CN113827738B - 唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用 - Google Patents

唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用 Download PDF

Info

Publication number
CN113827738B
CN113827738B CN202010515302.8A CN202010515302A CN113827738B CN 113827738 B CN113827738 B CN 113827738B CN 202010515302 A CN202010515302 A CN 202010515302A CN 113827738 B CN113827738 B CN 113827738B
Authority
CN
China
Prior art keywords
sialic acid
liposome
dexamethasone palmitate
acid derivative
phosphatidylglycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010515302.8A
Other languages
English (en)
Other versions
CN113827738A (zh
Inventor
邓意辉
胡玲
王硕
宋艳志
刘欣荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Pharmaceutical University
Original Assignee
Shenyang Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University filed Critical Shenyang Pharmaceutical University
Priority to CN202010515302.8A priority Critical patent/CN113827738B/zh
Publication of CN113827738A publication Critical patent/CN113827738A/zh
Application granted granted Critical
Publication of CN113827738B publication Critical patent/CN113827738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/44Glucocorticosteroids; Drugs increasing or potentiating the activity of glucocorticosteroids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于医药技术领域,涉及唾液酸修饰地塞米松棕榈酸酯脂质体及其制备方法和应用。本发明所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体包括唾液酸衍生物、磷脂、胆固醇和地塞米松棕榈酸酯。所述的唾液酸衍生物选自唾液酸‑胆固醇、唾液酸‑硬脂酸、唾液酸‑2‑(十六烷氧基)乙酸或唾液酸‑2‑(十八烷氧基)乙酸中的一种。所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体中,唾液酸衍生物占脂质体总重的1%‑50%,优选为10‑30%。其中,磷脂为50~90%;胆固醇为0~40%;地塞米松棕榈酸酯为5~20%。本发明的唾液酸能够提高脂质体的体内外细胞靶向性。

Description

唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用
技术领域
本发明属于医药技术领域,涉及唾液酸修饰地塞米松棕榈酸酯脂质体及其制备方法和应用。
背景技术
目前,类风湿性关节炎(rheumatoid arthritis,RA)的治疗药物主要分为四类(刘雪涛,李庆.类风湿性关节炎治疗药物进展[J].现代生物医学进展,2015,15(6):1171-3),包括非甾体抗炎药(nonsteroidal anti-inflammatory drugs,NSAIDs)、糖皮质激素类药物(glucocorticoids,GCs)、疾病改善型药物(disease-modifying anti-rheumaticdrugs,DMARDs)与生物制剂。虽然传统疗法取得了一定的治疗效果,但仍存在诸多问题。生物制剂是近年来治疗RA的新型药物,被认为是“革命性”的RA治疗方法(ATZENI F,SARZIPUTTINI P,GORLA R,et al.Switching rheumatoid arthritis treatments:anupdate[J].Autoimmunity Reviews,2011,10(7):397-403.)。与传统药物相比具有药理作用选择性高,能快速缓解病情的优势。然而,除了对晚期RA患者或DMARDs无反应的患者具有明显的治疗优势外,生物制剂在大部分RA患者中均无法正常发挥作用(SCOTT D L,WOLFEF,HUIZINGA T W.Rheumatoid arthritis[J].Lancet,2010,24(6):1094-108.)。据报道,甲氨喋呤与TNF-α抑制剂联合疗法仅能使60%的病人在治疗初期得到有效治疗(SALLIOT C,FINCKH A,KATCHAMART W,et al.Indirect comparisons of the efficacy ofbiological antirheumatic agents in rheumatoid arthritis in patients with aninadequate response to conventional disease-modifying antirheumatic drugs orto an anti-tumour necrosis factor agent:a meta-analysis[J].Annals of theRheumatic Diseases,2011,70(2):266-71.),这一数据并不理想。此外,生物制剂的治疗靶点是RA发展过程中一些关键的免疫细胞与炎性因子,可能会非特异性抑制机体的正常免疫反应,继而出现过敏反应、自身免疫反应、心血管疾病、严重感染以及恶性肿瘤等严重副作用(SFRISO P,SALAFFI F,MONTECUCCO C M,et al.MonitorNet:the Italian multi-centre observational study aimed at estimating the risk/benefit profile ofbiologic agents in real-world rheumatology practice[J].Reumatismo,2009,61(2):132-9.),并且发生恶性肿瘤的几率随着药物使用时间延长而增加。其次,RA的病情发展受多种细胞或因子调控(NOACK M,MIOSSEC P.Selected cytokine pathways in rheumatoidarthritis[J].Seminars in Immunopathology,2017,39(4):365-83.),仅仅针对一种或几种进行抑制并不足以逆转或者阻止病情发展(CHOY E H S,PANAYI G S.CytokinePathways and Joint Inflammation in Rheumatoid Arthritis[J].N Engl J Med,2001,344(12):907-16.)。目前,仍有高达30%的病人在使用生物药物治疗后病情难以控制(TAYLOR P C,MOORE A,VASILESCU R,et al.A structured literature review of theburden of illness and unmet needs in patients with rheumatoid arthritis:acurrent perspective[J].Rheumatology International,2016,36(5):685-95.)。此外,这种治疗方式成本较高,会给患者带来沉重的经济负担。目前,开发新型且更有效的治疗方法对于提高RA患者的生活质量,增加治疗安全性,降低对病人造成损伤的风险以及减轻患者的经济负担是非常重要的。药物递送系统(drug delivery system,DDS)的合理应用不仅能够改善药物的代谢动力学特征,控制药物的释放速度,同时能够提高药物的靶向性从而降低药物的毒副作用。目前,脂质体、树枝状大分子、胶束、纳米囊等DDS在抗炎药物的递送中已经得到广泛研究(TARNER I H,M LLERLADNER U.Drug delivery systems for thetreatment of rheumatoid arthritis[J].Expert Opinion on Drug Delivery,2008,5(9):1027-37.)。
持续存在的炎症使得炎症部位形成类似实体瘤表型的高渗透性血管系统,为滑膜过度增生提供营养物质和氧气,保证滑膜组织获得足够营养而快速生长,加剧炎症反应(ELSHABRAWY H A,CHEN Z,VOLIN M V,et al.The pathogenic role of angiogenesis inrheumatoid arthritis[J].Angiogenesis,2015,18(4):433-48.)。新生血管的内皮细胞连接处可形成宽达700nm的间隙(MOGHIMI S M,HUNTER A C,MURRAY J C.Long-circulatingand target-specific nanoparticles:theory to practice[J].PharmacologicalReviews,2001,53(2):283-318.),与实体瘤的“高渗透长滞留效应”(enhancedpermeability and retention effect,EPR效应)类似,RA具有血管外渗与炎症细胞介导封存(extravasation through Leaky Vasculature and the subsequent Inflammatorycell-mediated Sequestration,ELVIS)的特点(QUAN L D,PURDUE P E,LIU X M,etal.Development of a macromolecular prodrug for the treatment of inflammatoryarthritis:mechanisms involved in arthrotropism and sustained therapeuticefficacy[J].Arthritis Research&Therapy,2010,12(5):R170.),为开发新型DDS治疗RA提供了生物学基础。与EPR效应类似,这种基于ELVIS特点设计的靶向纳米制剂,其在体内的循环时间是决定制剂靶部位聚集量的关键因素。为了延长纳米载体的体内循环时间,增加药物在炎症部位的聚集量,研究者们将目光聚焦在“聚乙二醇(polyethylene glycol,PEG)化技术”,制备多种PEG修饰的纳米载体将药物靶向递送至炎症部位,改善治疗效果。然而,自1990年首次报道PEG修饰脂质体以来,仅有一个高密度PEG化产品上市,并且产生了“手足综合症”等新的不良反应(KUBICKA-/>J,/>M,LISIK-HABIB M,et al.Skin toxicity in a patient with ovarian cancer treatedwith pegylated liposomal doxorubicin:A case report and review of theliterature[J].Oncology Letters,2016,12(6):5332-34.)。此外,由于PEG化制剂的循环时间极大延长,引起获得性免疫系统参与,产生抗PEG抗体,出现“加速血液清除”(accelerated blood clearance,ABC)现象(DAMS E T,LAVERMAN P,OYEN W J,etal.Accelerated blood clearance and altered biodistribution of repeatedinjections of sterically stabilized liposomes[J].Journal of Pharmacology&Experimental Therapeutics,2000,292(3):1071-9.)。这与其最初的设计理念—构建“隐形”纳米粒子,规避免疫系统的识别清除,延长制剂的循环时间增加靶向性提高药效背道而驰。值得关注与警惕的是,某些PEG修饰的大分子化合物在临床应用过程中产生抗PEG抗体的发生率非常高。例如,美国FDA于2010年批准的“聚乙二醇化重组尿酸酶”/>产品在临床使用过程中发现,92%患者体内产生抗体,无法继续使用。更糟糕的是,这种抗PEG抗体并不只存在于接受治疗的患者体内,2009年有报道表明,25%健康人体内存在抗PEG抗体(GARAY R P,RAAFAT E G,ARMSTRONG J K,et al.Antibodies against polyethyleneglycol in healthy subjects and in patients treated with PEG-conjugated agents[J].Expert Opinion on Drug Delivery,2012,9(11):1319-23.)。如果抗PEG抗体只是研究过程中一个“小波折”,那么BIND-014的Ⅲ期临床失败(GU F,LANGER R,FAROKHZAD OC.Formulation/preparation of functionalized nanoparticles for in vivotargeted drug delivery[J].Methods in Molecular Biology,2009,544(5):589-98.),让我们必须直面基础研究临床转化的艰难,对现有躲避免疫系统的DDS设计理念存在的问题进行深刻反思。
“魔弹”靶向给药概念提出的一百多年里,研究者们根据单核吞噬细胞系统(mononuclear phagocyte system,MPS)理论,针对包括肿瘤、动脉粥样硬化和RA等多种疾病在内的相关功能失调巨噬细胞进行靶向设计,在纳米医药领域取得了许多重要研究成果(HE H,GHOSH S,YANG H.Nanomedicines for dysfunctional macrophage-associateddiseases[J].Journal of Controlled Release,2017,247:106-26.)。但这些设计仍存在一些共性问题:①主要关注单核/巨噬细胞处理外来物的情况;②单一性强调抑制免疫系统对进入体内的纳米粒子识别处理过程。
根据基础免疫学理论,人体循环系统各种白细胞的比例为:中性粒细胞50%~70%、嗜酸性粒细胞1%~4%、嗜碱性粒细胞0%~1%、淋巴细胞20%~40%、单核细胞1%~7%,主要的吞噬细胞为中性粒细胞与单核细胞。既然中性粒细胞占比最多,又具有吞噬能力,那么中性粒细胞必然在吞噬处理纳米粒过程中扮演重要角色(郑煌亮,宋艳志,邓意辉.纳米制剂清除的执行者——吞噬细胞系统的研究历程[J].沈阳药科大学学报,2019,36(1):95-106.)。因此,纳米粒子进入体内后必然存在中性粒细胞系统(neutrophilphagocyte system,NPS)的处理过程。同时,机体各种免疫细胞并不是独立的,它们之间必然存在相互“交流”现象。基于这种思路,我们提出“中性粒细胞-单核吞噬细胞系统”(neutrophil-mononuclear phagocyte system,NMPS)途径,包括NPS、MPS和NMPS三部分,补充现有“MPS”的不足,研究其在纳米粒子吞噬处理过程中的作用,以及对DDS构建的贡献。其次,过度采取躲避措施,设计“隐形(Stealth)”纳米粒子,反而带来如ABC现象等新问题。药物载体在免疫系统面前无处遁形,如果采取“躲”的策略,不仅“躲”不掉,反而激发更加剧烈的免疫响应。面对强大的免疫系统,采用“躲”的策略,短期内难有突破性进展。因此,我们必须重新审视免疫系统与DDS之间的关系,将“躲”转换为“找”,利用免疫系统构建DDS,实现疾病的高效治疗。这种用免疫学的思维方式来考虑药剂学的问题,可以归为免疫药剂学(Immunopharmaceutics或者Immunopharmacy)的概念,即用免疫学的理论,完善药剂学相关理论的构建,指导处方设计、制备工艺、质量控制与合理应用。简而言之,免疫药剂学就是应用免疫学的基本理论、方法、技术和手段,研究药剂学中有关制剂产品设计的一门理论学科。
中性粒细胞是血液循环中最丰富的白细胞,机体出现感染或者发生炎症反应时首先被招募至病变部位(MAYADAS T N,CULLERE X,LOWELL C A.The MultifacetedFunctions of Neutrophils[J].Annu Rev Pathol,2014,9(1):181-218.)。在RA的发生发展过程中,炎症部位需要从外部环境源源不断地募集中性粒细胞:炎症刺激将激活中性粒细胞快速从骨髓中释放入血,血液循环的中性粒细胞在炎症组织释放的多种趋化因子诱导下迁移至炎症部位(CROSS A,BARNES T,BUCKNALL R C,et al.Neutrophil apoptosis inrheumatoid arthritis is regulated by local oxygen tensions within joints[J].JLeukoc Biol,2006,80(3):521-8.)。随后,炎症部位的中性粒细胞通过多种途径调控炎症发展(WRIGHT H L,MOOTS R J,EDWARDS S W.The multifactorial role of neutrophilsin rheumatoid arthritis[J].Nature Reviews Rheumatology,2014,10(10):593-601.)。中性粒细胞的特点及其在RA发生发展中的作用,使其成为一种极具潜力的构建RA靶向治疗DDS的工具。因此,可以利用中性粒细胞靶向炎症部位,类似于“搭顺风车”。简而言之,可以基于“免疫药剂学”的思维方式,设计一种主动去“找”中性粒细胞的策略,而不是“躲”,达到高效靶向治疗的目的。
那么,如何去“找”?免疫学相关研究成果证明,炎症等疾病体内的中性粒细胞表面上,存在着能够结合唾液酸的受体(L-Selectin),可以用唾液酸类物质修饰或者制备纳米载体(ZHANG T,SHE Z,HUANG Z,et al.Application of sialic acid/polysialic acidin the drug delivery systems[J].Asian Journal of Pharmaceutical Sciences,2014,9(2):75-81.),体内靶向中性粒细胞,让中性粒细胞成为药物递送载体,这也是一个智慧选择。另外,选择内源性物质或者可以代谢而不引起免疫反应的物质,保证中性粒细胞的活性,对中性粒细胞发挥药物载体作用至关重要。本发明选用唾液酸类物质进行相关研究,并意外地发现,唾液酸类物质修饰脂质体的药效远优于普通脂质体。
唾液酸(Sialic acid,SA)又称糖酸,是一类九碳单糖,它主要以短链残基的形式通过α-糖苷键连接于糖蛋白、糖脂与寡糖的末端,普遍存在于哺乳动物的细胞膜表面,其中红细胞及血管内皮细胞表面被高度唾液酸化。研究表明,红细胞经唾液酸酶处理后其寿命从原来的120天锐减到短短数小时。另外,许多病原体利用SA“装扮”自身,以掩蔽自身抗原表位,抑制补体的旁路激活途径,降低免疫原性进而成功逃脱宿主免疫系统的攻击。
发明内容:
本发明所解决的技术问题是克服现有技术的缺陷,基于“免疫药剂学”的理论,制备多种唾液酸衍生物修饰的地塞米松棕榈酸酯(dexamethasone palmitate,DP)脂质体。所述脂质体能够与中性粒细胞表面上的唾液酸受体(L-Selectin)结合,“找”到中性粒细胞,以中性粒细胞作为药物载体,同时充分考虑免疫细胞的功能性特征,从而产生更优秀的药理活性。
本发明是通过如下技术方案实现的:
本发明所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体包括唾液酸衍生物、磷脂、胆固醇和地塞米松棕榈酸酯。
所述的唾液酸衍生物选自唾液酸-胆固醇、唾液酸-硬脂酸、唾液酸-2-(十六烷氧基)乙酸或唾液酸-2-(十八烷氧基)乙酸中的一种。
更进一步地,本发明优选如下唾液酸脂质衍生物:唾液酸-2-(十六烷氧基)乙酸(LYS-16)、唾液酸-2-(十八烷氧基)乙酸(LYS-18)。
所述的唾液酸衍生物通过如下方法获得:首先将唾液酸的C1位羧基酯化提高其脂溶性,然后在C9位的羟基引入长脂肪链,最后进行去酯化使得羧基重新暴露,获得的唾液酸衍生物。
所述的唾液酸衍生物的合成方法如图1所示。
所述的磷脂包括“甘油磷脂”和“鞘磷脂”,其来源涉及“天然”、“半合成”与“全合成”,涉及的种类包括但不限于磷脂酸(PA)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)、磷脂酰乙醇胺(PE)、磷脂酰肌醇(PI)和磷脂酰丝氨酸(PS)。具体而言,大豆卵磷脂、蛋黄卵磷脂、蛋黄磷脂酰甘油(EPG)、氢化大豆卵磷脂、氢化蛋黄卵磷脂、二月桂酰基磷脂酰胆碱(DLPC)、二肉豆蔻酰基磷脂酰胆碱(DMPC)、二棕榈酰基磷脂酰胆碱(DPPC)、二硬脂酰基磷脂酰胆碱(DSPC)、二油酰基磷脂酰胆碱(DOPC)、1-棕榈酰基-2-油酰基磷脂酰胆碱(POPC)、二亚油酰基磷脂酰胆碱、二月桂酰基磷脂酰甘油(DLPG)、二肉豆蔻酰基磷脂酰甘油(DMPG)、二棕榈酰基磷脂酰甘油(DPPG)、二硬脂酰基磷脂酰甘油(DSPG)、二芥酰基磷脂酰甘油(“DEPG”)、二亚油酰基磷脂酰甘油、二油酰基磷脂酰甘油(DOPG)、1-棕榈酰基-2-油酰基磷脂酰甘油(POPG)、二月桂酰基磷脂酰乙醇胺(DLPE)、二肉豆蔻酰基磷脂酰乙醇胺(DMPE)、二棕榈酰基磷脂酰乙醇胺(DPPE)、二硬脂酰基磷脂酰乙醇胺(DSPE)、二油酰基磷脂酰乙醇胺(DOPE)、二亚油酰基磷脂酰乙醇胺、1-棕榈酰基-2-油酰基磷脂酰乙醇胺(POPE)、二月桂酰基磷脂酰肌醇(DLPI)、二棕榈酰基磷脂酰肌醇(DPPI)、二硬脂酰基磷脂酰肌醇(DSPI)、二肉豆蔻酰基磷脂酰肌醇(DMPI)、二油酰基磷脂酰肌醇(DOPI)、1-棕榈酰基-2-油酰基磷脂酰肌醇(POPI)、二亚油酰基磷脂酰肌醇、二月桂酰基磷脂酰丝氨酸(DLPS)、二肉豆蔻酰基磷脂酰丝氨酸(DMPS)、二油酰基磷脂酰丝氨酸(DOPS)、二棕榈酰基磷脂酰丝氨酸(DDPS)、二亚油酰基磷脂酰丝氨酸、二硬脂酰基磷脂酰丝氨酸(DSPS)、1-棕榈酰基-2-油酰基磷脂酰丝氨酸(POPS)、二月桂酰基神经鞘髓磷脂、二亚油酰基神经鞘髓磷脂、二肉豆蔻酰基神经鞘髓磷脂、二油酰基神经鞘髓磷脂、二棕榈酰基神经鞘髓磷脂、二硬脂酰基神经鞘髓磷脂、1-棕榈酰基-2-油酰基神经鞘髓磷脂、蛋黄鞘磷脂(egg sphingomyelin,ESM)。
其中,磷脂为50~90%,优选为60~80%;胆固醇为0~40%,优选为10~30%;地塞米松棕榈酸酯为5~20%,优选为7~15%。脂质体粒径控制在30~300nm,优选30~120nm,最优选30~100nm。
脂质体粒径控制在30~300nm,优选30~120nm,最优选30~100nm。
所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体中,唾液酸衍生物占脂质体总重的1%-50%,优选为10-30%;
地塞米松棕榈酸酯与唾液酸衍生物的重量比为:1:1-1:30,优选为1:1-1:10;
其中,所述的磷脂优选氢化大豆磷脂、磷脂酰胆碱或二硬脂酰磷脂酰甘油中的一种或一种以上。
本发明还提供了唾液酸修饰地塞米松棕榈酸酯脂质体的制备方法,包括:
(1)将磷脂、胆固醇、唾液酸衍生物与地塞米松棕榈酸酯加热溶解;
(2)将水化介质预热至相同温度;
(3)将水化介质注入步骤(1)的含药膜材中,水化,得到脂质体初品;
(4)将脂质体初品进行分散,过膜,得唾液酸修饰的地塞米松棕榈酸酯脂质体成品。
其中,
步骤(1)中地塞米松棕榈酸酯与唾液酸衍生物的重量比为:1:1-1:30;
步骤(1)和(2)中加热的温度为60-70℃;
步骤(3)和(4)中所述的水化介质为5%葡萄糖、生理盐水或注射用水等。
步骤(4)中可采用均质机降低粒径,或者采用挤出法控制粒径。
步骤(4)制备的地塞米松棕榈酸酯脂质体可以加入葡萄糖、海藻糖、蔗糖、乳糖、甘露醇、山梨醇、木糖醇、甘油、氯化钠等物质,调节渗透压,达到符合注射要求,即得产品。可以进一步通过冷冻干燥、喷雾干燥等技术,获得固体状态的制剂。
本发明制备的地塞米松棕榈酸酯脂质体粒径小于200nm,优选的粒径小于150nm;更优选小于100nm。
当所述的唾液酸衍生物为唾液酸-胆固醇、唾液酸-硬脂酸时,地塞米松棕榈酸酯与唾液酸衍生物的重量比为:1:1-1:10时,制备的地塞米松棕榈酸酯脂质体粒径为200-500nm。
当唾液酸-2-(十六烷氧基)乙酸(LYS-16)、唾液酸-2-(十八烷氧基)乙酸(LYS-18)时,地塞米松棕榈酸酯与唾液酸衍生物的重量比为:1:1-1:10时,制备的地塞米松棕榈酸酯脂质体粒径小于200nm,当比例为1:1-1:6时,制备的地塞米松棕榈酸酯脂质体粒径小于150nm。
本发明的唾液酸衍生物可以与药物作用后,再加入常规的辅料通过常规方法制备胶束、乳剂等不同剂型。
本发明采用流式细胞术定量检测和细胞药动学实验证明了脂质体的体内外细胞靶向性。采用组织分布实验进一步证明各脂质体能够通过中性粒细胞介导,借助“中性粒细胞吞噬系统通路”将药物递送至病变部位。
本发明的优点:①本发明的唾液酸修饰脂质体对于疾病治疗的效果远优于普通脂质体;②发现唾液酸提高脂质体的体内外细胞靶向性;③发现中性粒细胞能够将摄取后的脂质体递送至炎症部位,提高脂质体的炎症部位靶向性;④本发明具有操作简单、质量可控,成本低廉的特点,具有实际应用价值。
附图说明
图1为唾液酸脂质衍生物的合成路线图
A:LYS-16的合成路线图B:LYS-18的合成路线图
图2为脂质体的透射电子显微镜(TEM)成像图
A:唾液酸修饰脂质体(DP-SAL)B:普通脂质体(DP-CL)
图3为CCK8法检测地塞米松棕榈酸酯脂质体对中性粒细胞活力的影响
图4为体外中性粒细胞对荧光标记脂质体的摄取量考察
图5为体内中性粒细胞对荧光标记脂质体的摄取量考察
图6为荧光标记脂质体佐剂诱导型关节炎大鼠体内荧光成像与组织分布
图7为载荧光标记脂质体的中性粒细胞回输后在佐剂诱导型关节炎大鼠体内荧光成像与组织分布
图8为荧光标记脂质体在细胞耗竭的佐剂诱导型关节炎大鼠体内荧光成像与组织分布
图9为佐剂诱导型关节炎大鼠的足体积与评分变化
图10为佐剂诱导型关节炎大鼠的血清细胞因子水平
图11为佐剂诱导型关节炎大鼠的关节病理切片。
具体实施方式
下面结合实施例,更具体地说明本发明的内容。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通与/或改变都将落入本发明保护范围。
实施例1唾液酸脂质衍生物(LYS-16和LYS-18)的合成(附图1A、图1B)
于100mL茄型瓶中加入0.66g(16.5mmol)石油醚洗涤过的60%钠氢,10mL无水甲苯,2g(8.25mmol)十六醇,50℃反应1小时后滴加0.94g(9.9mmol)氯乙酸甲苯溶液5mL,7min滴完,回流反应9小时。加入20mL水,用2N盐酸调节pH值为1,30mL乙酸乙酯萃取3次,30mL饱和氯化钠溶液洗涤一次,无水MgSO4干燥,抽滤,滤液蒸干得到白色2-(十六烷氧基)乙酸固体。采用相同方法,以十八醇、氯乙酸为原料得到白色2-(十八烷氧基)乙酸固体。
于100mL茄型瓶中加入1g(2.91mmol)2-(十六烷氧基)乙酸,用10mL二氯甲烷溶解,冰浴下加入草酰氯0.41g(3.21mmol),搅拌30分钟,加入DMF2滴,于室温下反应2小时。35℃下减压蒸馏除去二氯甲烷及草酰氯,得到淡黄色2-(十六烷氧基)乙酰氯固体。采用相同的方法,以2-(十八烷氧基)乙酸、草酰氯为原料,得到淡黄色2-(十八烷氧基)乙酰氯固体。
于100mL三颈瓶中加入0.8g(2.48mmol)唾液酸甲酯、10mL吡啶和0.07g(0.57mmol)DMAP,于冰浴下滴加0.98g(2.73mmol)2-(十六烷氧基)乙酰氯的二氯甲烷溶液5mL,控制温度在5℃以下,1小时后转移至室温继续反应12小时。加入30mL水,用30mL乙酸乙酯萃取3次,再用饱和氯化钠溶液洗涤,无水MgSO4干燥,抽滤,滤液蒸干,经柱层析分离(流动相乙酸乙酯),得到白色唾液酸-2-(十六烷氧基)乙酸固体。采用相同的方法,以唾液酸甲酯、2-(十八烷氧基)乙酰氯为原料合成得到白色唾液酸-2-(十八烷氧基)乙酸固体。LYS-16与LYS-18的合成路线见附图1A、图1B。
实施例2唾液酸修饰地塞米松棕榈酸酯脂质体的制备
(1)唾液酸衍生物的筛选
称取HSPC、胆固醇、唾液酸衍生物和地塞米松棕榈酸酯,加入制剂终体积10%(v/v)的无水乙醇,60℃水浴搅拌溶解。待固体物质全部溶解后,敞开体系,继续搅拌以挥去大部分乙醇,注入预热至相同温度的5%Glu,60℃继续搅拌20min即得脂质体初品。将初品超声分散处理(功率和时间:200W×2min+400W×6min,工作1s间歇1s)后,依次过0.80、0.45与0.22μm微孔滤膜,即得唾液酸修饰(未修饰)的DP脂质体。
表1
结果表明,当选用唾液酸-2-(十六烷氧基)乙酸和唾液酸-2-(十八烷氧基)乙酸作为唾液酸衍生物时,其粒径、包封率均优于唾液酸-胆固醇和唾液酸-硬脂酸。因此,本发明的唾液酸-2-(十六烷氧基)乙酸和唾液酸-2-(十八烷氧基)乙酸可以作为唾液酸衍生物用于制备地塞米松棕榈酸酯脂质体。
(2)药物与唾液酸衍生物的比例筛选
表2
结果表明:药物:唾液酸衍生物(重量比)低于1:1时,所制备的脂质体的粒径大于200nm,而在1:1-1:30时,其粒径减小,包封率提高。
(3)唾液酸衍生物在脂质体中的重量百分比的筛选
表3
结果表明,当唾液酸衍生物在脂质体中的重量百分比为1-50%时,制备的脂质体粒径均在200nm以下,包封率在85%以上,而当其重量百分比为10-30%时,其粒径小于150nm,且其包封率可达95%以上。
(4)按照表3处方称取脂质体膜材和药物置于西林瓶中,其中SA-CH为专利CN104031097A中的Neu5Ac-AE-AC-CH,MT-18为本发明中化合物3。加入制剂终体积10%(v/v)的无水乙醇,60℃水浴搅拌溶解。待固体物质全部溶解后,敞开体系,继续搅拌以挥去大部分乙醇,注入预热至相同温度的5%Glu,60℃继续搅拌20min即得脂质体初品。将初品超声分散处理(功率和时间:200W×2min+400W×6min,工作1s间歇1s)后,依次过0.80、0.45与0.22μm微孔滤膜,即得唾液酸修饰(未修饰)的DP脂质体。其基本理化性质见表4,电子显微镜图见附图2。
表4
实施例3 DP脂质体的细胞抑制作用(附图3)
中性粒细胞的分离纯化方法参考专利CN201810151125。采用CCK8法考察DP脂质体对中性粒细胞的细胞抑制作用。
1.采用RPMI 1640培养液稀释分离纯化的外周血中性粒细胞,制成细胞悬液,细胞计数调整其浓度至6×104cells·mL-1
2.将制备好的细胞悬液接种于96孔培养板中,每孔接种100μL,置于37℃、5%CO2培养箱中培养1h。全部边缘孔用200μL无菌PBS填充。
3.将培养液稀释好的各DP脂质体加入96孔板中,每孔加入10μL,终浓度分别为5、10、50、100、200μg·mL-1,设3个复孔。同时设置调零孔(不含细胞和药物)与对照孔(含细胞、不含药物),各6个复孔。加药完毕后,将96孔板置于37℃、5%CO2培养箱中培养1h。
4.每孔加入10μL CCK-8溶液,继续培养5h。
5.测定450nm各孔的吸光值。
6.结果分析:将各测试孔的OD值减去调零孔OD值或对照孔OD值。各重复孔的OD值取平均数。细胞活力%=(加药细胞OD-空白OD)/(对照细胞OD-空白OD)×100%
实施例2(4)中各DP脂质体对中性粒细胞的抑制作用呈现为剂量依赖性,仅在高浓度(100μg·mL-1和200μg·mL-1)的时候表现出较弱的抑制细胞增殖作用。与未修饰脂质体和乳剂相比,SA修饰的DP脂质体和乳剂表现出更强的细胞抑制作用。这种低细胞抑制作用为利用中性粒细胞作为新型药物载体实现疾病治疗奠定了基础。
实施例4中性粒细胞对制剂的体外摄取量考察(附图4)
中性粒细胞的分离纯化方法参考专利CN201810151125。分离纯化的中性粒细胞加适量的不含胎牛血清的RPMI-1640培养基轻轻吹打细胞,使之成为细胞悬液,细胞密度为2×105cells·mL-1,转移至无菌1.5mL离心管中,于37℃、5%CO2培养箱中平衡30min。随后,更换含有无菌荧光探针DiR标记的未修饰或唾液酸修饰的脂质体培养液,DiR终浓度为0.2μg·mL-1,于5%CO2、37℃的培养箱中培养1h,收集细胞,5000rpm离心3min,弃上清。加入PBS重悬细胞清洗,5000rpm离心3min,弃上清。加入200μL PBS重新分散细胞,使用流式细胞仪检测样品的荧光强度,每个样品收集1×104个细胞,通过PE通道检测。用FlowJo 7.6.1软件分析数据。
为进一步证明唾液酸修饰对细胞摄取的影响,将SA溶液(终浓度10mg·mL-1)加入到LYS18L实验组,使用流式细胞仪进行检测。
细胞摄取实验证明,与未修饰脂质体相比,唾液酸提高了脂质体的中性粒细胞靶向能力。各唾液酸修饰脂质体组的细胞摄取量大小为DiR-LYS18L>DiR-SACHL>DiR-MT18L>DiR-LYS16L。在竞争性抑制实验中,唾液酸竞争性抑制实验结果显示,游离的唾液酸与细胞表面的唾液酸受体结合,阻断了唾液酸修饰脂质体与细胞表面受体结合的机会,从而导致更低的细胞摄取量。
实施例5荧光探针DiR标记脂质体的体内中性粒细胞靶向性考察(附图5)
为了进一步验证唾液酸修饰脂质体在复杂的体内环境中对中性粒细胞的靶向性,我们考察了各脂质体的细胞药动学行为。
取雄性炎症大鼠9只,随机分成3组,每组3只,按照40μg·kg-1DiR的剂量,尾静脉注射荧光探针DiR标记的未修饰或唾液酸修饰的脂质体,即DiR-CL、DiR-LYS16L和DiR-LYS18L。于给药后0.0167、0.083、0.25、0.5、1、2、4以及8h经眼眶静脉丛取血于肝素化管中,按照专利CN201810151125方法分离外周血中性粒细胞。用组织细胞裂解液重悬分离得到的细胞,再加2倍体积的乙醇,混匀,涡旋5min,10000rpm离心10min,取上清液200μL上样于96孔板中,用酶标仪(λex=750nm,λem=790nm)测定荧光强度F。另取空白细胞一份,同法操作,测定荧光强度F0。样品F值减去空白血浆F0值,得到ΔF值,利用ΔF值反应DiR浓度大小。
实验结果表明,3种脂质体在外周血中性粒细胞中的浓度均呈现先升高后快速下降的趋势。为了深入研究体内摄取脂质体的累积效应,我们对曲线下面积进行了计算。各脂质体的细胞累积量大小为DiR-LYS18L>DiR-LYS16L>DiR-CL。细胞药动学结果说明,脂质体在体内能够靶向外周血中性粒细胞,表面修饰唾液酸后显著提高靶向效率。同时,唾液酸衍生物的脂链越长,其修饰脂质体的中性粒细胞靶向能力越强。这种结果为脂质体借助体内外周血中性粒细胞将药物递送至肿瘤、炎症等释放趋化因子的部位提供基础。
实施例6荧光探针DiR标记脂质体在佐剂诱导型关节炎(Adjuvant-inducedarthritis,AIA)大鼠体内组织分布试验(附图6)
无菌条件下,精密移取5mL弗氏不完全佐剂于干燥研钵中,缓慢滴加5mL生理盐水溶解的卡介苗冻干粉,边滴加边沿同一方向迅速研磨。待卡介苗溶液全部加入后,继续研磨一段时间,制备得到乳白色粘稠的W/O乳剂,即为弗氏完全佐剂(Complete freund’sadjuvant,CFA),其中卡介苗浓度为10mg·mL-1。健康雄性Wistar大鼠右后肢足跖部皮下注射0.l mL CFA,建立AIA模型。
造模后第14天,随机取炎症大鼠15只,随机分为5组,每组3只,按照0.3mg·kg-1DiR的剂量,对各组大鼠尾静脉注射DiR-CL、DiR-MT18L、DiR-SACHL、DiR-LYS16L和DiR-LYS18L。给药24h后处死大鼠,取出心、肝、脾、肺、肾、胸腺、左后肢与右后肢,生理盐水清洗后用滤纸吸干,使用IVIS Lumina III小动物活体成像仪进行离体器官成像观察并拍照,然后对炎症部位进行ROI(region-of-interest)半定量分析。荧光照片的拍摄条件为:λex=720nm,λem=790nm,曝光时间为10s。
通过定性与定量结果分析,唾液酸修饰DiR脂质体组炎症部位的荧光强度均明显强于未修饰脂质体组(表5),说明唾液酸可以显著提升脂质体对炎症部位的靶向能力。与DiR-CL相比,DiR-MT18L在炎症部位的分布量增加了314%,DiR-SACHL的分布量增加了301%,DiR-LYS16L的分布量增加了227%,DiR-LYS18L的分布量增加了460%。
实施例7载DiR脂质体的外周血中性粒细胞在AIA大鼠体内组织分布(附图7)
取AIA大鼠6只,随机分成2组,每组3只,2组均以1×106cells/只的剂量尾静脉注射DiR-CL/PBNs与DiR-SAL/PBNs(按照专利CN201810151125方法制备DiR-CL/PBNs和DiR-SAL/PBNs)。24h后处死大鼠,分离炎症与其他主要器官,生理盐水清洗后用滤纸吸干,使用IVIS Lumina III小动物活体成像仪进行离体器官成像观察并拍照,然后对炎症部位进行ROI(region-of-interest)半定量分析。荧光照片的拍摄条件为:λex=720nm,λem=790nm,曝光时间为10s。
中性粒细胞装载的DiR脂质体粒子数量有限,各回输组炎症部位的荧光强度较弱。体外孵育时,由于中性粒细胞对DiR-SAL的摄取量远高于DiR-CL。所以,炎症部位的荧光强度顺序为DiR-SAL/PBNs>DiR-CL/PBNs(表5),与制剂的荧光强度顺序一致。说明负载DiR-CL与DiR-SAL的中性粒细胞仍然具有正常的功能,能够在炎性因子的诱导下跨血管进入炎症部位。表明唾液酸修饰纳米载体可以通过中性粒细胞介导大量聚集于炎症部位。
表5各组制剂在炎症部位的平均累积量
值得注意的是,与直接静脉注射脂质体组相比,中性粒细胞回输组的荧光信号大部分聚集于肝脏、脾脏与肺部。这是由于机体为了维持内环境稳态,当监测到循环系统中的PBN数目骤然增加后,会快速上调CXCL1等细胞因子,诱导多余的PBN迁移至肝、脾、骨髓与肺等“粒细胞储库”(SUMMERS C,RANKIN S M,CONDLIFFE A M,et al.Neutrophil kineticsin health and disease[J].Trends in Immunology,2010,31(8):318-24.PETERS AM.Just How Big is the Pulmonary Granulocyte Pool?[J].Clinical Science,1998,94(1):7-19.)。另一方面,这种一次性回输大量细胞会引起机体免疫系统的响应,可能会造成不利的免疫反应。PBNs经过密度梯度离心分离纯化、体外培养、孵育以及静脉注射等过程,必然会受到一定的损伤或污染,引起细胞形态与功能的变化,失去原有的“纯洁性”,由“自我”转变为“非我”状态,进入体内后被机体的免疫系统当做异物进行处理,而大量聚集于肝脾等免疫器官(FADOK V A,BRATTON D L,ROSE D M,et al.A receptor forphosphatidylserine-specific clearance of apoptotic cells[J].Nature,2000,405(6782):85-90.)。
中性粒细胞回输实验证明“中性粒细胞与纳米粒子在体外共孵育”的细胞载药设计存在缺陷。由此可见,不论是纳米制剂与中性粒细胞体外孵育构建中性粒细胞装载的纳米制剂疗法,还是基于中性粒细胞膜构建的“仿生”纳米医学疗法的科学性有待考证。因此,我们设计利用SA修饰的纳米粒子直接靶向体内中性粒细胞,这种设计简单易行,不仅能够提高靶向效率,还可以维持中性粒细胞的生理活性与“纯洁度”,不会出现细胞回输后引起的负面免疫响应现象,仅依靠炎症部位对中性粒细胞的招募实现疾病的高效治疗。
实施例8荧光探针DiR标记唾液酸修饰脂质体在细胞耗竭AIA大鼠体内组织分布(附图8)
取6只炎症大鼠,随机分成两组,分别为环磷酰胺(cyclophosphamide,CTX)耗竭组(CTX)和对照组(Control),耗竭组大鼠腹腔注射CTX(30mg·kg-1),对照组同时注射等体积的生理盐水,均连续注射5d。观察大鼠的生存状态,于第6天处死大鼠,取股骨,采用Percoll分离液分离骨髓中性粒细胞(XUE J,ZHAO Z,ZHANG L,et al.Neutrophil-mediatedanticancer drug delivery for suppression of postoperative malignant gliomarecurrence[J].Science Foundation in China,2017,12(3):692.),采用血球计数板观察中性粒细胞数量,结果见表6。与对照组比较,CTX组骨髓中性粒细胞显著降低,表明耗竭模型成功建立。
表6 CTX组和Control组大鼠骨髓中性粒细胞数量
随机取3只细胞耗竭AIA大鼠,按照0.3DiR mg·kg-1剂量尾静脉注射DiR-SACHL,24h后处死大鼠,剩余步骤同“实施例8”。
实验结果说明,与未耗竭组相比,CTX耗竭后,DiR-SACHL在炎症部位的分布量显著减少。多次小剂量注射CTX将骨髓中处于增殖池的各种白细胞全部或部分杀灭,外周血中性粒细胞总数需要依靠骨髓中的细胞进行补充维持。注射CTX后,骨髓增殖池向成熟池的补充能力下降,进而导致外周血中性粒细胞数目显著减少,“NPS通路”被阻断,导致DiR-SACHL静注体内后无法被PBNs摄取而递送至炎症部位,因此炎症部位的聚集量显著降低。这种结果进一步证明唾液酸修饰脂质体能够利用“NPS通路”实现药物的靶向递送。同时,采用连续注射CTX建立耗竭模型,其非特异性耗竭循环系统中所有的白细胞,这就意味着本实验结果反应的是对整个“NMPS”通路的影响。“NMPS通路”包括NPS、MPS与NMPS三部分,三者平行且相互联系,而非先后顺序关系。需要注意的是,如果想更加准确评价SA修饰纳米载体利用“NPS通路”的能力需要采用更加准确的中性粒细胞耗竭方法,例如采用单克隆抗体进行特异性的中性粒细胞“屏蔽”等。
实施例9唾液酸修饰脂质体的AIA大鼠体内药效学考察(附图9,10,11)
造模后第14天,将36只AIA大鼠随机分成6组,即5%Glu(Model)、DP-CL、DP-MT18L、DP-SACHL、DP-LYS16L与DP-LYS18L组,每组6只。另取6只未造模鼠作为对照组(Control)。各给药组于造模后第14、16、18、20和22天分别尾静脉注射给药一次,DP剂量均为0.9mg·kg-1,Model组给予等体积的5%Glu。在整个药效学试验期间采用排水银法测量右后足体积代表组肿胀度,同时进行关节指数评分(0分-关节无红肿;1分-小趾关节红肿;2分-趾关节合并足趾肿胀;3分-踝关节以下足爪肿胀;4分-踝关节在内全部足爪肿胀;0.5分-耳朵一个红斑、一侧前肢肿胀)。第24天每组大鼠眼眶静脉丛取血,分离血清,用于检测血清TNF-α与IL-1β浓度。同时,收集各组大鼠的炎症部位,用于HE病理切片。
实验结果显示,5%Glu组(Model)的足体积(足肿胀度)与关节评分指数持续增长(附图9)。与5%Glu组相比,各DP脂质体组均能够有效抑制关节肿胀。其中,唾液酸修饰DP脂质体组抑肿效果优于未修饰脂质体组,DP-SACHL与DP-LYS18L治疗组在给药后期足体积逐渐接近于正常鼠的足体积,且关节评分指数显著低于其他唾液酸修饰DP脂质体组。与5%Glu组(Model)相比,5次给药后,各脂质体组血清TNF-α与IL-1β浓度显著降低,且SA修饰DP脂质体组的TNF-α与IL-1β浓度低于未修饰DP脂质体组(附图10)。
5%Glu组关节周围组织存在大量的炎性细胞浸润、滑膜严重增生、并伴有大量的炎性渗出物;DP-CL组关节周围组织有炎性细胞浸润;MT-18L组滑膜轻微增生;DP-LYS-16L组有少量的炎性细胞浸润;DP-SACHL和DP-LYS18L组未见异常(附图11)。
四种唾液酸衍生物中,LYS16修饰DP制剂对中性粒细胞的靶向能力较低,中性粒细胞的摄取量低于其他唾液酸衍生物修饰的制剂组。此外,LYS-16为16碳链的唾液酸衍生物,MT-18与LYS-18为18碳链唾液酸衍生物,SA-CH存在胆固醇结构。由于脂质体组成中的磷脂为具有C18双链的HSPC。与后者相比,LYS-16不能牢固地“锚定”于载体表面,进入体内后,在复杂地体内环境作用下,较易出现“脱靶”现象,失去体内靶向中性粒细胞的能力,利用“NPS通路”向靶部位递药的能力低,表现为比其他唾液酸衍生物修饰DP制剂较差的RA疗效。
虽然MT-18与LYS-18均为18碳链的唾液酸衍生物,但是,SA-CH与LYS-18具有不同长度的空间臂(Spacer),靶头能够探出载体表面的程度不同,空间臂越长,靶头距离载体表面越远,越有利于与中性粒细胞表面的L-Selectin结合,靶向能力更强。因此,MT-18修饰DP制剂组的药效较差。此外,我们还发现LYS-18修饰DP制剂组的药效略优于SA-CH修饰DP制剂组。这是因为C1位羧基在SA类物质与L-Selectin结合的时候发挥重要作用。SA-CH的C1位被稳定的酰胺键占据,体内不易水解,在一定程度上阻碍了制剂与PBNs表面L-Selectin特异性结合作用的发生,所以其空间臂很长,药效却稍弱于LYS-18修饰DP制剂组。
目前,在进行抗炎药效评价时,通常采用足体积(足肿胀度)与关节评分(关节指数)比较不同制剂的药效差异。这两个指标能一定程度地反映试验终点的情况,但由于炎症发展(抑制)受机体自身免疫和外界环境影响较大,不是匀速发展(抑制)的过程,加之药物(或制剂)的介入将影响炎症的发展,简单地以某一个时间点评价药物(或制剂)的效果优劣必然存在缺陷,炎症发展全过程的变化更需要受到关注。基于以上考虑,我们提出“曲线下面积肿胀度抑制率(SIR)”和“曲线下面积关节评分降低率(JSRR)”的评价指标(结果见表7)。它将足体积(足肿胀度)和关节评分(关节指数)整体量化,表征的是整个试验区间而非单一时间点的情况。
表7各制剂组的曲线下面积肿胀度抑制率和关节评分降低率
SIR和JSRR的重要性在本研究得以体现,单纯采用足体积与关节评分进行药效比较发现,DP-MT18L、DP-SACHL和DP-LYS18L仅在试验终点(第24天)有差异,且DP-SACHL组和DP-LYS18L组的足体积和关节评分相当。但整体来看,与其他两组比较,DP-MT18L组的足体积与关节评分变化趋势较为平缓。而从第20天开始,DP-SACHL和DP-LYS18L组的足体积和关节评分逐渐低于DP-MT18L组。同理,虽然第24天时,DP-SACHL和DP-LYS18L组的足体积和关节评分相当,但从整体看DP-LYS18L的足体积和关节评分基本低于DP-SACHL组。因此,需要采用SIR和JSRR才能客观反映出SA修饰DP制剂组的药效差别。
实施例10不同粒径DP-SALs的药效学研究
脂质体膜材DSPC、CH、LYS-18与DP(DSPC/DSPG-Na/CH/LYS-18/DP,10/2.9/0.6/0.63/1.23,质量比),加入制剂终体积10%(v/v)的无水乙醇,65℃水浴中搅拌溶解。待固体物质全部溶解后,敞开体系,继续搅拌以挥去大部分乙醇,以5mL·min-1的速度注入预热至相同温度的预先均匀分散DSPG-Na的灭菌注射用水,65℃继续搅拌20min即得脂质体初品。将初品依次通过脂质体挤出器,过400nm滤膜4次得DP-SAL-L(大粒径);依次通过400nm滤膜4次,200nm滤膜2次,100nm滤膜1次得DP-SAL-M(中粒径);依次通过400nm滤膜4次,200nm滤膜2次,100nm滤膜3次,50nm滤膜5次得DP-SAL-S(小粒径)。不同粒径脂质体的粒径分别为315nm(DP-SAL-L,大粒径)、138nm(DP-SAL-M,中粒径)和87nm(DP-SAL-S,小粒径),包封率均大于95%。
按照“实施例9”进行药效学研究,结果见表8。
表8不同粒径制剂组的肿胀度抑制率
在第25天,小粒径组(DP-SAL-S),9只鼠中有5只炎症消退,中等粒径组(DP-SAL-M)有4只鼠消退,大粒径组(DP-SAL-L)有1只大鼠炎症消退,普通脂质体(DP-CL)没有大鼠炎症消退。
实施例11控制粒径30~100nm,不同磷脂处方制剂的抗炎效果
实施例10的结果表明“DP-LYS18L”138nm和87nm效果最好,因此,考察不同磷脂相关处方,粒径控制在30~100nm左右,进一步确定抗炎效果,结果见表9~10。
表9不同制剂组的肿胀度抑制率
结果表明:控制粒径在100nm附近(95~121nm),脂质体处方组成对抗炎效果没有显著性影响。
表10不同制剂组的肿胀度抑制率
限定处方质量比为DPPC/LYS-18/DP(100/20/10)和DSPC/CH/LYS-18/DP(100/10/20/10),制备36~87nm脂质体,抗炎结果表明,各种粒径均有良好肿胀度抑制率。

Claims (11)

1.唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,包括唾液酸衍生物、磷脂、胆固醇和地塞米松棕榈酸酯,所述的唾液酸衍生物选自唾液酸-2-(十八烷氧基)乙酸,唾液酸衍生物占脂质体总重的为10-30%,地塞米松棕榈酸酯与唾液酸衍生物的重量比为:1:1-1:10,磷脂、胆固醇和地塞米松棕榈酸酯的重量百分组成为:磷脂为50~90%,胆固醇为0~40%,地塞米松棕榈酸酯为5~20%。
2.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,所述的唾液酸衍生物通过如下方法制备:首先将唾液酸的C1位羧基酯化提高其脂溶性,然后在C9位的羟基引入长脂肪链,获得唾液酸衍生物。
3.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,所述的磷脂为磷脂酸、磷脂酰胆碱、磷脂酰甘油、磷脂酰乙醇胺、磷脂酰肌醇或磷脂酰丝氨酸。
4.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,所述的磷脂为:大豆卵磷脂、蛋黄卵磷脂、蛋黄磷脂酰甘油、氢化大豆卵磷脂、氢化蛋黄卵磷脂、二月桂酰基磷脂酰胆碱、二肉豆蔻酰基磷脂酰胆碱、二棕榈酰基磷脂酰胆碱、二硬脂酰基磷脂酰胆碱、二油酰基磷脂酰胆碱、1-棕榈酰基-2-油酰基磷脂酰胆碱、二亚油酰基磷脂酰胆碱、二月桂酰基磷脂酰甘油、二肉豆蔻酰基磷脂酰甘油、二棕榈酰基磷脂酰甘油、二硬脂酰基磷脂酰甘油、二芥酰基磷脂酰甘油、二亚油酰基磷脂酰甘油、二油酰基磷脂酰甘油、1-棕榈酰基-2-油酰基磷脂酰甘油、二月桂酰基磷脂酰乙醇胺、二肉豆蔻酰基磷脂酰乙醇胺、二棕榈酰基磷脂酰乙醇胺、二硬脂酰基磷脂酰乙醇胺、二油酰基磷脂酰乙醇胺、二亚油酰基磷脂酰乙醇胺、1-棕榈酰基-2-油酰基磷脂酰乙醇胺、二月桂酰基磷脂酰肌醇、二棕榈酰基磷脂酰肌醇、二硬脂酰基磷脂酰肌醇、二肉豆蔻酰基磷脂酰肌醇、二油酰基磷脂酰肌醇、1-棕榈酰基-2-油酰基磷脂酰肌醇、二亚油酰基磷脂酰肌醇、二月桂酰基磷脂酰丝氨酸、二肉豆蔻酰基磷脂酰丝氨酸、二油酰基磷脂酰丝氨酸、二棕榈酰基磷脂酰丝氨酸、二亚油酰基磷脂酰丝氨酸、二硬脂酰基磷脂酰丝氨酸、1-棕榈酰基-2-油酰基磷脂酰丝氨酸、二月桂酰基神经鞘髓磷脂、二亚油酰基神经鞘髓磷脂、二肉豆蔻酰基神经鞘髓磷脂、二油酰基神经鞘髓磷脂、二棕榈酰基神经鞘髓磷脂、二硬脂酰基神经鞘髓磷脂、1-棕榈酰基-2-油酰基神经鞘髓磷脂、蛋黄鞘磷脂中的一种或几种。
5.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,所述的磷脂为氢化大豆磷脂、磷脂酰胆碱或二硬脂酰磷脂酰甘油中的一种或几种。
6.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,磷脂、胆固醇和地塞米松棕榈酸酯的重量百分组成为:磷脂为60~80% ;胆固醇为10~30% ;地塞米松棕榈酸酯为7~15% 。
7.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,脂质体粒径控制在30~300nm。
8.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,脂质体粒径控制在30~120nm。
9.如权利要求1所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体,其特征在于,脂质体粒径控制在30~100nm。
10.如权利要求6所述的唾液酸衍生物修饰的地塞米松棕榈酸酯脂质体的制备方法,其特征在于,包括如下步骤:
(1) 将磷脂、胆固醇、唾液酸衍生物与地塞米松棕榈酸酯加热溶解;
(2) 将水化介质预热至相同温度;
(3) 将水化介质注入步骤(1)的含药膜材中,水化,得到脂质体初品;
(4) 将脂质体初品进行分散,过膜,得唾液酸修饰的地塞米松棕榈酸酯脂质体成品。
11.如权利要求10所述的制备方法,其特征在于,步骤(1)和(2)中加热的温度为60-70oC;
步骤(3)和(4)中所述的水化介质为5%葡萄糖、生理盐水或注射用水,继续采用冷冻干燥或喷雾干燥技术,加入适当赋形剂,获得固体状态制剂。
CN202010515302.8A 2020-06-08 2020-06-08 唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用 Active CN113827738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010515302.8A CN113827738B (zh) 2020-06-08 2020-06-08 唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515302.8A CN113827738B (zh) 2020-06-08 2020-06-08 唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用

Publications (2)

Publication Number Publication Date
CN113827738A CN113827738A (zh) 2021-12-24
CN113827738B true CN113827738B (zh) 2024-04-09

Family

ID=78963787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515302.8A Active CN113827738B (zh) 2020-06-08 2020-06-08 唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用

Country Status (1)

Country Link
CN (1) CN113827738B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807032B (zh) * 2022-05-20 2023-09-12 南京大学 地塞米松诱导中性粒细胞产生的细胞外囊泡在制备治疗消炎药物中的应用
CN114891057B (zh) * 2022-05-26 2023-10-17 沈阳药科大学 唾液酸衍生物修饰的化合物及其合成方法和应用
CN117731638A (zh) * 2023-12-25 2024-03-22 郑州大学 一种抑制中性粒细胞炎性细胞死亡方式并递送凋亡诱导基因药物的纳米粒的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043875A (zh) * 2004-09-09 2007-09-26 耶路撒冷希伯来大学伊萨姆研发公司 糖皮质激素和糖皮质激素衍生物的脂质体组合物
CN102905693A (zh) * 2010-03-17 2013-01-30 国家科学和技术研究委员会(Conicet) 包含至少一种疏水性治疗活性物质和选自唾液酸鞘糖脂、鞘糖脂或唾液酸鞘糖脂和鞘糖脂的混和物的至少一种化合物的水溶性药物组合物
CN104031097A (zh) * 2013-03-04 2014-09-10 沈阳药科大学 一种含有唾液酸基团的脂质衍生物及其应用
CN106188169A (zh) * 2016-07-07 2016-12-07 沈阳药科大学 一种含有唾液酸基团的脂质衍生物的合成及其在药物制剂中的应用
CN106822910A (zh) * 2017-01-18 2017-06-13 浙江大学 唾液酸‑聚乙二醇‑地塞米松嫁接物及合成方法和应用
CN110577557A (zh) * 2018-06-08 2019-12-17 沈阳药科大学 唾液酸脂质衍生物及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043875A (zh) * 2004-09-09 2007-09-26 耶路撒冷希伯来大学伊萨姆研发公司 糖皮质激素和糖皮质激素衍生物的脂质体组合物
CN102905693A (zh) * 2010-03-17 2013-01-30 国家科学和技术研究委员会(Conicet) 包含至少一种疏水性治疗活性物质和选自唾液酸鞘糖脂、鞘糖脂或唾液酸鞘糖脂和鞘糖脂的混和物的至少一种化合物的水溶性药物组合物
CN104031097A (zh) * 2013-03-04 2014-09-10 沈阳药科大学 一种含有唾液酸基团的脂质衍生物及其应用
CN106188169A (zh) * 2016-07-07 2016-12-07 沈阳药科大学 一种含有唾液酸基团的脂质衍生物的合成及其在药物制剂中的应用
CN106822910A (zh) * 2017-01-18 2017-06-13 浙江大学 唾液酸‑聚乙二醇‑地塞米松嫁接物及合成方法和应用
CN110577557A (zh) * 2018-06-08 2019-12-17 沈阳药科大学 唾液酸脂质衍生物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Neutrophil-Mediated Delivery of Dexamethasone Palmitate-Loaded Liposomes Decorated with a Sialic Acid Conjugate for Rheumatoid Arthritis Treatment;Ling Hu等;《Pharm Res》;第36卷;第1-15页 *
不同链长唾液酸衍生物修饰脂质体的药效学研究;宋艳志等;药学学报;第51卷(第2期);第316-324页 *
唾液酸修饰的地塞米松棕榈酸酯脂质体抗小鼠体内S180肿瘤作用的研究;黄振君等;中国药剂学杂志(网络版);第14卷(第3期);第89-98页 *

Also Published As

Publication number Publication date
CN113827738A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN113827738B (zh) 唾液酸修饰地塞米松棕榈酸酯脂质体及其制备和应用
JP6964571B2 (ja) 関節炎の処置方法
CN107812197B (zh) 一种炎症靶向的中性粒细胞递药系统及其应用
Bagalkot et al. “Eat me” imaging and therapy
US9371364B2 (en) Dual-targeted therapeutic peptide for nasopharyngeal carcinoma, nanoparticles carrying same and uses thereof
WO2010083778A1 (zh) 注射用肺靶向脂质体药物组合物
CN111973570B (zh) 唾液酸衍生物修饰的依鲁替尼纳米复合物及其制备方法
JP2003530362A (ja) 診断剤をターゲッティングするための脂質ベースの系
CN112535676A (zh) 提高阿霉素肿瘤主动靶向性和肾脏保护的纳米结构脂质制剂及制备方法
Xie et al. Hybrid-cell membrane-coated nanocomplex-loaded chikusetsusaponin IVa methyl ester for a combinational therapy against breast cancer assisted by Ce6
CN113679670B (zh) 一种载氯喹化合物的囊泡纳米药物及其制备方法与应用
Lorscheider et al. Nanoscale lipophilic prodrugs of dexamethasone with enhanced pharmacokinetics
Guo et al. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy
Jing et al. Engineering goat milk-derived extracellular vesicles for multiple bioimaging-guided and photothermal-enhanced therapy of colon cancer
CN1931157A (zh) 多烯紫杉醇脂质体及其制备方法
Wang et al. A pH/ROS dual-responsive system for effective chemoimmunotherapy against melanoma via remodeling tumor immune microenvironment
CN104031097B (zh) 一种含有唾液酸基团的脂质衍生物及其应用
Liu et al. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke
Wu et al. Oncolytic Peptide‐Nanoplatform Drives Oncoimmune Response and Reverses Adenosine‐Induced Immunosuppressive Tumor Microenvironment
CN105194663A (zh) 聚乙二醇化磷脂为载体的胶束多肽疫苗
JP2021532074A (ja) 関節内ステロイドの合併症を軽減する方法
BR112021004880A2 (pt) composições farmacêuticas adequadas para entrega articular e uso das mesmas no tratamento de dor nas articulações
Qiao et al. Hybrid biomineralized nanovesicles to enhance inflamed lung biodistribution and reduce side effect of glucocorticoid for ARDS therapy
US20240108685A1 (en) Oral liposomal compositions
CN112618728B (zh) 一种含有聚唾液酸基团的双重响应前药及其合成方法和其在药物制剂中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant