CN113817933B - 陶瓷增强钛基复合材料、其制备方法及应用 - Google Patents

陶瓷增强钛基复合材料、其制备方法及应用 Download PDF

Info

Publication number
CN113817933B
CN113817933B CN202111087884.5A CN202111087884A CN113817933B CN 113817933 B CN113817933 B CN 113817933B CN 202111087884 A CN202111087884 A CN 202111087884A CN 113817933 B CN113817933 B CN 113817933B
Authority
CN
China
Prior art keywords
titanium
composite material
ceramic
based composite
ceramic reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111087884.5A
Other languages
English (en)
Other versions
CN113817933A (zh
Inventor
霍树海
曹柳絮
刘春轩
蒋兆汝
梁啟文
王畅
吴云
谢屹
冯建涛
刘璇
钟探秋
蒋小汉
向威
张扬
邱振宇
罗任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Xiangtou Light Material Technology Co.,Ltd.
Original Assignee
Hunan Goldsky Aluminum Industry High Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Goldsky Aluminum Industry High Tech Co ltd filed Critical Hunan Goldsky Aluminum Industry High Tech Co ltd
Priority to CN202111087884.5A priority Critical patent/CN113817933B/zh
Publication of CN113817933A publication Critical patent/CN113817933A/zh
Application granted granted Critical
Publication of CN113817933B publication Critical patent/CN113817933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0043Ceramic base, e.g. metal oxides or ceramic binder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请涉及陶瓷增强钛基复合材料、其制备方法及应用。该陶瓷增强钛基复合材料,采用较低熔点的元素(Al、Cu、Cr、Sn中的至少一种)作为主要合金元素,采用Ce、Y、La中的至少一种作为微量元素,这些元素能与钛形成固溶体,降低烧结温度,同时生成金属间化合物,减少烧结过程中陶瓷颗粒与钛基体的界面反应,并且微量元素还起到细化晶粒的作用,各元素协调一致,提高了材料强度,降低了能耗与成本,适合工业化连续生产,且这些元素在摩擦制动时能在摩擦表面形成金属氧化物,减少钛的氧化燃烧,具有一定的阻燃效果,适用于交通运输领域里的高速摩擦制动。

Description

陶瓷增强钛基复合材料、其制备方法及应用
技术领域
本发明涉及复合材料技术领域,特别是涉及陶瓷增强钛基复合材料、其制备方法及应用。
背景技术
钛及钛合金不仅具有很高的比强度和比刚度,而且具有优异的耐高温性能以及抗腐蚀性能,在航空航天、汽车制造、体育器材和医疗器械等领域的应用前景非常广泛。但是由于钛合金本身具有不耐磨、硬度偏低及生产成本高等弱点,严重阻碍了它在工程中的大量应用。通过在钛基体中添加相应的增强相制备钛基复合材料已成为钛合金的一种发展趋势。陶瓷增强钛基复合材料是以高强度和高模量陶瓷颗粒或晶须为增强相,以钛或钛合金为基体而制备的一种材料,具有比钛合金更高的比强度和比模量,极佳的抗疲劳和抗蠕变性能,以及优异的耐高温性能和耐蚀性能,并克服了钛合金不耐磨、硬度偏低等缺点。
目前,制备陶瓷增强钛基复合材料的方法主要有熔铸法和粉末冶金法两大类。熔铸法存在易产生缺陷,成分易于偏析、组织不均匀、生产效率低、增强相含量受限等问题。与熔铸法相比,粉末冶金具有能耗低、材料利用率高、微观组织细小、成分均匀可控、易实现近净成形等优点。然而,粉末冶金法在制备陶瓷增强钛基复合材料时,由于热动力学稳定的陶瓷增强相很难与高活性的钛合金基体形成良好的化学和冶金结合,因此烧结通常需要在真空或惰性气氛及较高的温度条件下进行,增加了能耗与成本,使连续化生产变得困难,且钛基体非常活跃,在上述烧结条件下容易与陶瓷增强相发生界面反应。影响材料强度。此外,由于钛金属非常活跃,在高速摩擦制动的温度压力和空气流速下能够燃烧而产生危险,限制了其在高速摩擦制动领域里的应用。
发明内容
基于此,有必要提供一种能够降低烧结温度,减少陶瓷增强相与钛基体在烧结时的界面反应,适用于高速摩擦制动领域的陶瓷增强钛基复合材料,具体方案如下:
一种陶瓷增强钛基复合材料,以质量百分含量计,由5%~25%的主要合金元素、≤1.5%的微量元素、10%~40%的陶瓷颗粒及余量的钛元素组成,其中,主要合金元素选自铝(Al)、铜(Cu)、铬(Cr)、锡(Sn)中的至少一种;微量元素选自铈(Ce)、钇(Y)、镧(La)中的至少一种。
在其中一个实施例中,上述陶瓷增强钛基复合材料,以质量百分含量计,由5%~20%的铝、1%~6%的铬、0.5%~10%的铜、0.5%~5%的锡、≤1.5%的上述微量元素、10%~40%的上述陶瓷颗粒及余量的钛元素组成。
在其中一个实施例中,上述陶瓷增强钛基复合材料,以质量百分含量计,由8%~15%的铝、2.5%~4%的铬、1.5%~6%的铜、1%~3%的锡、≤1.5%的所述微量元素、10%~40%的所述陶瓷颗粒及余量的钛元素组成。
在其中一个实施例中,上述陶瓷颗粒选自碳化物(如TiC、SiC、B4C等)、硼化物(如TiB、TiB2等)、氮化物(如Si3N4)及硅化物(如Ti5Si3)中的至少一种。
在本实施方式中,上述陶瓷颗粒为碳化钛(TiC)。
在其中一个实施例中,上述陶瓷增强钛基复合材料的密度为3.86g/cm3~4.32g/cm3
上述陶瓷增强钛基复合材料,采用较低熔点的元素(Al、Cu、Cr、Sn中的至少一种)作为主要合金元素,采用Ce、Y、La中的至少一种作为微量元素,这些元素能与钛形成固溶体,降低烧结温度,同时可生成部分金属间化合物,减少烧结过程中陶瓷颗粒与钛基体的界面反应,并且微量元素还起到细化晶粒的作用,各元素协调一致,提高了材料强度,降低了能耗与成本,适合工业化连续生产,且这些元素在摩擦制动时能在摩擦表面形成金属氧化物,减少钛的氧化燃烧,具有一定的阻燃效果,适用于交通运输领域里的高速摩擦制动。
本申请还提供一种上述任一项陶瓷增强钛基复合材料的制备方法,具体方案如下:
一种陶瓷增强钛基复合材料的制备方法,包括如下步骤S110~S120:
S110、提供上述陶瓷颗粒及上述钛元素、主要合金元素和微量元素的原料粉体。
在本实施方式中,上述钛元素、主要合金元素和微量元素的原料粉体为单质粉或合金粉。
S120、将上述陶瓷颗粒及上述钛元素、主要合金元素和微量元素的原料粉体按比例混合均匀后,依次进行冷压、烧结,得到陶瓷增强钛基复合材料。
在其中一个实施例中,混合的条件为:转速15r/min~35r/min,时间45~60分钟。
具体的,混合在混料机中进行。
可以理解,混合还可以在其他条件中进行,只要能将上述陶瓷颗粒和各元素的原料粉体混合均匀即可。
在其中一个实施例中,冷压的条件为:加压速率1mm/s~5mm/s,压力300MPa~500MPa,保压3~10s。
具体的,冷压在模具中进行,冷压完成后脱模即可。
在其中一个实施例中,烧结的条件为:在保护性气体氛围中,以8℃/min~15℃/min的加热速率,升温至350℃~450℃,保温15~30分钟,再升温至950℃~980℃,保温45~120分钟,最后降温至200℃以下。
其中,保护性气体氛围为氩气。
上述烧结过程中,升温至350℃~450℃,保温15~30分钟,主要用于除蜡。
上述陶瓷增强钛基复合材料的制备方法简便、成本低,满足工业化连续生产要求,且制备得到的陶瓷增强钛基复合材料,耐磨性能较好,工作温度可达到600℃以上,比传统钢铁制动材料减重40%左右,适用于交通运输领域的高速摩擦制动。
附图说明
图1为实施例1制备的陶瓷增强钛基复合材料不同部位的显微组织图;
图2为实施例2制备的陶瓷增强钛基复合材料与对比例1制备的钛合金的磨损对比实验图;
图3为实施例3制备的陶瓷增强钛基复合材料在650℃环境下的压缩应力应变曲线图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
以下为具体实施例。
实施例1
(1)将如下粉体:10g碳化钛粉、33g钛粉、4g铝粉、1.2g铬粉、0.8g铜粉、0.5g锡粉、0.1g铈粉,在混料机中混合均匀得到混合粉体;
(2)将上述混合粉体,填充至模具中在室温下,以5mm/s的加压速率升至400MPa,保压3s,脱模,得到直径12mm,高度约12mm的坯体;
(3)将上述坯体放入烧结炉中,在氩气保护下,以15℃/min的加热速率,先升温至350-450℃,除蜡保温15分钟,再升温至950-980℃,保温120min,最后降温至200℃以下,得到陶瓷增强钛基复合材料。
将实施例1制备的陶瓷增强钛基复合材料试样在室温下打磨抛光后,观察其显微组织,如图1所示。灰色的块状区域a为TiC颗粒增强相,较浅区域b为金属间化合物TiAl3(Cu/Cr)和TiAl3,黑色区域c为孔洞,较暗区域d为复合材料的基体。其主要成份为Ti8Al2.5Cr1.5Cu1Sn+20%TiC,密度为4.02g/cm3
实施例2
(1)将如下粉体:10g碳化钛粉、33g钛粉、4g铝粉、1.2g铬粉、0.8g铜粉、0.5g锡粉、0.2g钇粉分别在混料机中混合均匀得到混合粉体;
(2)将上述混合粉体,填充至模具中在室温下,以1mm/s的加压速率升至300MPa,保压10s,脱模,得到直径12mm,高度约12mm的坯体;
(3)将上述坯体放入烧结炉中,在氩气保护下,以8℃/min的加热速率,先升温至350-450℃,除蜡保温30分钟,再升温至950-980℃,保温45min,最后降温至200℃以下,得到陶瓷增强钛基复合材料。
实施例2制备的陶瓷增强钛基复合材料的主要成分为Ti8Al2.5Cr1.5Cu1Sn+20%TiC,密度4.01g/cm3
对比例1
对比例1与实施例2基本相同,不同的是,对比例1在步骤(1)中的粉体组成如下:53g钛粉、0.8g镍粉、1.2g铜粉、0.5g锡粉。
对比例1制备的钛合金的主要成分为Ti2Cu1.5Ni1Sn,密度4.13g/cm3
将实施例2制备的材料试样和对比例1制备的材料试样在室温下进行80目碳化硅磨料磨损对比实验,结果如图2所示。对比例1制备的材料试样的体积损失比实施例2制备的材料试样的体积损失高出约3.5倍,说明本申请的陶瓷增强钛基复合材料的耐磨性能优于钛合金材料。
实施例3
(1)将如下粉体:10g碳化钛粉、33g钛粉、4g铝粉、1.2g铬粉、0.8g铜粉、0.5g锡粉、0.2g镧粉,在混料机中混合均匀得到混合粉体;
(2)将上述混合粉体,填充至模具中,在室温下,以3mm/s的加压速率升至500MPa,保压5s,脱模,得到直径12mm,高度12mm的坯体;
(3)将上述坯体放入烧结炉中,在氩气保护下,以10℃/min的加热速率,先升温至350-450℃,除蜡保温20分钟,再升温至950-980℃,保温90min,最后降温至200℃以下,得到陶瓷增强钛基复合材料。
实施例3制备的陶瓷增强钛基复合材料的主要成分为:Ti8Al2.5Cr1.5Cu1Sn+20%TiC,密度4.02g/cm3
将实施例3制备的陶瓷增强钛基复合材料试样加热至650℃并在650℃环境下进行热压缩实验。结果如图3所示。复合材料试样在该温度下仍然具有一定的抗压强度。应力-应变曲线显示,复合材料的最大应力达到90MPa以上。高速磨擦制动领域里的最大制动压应力在较高温度时显著低于20MPa。可见,瓷颗粒增强钛基粉末冶金复合材料具有优异的耐磨性能和较好的耐温性能。
实施例4
(1)将如下粉体:20gTiB粉、25.5g钛粉、2.5g铝粉、1.25g铜粉、0.5g锡粉、0.1g铈粉、0.1g钇粉,在混料机中混合均匀得到混合粉体;
(2)将上述混合粉体,填充至模具中在室温下,以2mm/s的加压速率升至300MPa,保压8s,脱模,得到直径12mm,高度约12mm的坯体;
(3)将上述坯体放入烧结炉中,在氩气保护下,以12℃/min的加热速率,先升温至350-450℃,除蜡保温20分钟,再升温至950-980℃,保温80min,最后降温至200℃以下,得到陶瓷增强钛基复合材料,其主要成分为Ti5Al2.5Cu1Sn+40%TiB。
实施例5
(1)将如下粉体:20gSi3N4粉、25g钛粉、2.5g铜粉、2g铬粉、0.1g铈粉,在混料机中混合均匀得到混合粉体;
(2)将上述混合粉体,填充至模具中在室温下,以4mm/s的加压速率升至500MPa,保压5s,脱模,得到直径12mm,高度约12mm的坯体;
(3)将上述坯体放入烧结炉中,在氩气保护下,以15℃/min的加热速率,先升温至350-450℃,除蜡保温15分钟,再升温至950-980℃,保温100min,最后降温至200℃以下,得到陶瓷增强钛基复合材料,其主要成分为Ti5Cu4Cr+40%Si3N4
实施例6
(1)将如下粉体:20gTi5Si3粉、24.5g钛粉、5g铝粉、0.1g铈粉、0.1g钇粉、0.1g镧粉,在混料机中混合均匀得到混合粉体;
(2)将上述混合粉体,填充至模具中在室温下,以5mm/s的加压速率升至300MPa,保压10s,脱模,得到直径12mm,高度约12mm的坯体;
(3)将上述坯体放入烧结炉中,在氩气保护下,以15℃/min的加热速率,先升温至350-450℃,除蜡保温30分钟,再升温至950-980℃,保温120min,最后降温至200℃以下,得到陶瓷增强钛基复合材料,其主要成分为Ti10Al+40%Ti5Si3
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种陶瓷增强钛基复合材料,其特征在于,以质量百分含量计,由5%~20%的铝、1%~6%的铬、0.5%~10%的铜、0.5%~5%的锡、≤1.5%的微量元素、10%~40%的陶瓷颗粒及余量的钛元素组成,所述微量元素不为0;所述微量元素选自铈、钇、镧中的至少一种;所述陶瓷颗粒选自碳化物、硼化物、氮化物及硅化物中的至少一种;
所述陶瓷增强钛基复合材料的制备方法包括如下步骤:
提供所述陶瓷颗粒及所述钛元素、铝元素、铬元素、铜元素、锡元素和微量元素的原料粉体;
将所述陶瓷颗粒和所述钛元素、铝元素、铬元素、铜元素、锡元素和微量元素的原料粉体按比例混合均匀后,依次进行冷压、烧结,得到所述陶瓷增强钛基复合材料;
所述烧结的条件为:在保护性气体氛围中,以8℃/min~15℃/min的加热速率,升温至350℃~450℃,保温15~30分钟,再升温至950℃~980℃,保温45~120分钟,最后降温至200℃以下。
2.根据权利要求1所述的陶瓷增强钛基复合材料,其特征在于,以质量百分含量计,由8%~15%的铝、2.5%~4%的铬、1.5%~6%的铜、1%~3%的锡、≤1.5%的所述微量元素、10%~40%的所述陶瓷颗粒及余量的钛元素组成。
3.根据权利要求1所述的陶瓷增强钛基复合材料,其特征在于,所述陶瓷增强钛基复合材料的密度为3.86g/cm3~4.32g/cm3
4.根据权利要求1所述的陶瓷增强钛基复合材料,其特征在于,所述混合的条件为:转速15r/min~35r/min,时间45~60分钟。
5.根据权利要求1所述的陶瓷增强钛基复合材料,其特征在于,所述冷压的条件为:加压速率1mm/s~5mm/s,压力300MPa~500MPa,保压3~10s。
6.一种权利要求1~5任一项所述的陶瓷增强钛基复合材料在摩擦制动领域中的应用。
CN202111087884.5A 2021-09-16 2021-09-16 陶瓷增强钛基复合材料、其制备方法及应用 Active CN113817933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111087884.5A CN113817933B (zh) 2021-09-16 2021-09-16 陶瓷增强钛基复合材料、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111087884.5A CN113817933B (zh) 2021-09-16 2021-09-16 陶瓷增强钛基复合材料、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN113817933A CN113817933A (zh) 2021-12-21
CN113817933B true CN113817933B (zh) 2022-05-06

Family

ID=78922181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111087884.5A Active CN113817933B (zh) 2021-09-16 2021-09-16 陶瓷增强钛基复合材料、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN113817933B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836661A (zh) * 2022-06-09 2022-08-02 湖南金天铝业高科技股份有限公司 双尺度陶瓷颗粒增强铝基复合材料及其制备方法
CN115927910B (zh) * 2022-12-08 2024-05-28 湖南湘投轻材科技股份有限公司 钛基复合材料制动盘及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1101831B1 (en) * 1998-07-21 2003-06-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
CN100582269C (zh) * 2007-10-11 2010-01-20 上海交通大学 RE2O3、TiB和TiC混杂增强钛基复合材料的制备方法
AU2010333714B2 (en) * 2009-12-18 2016-06-23 Commonwealth Scientific And Industrial Research Organisation Method for producing low aluminium titanium-aluminium alloys
WO2011152553A1 (ja) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 銅粉、クロム粉または鉄粉を配合したチタン合金複合粉、これを原料としたチタン合金材及びその製造方法
CN105463222B (zh) * 2015-12-01 2017-07-07 太原理工大学 一种原位自生TiC‑Ti5Si3颗粒增强钛基复合材料的制备方法
CN107130139B (zh) * 2017-06-15 2018-09-18 北京科技大学 一种添加Sn强化烧结粉末冶金TiAl基合金的方法
CN111442039B (zh) * 2020-03-02 2021-04-09 湖南金天铝业高科技股份有限公司 一种轻质耐磨铝基粉末冶金复合材料汽车制动盘及其制备方法
CN113215441B (zh) * 2021-04-21 2022-05-06 上海材料研究所 基于slm成型的纳米颗粒增强钛基复合材料及其制备方法
CN113373335B (zh) * 2021-05-28 2022-07-08 北京科技大学 一种高强钛基复合材料的制备方法

Also Published As

Publication number Publication date
CN113817933A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
EP0147769B1 (en) Dispersion-strengthened heat- and wear-resistant aluminum alloy and process for producing same
CN113817933B (zh) 陶瓷增强钛基复合材料、其制备方法及应用
CN102676883B (zh) 一种碳化硅增强铝基复合材料及其制备方法
CN109321767B (zh) 一种复合强化法制备混杂颗粒增强铝基复合材料的方法
CN1281053A (zh) 陶瓷相弥散强化合金及颗粒增强金属基复合材料制备方法
CN110846530B (zh) 一种具有原位双相增强铝基复合材料的制备方法
CN105734390B (zh) 一种高熵合金结合的立方氮化硼聚晶复合材料的制备方法
CN100410211C (zh) 制备复合构件的方法及金属陶瓷构件
Yang et al. Casting particulate and fibrous metal-matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure
CN110205536B (zh) 一种钛/碳化钛核壳结构增强铝基复合材料及其制备方法
Dikici et al. Synthesis of in situ TiC nanoparticles in liquid aluminum: the effect of sintering temperature
CN110846538B (zh) 一种Ti2AlC增强铝基复合材料及其制备方法
Lei et al. Fabrication, microstructure and mechanical properties of co-continuous TiCx/Cu-Cu4Ti composites prepared by pressureless-infiltration method
CN102173802A (zh) 一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN111500908A (zh) 一种超高强、超细晶TiB2增强Al-Zn-Mg-Cu复合材料及制备
Camarano et al. Effects of Fe addition on the mechanical and thermo-mechanical properties of SiC/FeSi2/Si composites produced via reactive infiltration
CN107739864A (zh) 一种铝基复合材料的制备方法
CN114892045B (zh) 原位自组装核壳结构增强铝基复合材料及其制备方法
Morsi et al. Processing defects in hot extrusion reaction synthesis
JP5569965B2 (ja) 軽量で耐酸化性に優れる高熱伝導性硬質材料及びその作製方法
CN108034866A (zh) 一种高性能氮化硅铝基复合材料及其制备方法
CN114406258A (zh) 铝热还原反应粉末包覆的zta陶瓷颗粒及其制法和应用
CN103938050B (zh) 耐铝液腐蚀高密度金属陶瓷材料
Waku et al. Future trends and recent developments of fabrication technology for advanced metal matrix composites
CN113667862B (zh) 一种TiAl金属间化合物增强铝硅复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 416100 Jintian South Road, Wuxi Town, Luxi County, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan Province

Patentee after: Hunan Xiangtou Light Material Technology Co.,Ltd.

Address before: 416100 Jintian South Road, Wuxi Town, Luxi County, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan Province

Patentee before: HUNAN GOLDSKY ALUMINUM INDUSTRY HIGH-TECH CO.,LTD.