为:三分支的双季铵盐型表面活性剂:SiO2:Al2O3:Na2O:H2O=2:50:0-0.5:10-15:4000;其中,硅源以SiO2计,铝源以Al2O3计,氢氧化钠以Na2O计。
19.根据权利要求5所述的制备方法,其特征在于,步骤(3)中,采用浓度为1-3mol/L的硫酸溶液将所述初始凝胶调节pH至预设数值。
20.根据权利要求5或19所述的制备方法,其特征在于,步骤(3)中,采用浓度为1-3mol/L的硫酸溶液将所述初始凝胶调节pH至10.5-12。
21.根据权利要求5或19所述的制备方法,其特征在于,步骤(3)中,水热晶化反应的温度为140-160℃,时间为4-6d,转速为40-60rpm。
22.根据权利要求5所述的制备方法,其特征在于,步骤(4)中,所述干燥为100-120℃干燥10-14h。
23.根据权利要求5或22所述的制备方法,其特征在于,步骤(4)中,所述焙烧为500-600℃焙烧5-7h。
CN202010585514.3A 2020-06-24 2020-06-24 一种多级孔mfi型纳米沸石分子筛及其制备方法与应用 Active CN113830787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010585514.3A CN113830787B (zh) 2020-06-24 2020-06-24 一种多级孔mfi型纳米沸石分子筛及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010585514.3A CN113830787B (zh) 2020-06-24 2020-06-24 一种多级孔mfi型纳米沸石分子筛及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113830787A CN113830787A (zh) 2021-12-24
CN113830787B true CN113830787B (zh) 2022-12-02

Family

ID=78964462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010585514.3A Active CN113830787B (zh) 2020-06-24 2020-06-24 一种多级孔mfi型纳米沸石分子筛及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113830787B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114247472B (zh) * 2020-09-21 2023-07-14 上海交通大学 一种介孔mfi沸石包覆超小多金属纳米颗粒的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229827A (zh) * 2014-08-07 2014-12-24 华南理工大学 一种中微双孔zsm-5分子筛及其制备方法和应用
CN106076402A (zh) * 2016-06-13 2016-11-09 北京化工大学 一种高分散镍表面修饰的等级孔mfi纳米片的制备方法及其应用
CN108439429A (zh) * 2018-04-28 2018-08-24 华南理工大学 一种90°交互共生的多级孔zsm-5分子筛的制备方法
CN108455629A (zh) * 2018-04-19 2018-08-28 华南理工大学 三叉刚性季铵盐模板一步导向合成多级孔Beta分子筛的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180004274A (ko) * 2015-06-01 2018-01-10 캘리포니아 인스티튜트 오브 테크놀로지 신규한 cit-13 토폴로지의 결정질 게르마노실리케이트 물질 및 이를 제조하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229827A (zh) * 2014-08-07 2014-12-24 华南理工大学 一种中微双孔zsm-5分子筛及其制备方法和应用
CN106076402A (zh) * 2016-06-13 2016-11-09 北京化工大学 一种高分散镍表面修饰的等级孔mfi纳米片的制备方法及其应用
CN108455629A (zh) * 2018-04-19 2018-08-28 华南理工大学 三叉刚性季铵盐模板一步导向合成多级孔Beta分子筛的方法
CN108439429A (zh) * 2018-04-28 2018-08-24 华南理工大学 一种90°交互共生的多级孔zsm-5分子筛的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"p–p Interactions Between Aromatic Groups in Amphiphilic Molecules: Directing Hierarchical Growth of Porous Zeolites";Yunjuan Zhang et al.;《Angewandte Chemie》;20190506;第59卷;第50-60页 *
"Single-Crystalline MFI Zeolite with Sheet-Like Mesopores Layered along the a Axis";Yunjuan Zhang et al.;《Chemistry A European Journal》;20181023;第25卷(第3期);第738-742页 *
"新型两亲性分子导向合成多级孔分子筛的研究";许冬冬;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》;20160415;第172页 *

Also Published As

Publication number Publication date
CN113830787A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
Serrano et al. Synthesis strategies in the search for hierarchical zeolites
Xia et al. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials
JP4125006B2 (ja) 超安定な多孔性アルミノ珪酸塩構造体
US7785563B2 (en) Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
CN103318911B (zh) 一种多级孔道β沸石的制备方法
Srinivasu et al. Novel three dimensional cubic Fm3m mesoporous aluminosilicates with tailored cage type pore structure and high aluminum content
Zhao et al. Comparison of disordered mesoporous aluminosilicates with highly ordered Al-MCM-41 on stability, acidity and catalytic activity
CN108002402A (zh) 一种具有千层饼状形貌的中微双孔mfi型纳米分子筛及其制备方法和应用
Chen et al. One-step synthesis of mesoporous ZSM-11 composites through a dual-template method
CN101003378A (zh) 一种多级孔道β沸石的制备方法
CN103449466A (zh) 一种不同层间距mfi中微双孔片层分子筛的制备方法
CN113830787B (zh) 一种多级孔mfi型纳米沸石分子筛及其制备方法与应用
Zhang et al. Synthesis and catalytic performance of hierarchically structured beta zeolites by a dual-functional templating approach
CN113184878B (zh) 一种多级孔沸石分子筛及其制备方法和应用
Peng et al. Engineering growth defects: a new route towards hierarchical ZSM-5 zeolite with high-density intracrystalline mesopores
CN108455626A (zh) 块体zsm-5/纳米片层复合结构的zsm-5多级孔分子筛及其制备方法
US11434140B2 (en) Hierarchical zeolites and preparation method therefor
Yuan et al. Periodic mesoporous organosilicas with helical and concentric circular pore architectures
CN114247472B (zh) 一种介孔mfi沸石包覆超小多金属纳米颗粒的合成方法
Zhang et al. In situ synthesis of Pt nanoparticles encapsulated in silicalite-1 zeolite via a steam-assisted dry-gel conversion method
CN104262381A (zh) 双酯基脂肪链有机硅烷季铵盐类化合物及其制备和应用
CN113042095A (zh) 分子筛催化剂及其制备方法及用途
Yu et al. Effect of Si/Al ratio and a secondary hydrothermal treatment on the properties of Al-MSU-S FAU
Park et al. Lamellar silica mesostructures assembled from a new class of Gemini surfactants: alkyloxypropyl-1, 3-diaminopropanes
Cai et al. Direct Synthesis of An Aluminosilicate POS Zeolite with Intersecting 12× 11× 11‐Member‐Ring Pore Channels by Using a Designed Organic Structure‐Directing Agent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant