CN113817767B - 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法 - Google Patents

利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法 Download PDF

Info

Publication number
CN113817767B
CN113817767B CN202110954599.2A CN202110954599A CN113817767B CN 113817767 B CN113817767 B CN 113817767B CN 202110954599 A CN202110954599 A CN 202110954599A CN 113817767 B CN113817767 B CN 113817767B
Authority
CN
China
Prior art keywords
taotub1
otub1
wheat
gene
sgrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110954599.2A
Other languages
English (en)
Other versions
CN113817767A (zh
Inventor
赵惠贤
郭利建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN202110954599.2A priority Critical patent/CN113817767B/zh
Publication of CN113817767A publication Critical patent/CN113817767A/zh
Application granted granted Critical
Publication of CN113817767B publication Critical patent/CN113817767B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量方法,在小麦TaOTUB1基因序列中寻找合适的sgRNA位点,构建小麦基因组编辑载体PBUE411‑sgRNA(otub1),并导入到农杆菌菌系EHA105;利用携带PBUE411‑sgRNA(otub1)载体的农杆菌菌系EHA105遗传转化小麦幼胚愈伤组织;用检测试剂盒及酶切筛选小麦TaOTUB1的三个部分同源基因突变的小麦再生植株;TaOTUB1基因突变的再生植株温室加代、连续自交,用HI‑TOM检测试剂盒及酶切筛选TaOTUB1基因功能缺失纯合突变体植株,并用叶片涂抹草铵膦鉴定筛选不含PBUE411‑sgRNA(otub1)编辑载体的植株;获得不含外源载体的TaOTUB1基因功能缺失纯合突变体植株otub1。其分蘖数和穗粒数显著增多,种子大小和粒重显著增大,单株籽粒产量显著提高,但对其它性状没有显著影响;具有定向、快速、有效、可重复性好的特点。

Description

利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产 量的方法
技术领域
本发明涉及一种利用基因组编辑技术提高小麦产量的方法,特别涉及一种利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,该方法能够增加小麦有效分蘖数、单株籽粒数,增大千粒重,提高小麦籽粒产量。
背景技术
小麦是我国乃至全世界三大主粮作物之一,提供人类饮食的20%以上热量和蛋白质。提高小麦产量对全球粮食和营养安全极为重要(FAO,http://faostat.fao.org)。小麦产量由亩穗数、穗粒数和千粒重组成;其中,粒重具有较高的遗传性和稳定性,具有较大改良潜力(Brinton and Uauy2019;Li,Xu et al.2019)。在产量的三个组成因子之间,穗粒数与平均粒重间存在着平衡,粒重增大对产量的贡献常会被穗粒数减少抵消。最近通过大量小麦资源的研究表明粒重和粒数的平衡已成为提高小麦产量的瓶颈(Quintero et al.,2018;Molero et al.,2019;Rivera-Amado et al.,2019)。
泛素分子(Ubiquitin),是在真核生物中广泛存在而且十分保守的一种具有76个氨基酸的重要小蛋白分子;泛素化(Ubiquitination)是指通过复杂的酶促级联反应,将泛素分子与其靶标蛋白连接的过程(Hershko and Ciechanover 1998)。泛素分子本身具有七个赖氨酸残基(分别是在第6/11/27/29/33/48/63个氨基酸位点),它们的ε-氨基连同N-端的蛋氨酸均可以作为另一个泛素分子的作用位点;因此泛素化结果可以是单泛素修饰、多泛素化或者是多聚泛素链形式(Neutzner and Neutzner 2012)。去泛素化(Deubiquitination)是泛素化修饰的逆向调节过程,调控这一过程的去泛素化酶(deubiquitinating enzymes或deubiquitinases,DUB)是一类能够从底物中去除共价附着的泛素分子或水解泛素分子之间肽键的水解酶,因此在调节蛋白的泛素化状态方面具有关键作用。已有许多研究表明泛素-蛋白酶体途径能够调控植物种子大小和形状(Li etal.2008;Li and Li 2015;Song et al.2007),这些泛素-蛋白酶体途径相关组分包括泛素受体、E3泛素连接酶及泛素化途径互作蛋白等(胡婷婷等2020)。目前,在模式植物拟南芥和水稻中研究表明去泛素化酶在种子发育及种子大小的调控中也具有重要作用。拟南芥去泛素化酶的编码基因SUPPRESSOR2 OF DA1(SOD2)编码产物泛素特异性蛋白酶UBP15,能够通过促进胚珠和发育种子表皮细胞的增殖来正调控种子大小(Du et al.2014)。水稻中UBP15由LG1编码,lg1-D功能缺失或下调表达LG1/UBP15水稻籽粒变窄变小,过表达则宽度显著增加(Shi et al.2019)。总之,UBP15正向调控拟南芥和水稻籽粒大小。水稻中与人去泛素化酶otub1序列高度相似的WTG1/OsOTUB1参与调控籽粒大小和形状(Huang et al 2017;Wanget al 2017)。最近,小麦中OsOTUB1/WTG1的同源基因TaWTG1也已被克隆和分子鉴定(Zhanget al.2018);但该基因在小麦中的生物学功能尚未见报道。
申请人课题组曾同源克隆了小麦TaWTG1/TaOTUB1基因(该基因三个部分同源基因的ID号分别为:TraesCS7A01G263900.1、TraesCS7B01G161900.2和TraesCS7D01G264800.1(IWGSC Ref v1.0,2018));进一步原核表达、纯化并体外分析了其去泛素化酶活性(小麦TaWTG1的原核表达、纯化及去泛素化酶活性分析,张文静,陈海超,郭利建,刘香利,赵惠贤,[J];农业生物技术学报,2019年10期),也曾利用大麦条斑花叶病毒(BSMV)介导小麦穗/种子内源TaOTUB1基因表达瞬时抑制,导致小麦种子变大,粒重增加;该研究结果表明,小麦TaOTUB1基因负调控小麦粒重和产量。根据申请人进行的文献检索,迄今为止,尚无任基利用基因组编辑技术创制小麦TaOTUB1基因功能缺失纯合突变体用于提高小麦籽粒产量的文献报道。
发明内容
本发明的目的在于,提供一种利用基因组编辑技术创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法。
为了实现上述任务,本发明采取如下的技术解决方案:
一种利用基因组编辑技术创制小麦TaOTUB1基因突变体提高小麦产量的方法,其特征在于,包括下列步骤:
1)在小麦TaOTUB1基因序列中寻找合适的sgRNA位点,将该sgRNA位点核酸序列导入到PBUE411载体中,构建小麦基因组编辑载体PBUE411-sgRNA(otub1),并将该编辑载体PBUE411-sgRNA(otub1)导入到农杆菌菌系EHA105;
2)利用携带PBUE411-sgRNA(otub1)载体的农杆菌菌系EHA105遗传转化小麦幼胚愈伤组织,筛选和分化培养获得小麦再生植株;用HI-TOM检测试剂盒及酶切检测筛选TaOTUB1三个部分同源基因TaOTUB1-A、TaOTUB-B或TaOTUB1-D突变的再生植株;
3)将得到的TaOTUB1基因三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB-D突变的再生植株,在温室加代、连续自交,再用HI-TOM检测试剂盒及酶切检测筛选TaOTUB1基因功能缺失纯合突变体植株otub1(otub1-aa、otub1-bb或otub1-dd),并用叶片涂抹100mg/L的草铵膦的方法鉴定筛选不含PBUE411-sgRNA(otub1)编辑载体的植株;最终获得不含外源载体的TaOTUB1基因功能缺失纯合突变体植株otub1-aa、otub1-bb或otub1-dd;
4)种植不含外源载体的TaOTUB1基因功能缺失纯合突变体otub1-aa、otub1-bb或otub1-dd,其有效分蘖数和单株籽粒数显著增多,种子大小和千粒重显著增大,单株籽粒产量提高。
根据本发明,所述TaOTUB1基因的部分同源基因TaOTUB1-A的CDS序列为:
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGTCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGTTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTGGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA。
所述TaOTUB1基因的部分同源基因TaOTUB1-B的CDS序列为:
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGCCGCCCGTCGAGGGGGGAGGAAGCGATGGGGCCGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTACCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCGGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGGCATGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGCTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTAGACCGAAGCTCTTGTGACACAGGCAATCTAAGCGTGAACCACCATGATTTCATCCCTGCAACCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA。
所述TaOTUB1基因的部分同源基因TaOTUB1-D的CDS序列为:ATGGGCGACGCGCCCCCACCGCCCCCCGCGCCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCCGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCGGACCCCGACCACAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGGCGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTAGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGATGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAGACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGACTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGTGTGATGTACCTAGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA。
其中,加粗且带下划线的为sgRNA位点。
所述sgRNA位点的核酸序列为:CCATGTGCACATTATTGCTCTG。
本发明的利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,与现有技术相比,带来的技术效果如下:
1、与利用常规杂交育种方法选育高产小麦品种提高小麦产量相比,采用本发明的利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,可以大大缩短育种周期,实现定向改良小麦籽粒产量性状的目的,快速高效,省时省力。
2、与利用转基因创制小麦TaOTUB1基因RNAi株系干扰TaOTUB1基因表达提高小麦产量的方法相比,采用本发明的利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,所获得的TaOTUB1基因突变体系otub1(otub1-aa、otub1-bb或otub1-dd)的基因组中不含任何的外源载体序列,相当于小麦自然突变,可作为正常的(非转基因的)小麦种质资源用于小麦育种和生产。
3、本发明首次利用小麦基因组编辑技术创制TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd),与野生型小麦相比,小麦分蘖数和单株籽粒数显著增多,种子大小和千粒重显著增大,单株籽粒产量显著提高。但对其它性状没有显著影响;具有定向、快速、有效、省时、省力、可重复性好的特点。
附图说明
图1是野生型小麦和TaOTUB1基因突变体小麦的表型及产量性状比较。其中JW1表示野生型小麦;otub1-aa、otub1-bb和otub1-dd表示小麦TaOTUB1三个部分同源基因突变体。其中:
图1的a图展示出CRISPR/Cas9诱导小麦TaOTUB1三个部分同源基因(TaOTUB1-A、TaOTUB1-B和TaOTUB1-D)的靶向突变;图中黑色框代表外显子;最右侧外显子中的左侧为CRISPR/Cas9靶位点。图中的符号“+”和“-”表示由CRISPR/Cas9诱导的突变分别引起的插入或缺失;图中的数字表示插入或缺失的碱基长度。
图1的b图展示野生型小麦JW1与TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)的株型;
图1的c-h图分别展示野生型小麦JW1与TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)的株高(c)、穗长(d)、每穗小穗数(e)、分蘖数(f)、单株穗粒数(g)、单株生物量(h)(n≥10)。
图1的i图展示野生型小麦JW1与TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)籽粒的粒长、粒宽和粒厚的表型;图1的j图为野生型小麦JW1与TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)籽粒的粒长、粒宽和粒厚的统计分析结果(n≥10)。
图1的k-m图分别展示野生型小麦JW1与TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)的籽粒大小(k)、千粒重(l)和单株籽粒产量(m)(n≥10)。
以下结合附图和实施例对本发明作进一步的详细说明。
具体实施方式
本实施例给出一种利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,具体包括下列步骤:
以双元载体PBUE411为基础载体,构建靶向TaOTUB1基因的基因组编辑载体PBUE411-sgRNA(otub1),借助农杆菌介导的遗传转化方法将构建的载体PBUE411-sgRNA(otub1)转入小麦幼胚愈伤组织,用本领域公知的方法筛选培养获得小麦再生植株;用HI-TOM检测试剂盒及酶切检测筛选TaOTUB1基因三个部分同源基因(TaOTUB1-A、TaOTUB1-B和TaOTUB1-D)功能缺失突变的植株,将得到的TaOTUB1基因三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB-D突变的再生植株,在温室加代、连续自交,再用HI-TOM检测试剂盒及酶切检测筛选TaOTUB1基因三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB-D突变的植株,并用叶片涂抹BASTA的方法鉴定筛选不含PBUE411-sgRNA(otub1)编辑载体的突变体植株;获得不含外源载体的TaOTUB1三个同源基因分别突变的纯合功能缺失突变体otub1(otub1-aa、otub1-bb和otub1-dd);该不含外源载体的TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb和otub1-dd),比非转基因对照小麦有效分蘖数和单株籽粒数显著增多,籽粒大小和粒重显著增大,单株产量显著增加。
具体的实现步骤是:
(1)以双元载体PBUE411为基础载体,构建靶向TaOTUB1基因的小麦基因组编辑载体PBUE411-sgRNA(otub1),具体步骤为:
寻找TaOTUB1基因(TaOTUB1-A、TaOTUB-B和TaOTUB-D)中可作为合适的sgRNA位点,根据该sgRNA位点的序列设计带限制性酶切位点(BsaⅠ)的正反向互补引物,用限制性内切酶BsaⅠ对正反向互补引物和PBUE411载体进行酶切,再用T4连接酶连接两个酶切片段,将sgRNA位点核酸序列(即CCATGTGCACATTATTGCTCTG)插入到PBUE411载体中,构建包含sgRNA(otub1)的小麦基因组编辑载体PBUE411-sgRNA(otub1);测序检验该载体PBUE411-sgRNA(otub1)序列的正确性;用本领域公知的方法将构建好的小麦基因组编辑载体PBUE411-sgRNA(otub1)导入农杆菌EHA105菌系。
(2)利用携带PBUE411-sgRNA(otub1)基因组编辑载体的农杆菌EHA105遗传转化小麦幼胚愈伤组织,用本领域公知的方法筛选和分化培养获得含有目标载体的小麦再生植株;在再生植株长至3-5叶期时,用100mg/L的草铵膦(BASTA)涂抹叶片鉴定筛选含有目标载体的小麦植株;并提取叶片DNA,对目标序列进行PCR扩增,对扩增片段进行HI-TOM试剂盒检测及ApaL1酶切检测;筛选TaOTUB1基因三个部分同源基因(TaOTUB1-A、TaOTUB1-B或TaOTUB1-D)发生突变的植株,突变植株进行连续自交,并进行HI-TOM试剂盒检测及ApaL1酶切检测以及叶片涂抹BASTA筛选不含外源载体序列的突变体,获得TaOTUB1三个部分同源基因分别突变的功能缺失纯合突变体otub1(otub1-aa、otub1-bb和otub1-dd)。在转基因植物试验示范基地种植野生型小麦JW1(对照)和TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd),进行农艺性状和产量相关性状调查。结果表明,与野生型小麦JW1相比,TaOTUB1基因功能缺失纯合突变体otub1植株有效分蘖数、单株籽粒数显著增多,种子大小和千粒重显著增大,单株产量显著提高。
以下是发明人给出的实施例,需要说明的是,下列实施中所有方法如无特别说明均为本领域的常规方法。
实施例:
首先,以双元载体PBUE411为基础载体,构建靶向TaOTUB1基因的小麦基因组编辑载体PBUE411-sgRNA(otub1);并将该编辑载体PBUE411-sgRNA(otub1)导入到农杆菌菌系EHA105。
具体方法是:利用在线网站(http://crispr.dbcls.jp/),在小麦TaOTUB1基因序列中寻找合适的sgRNA位点(该位sgRNA位点核酸序列为CCATGTGCACATTATTGCTCTG),根据该序列设计带限制性内切酶BsaⅠ酶切位点的正反向互补引物otub1-F(Bsa I)和otub1-R(BsaI);
用限制性内切酶BsaⅠ酶对正反向互补引物otub1-F(Bsa I)和otub1-R(Bsa I)和载体PBUE411进行酶切,再用T4连接酶连接两个酶切片段,将sgRNA位点的22个核酸序列(即CCATGTGCACATTATTGCTCTG)插入到PBUE411载体中,得到包含sgRNA(otub1)的小麦基因组编辑载体PBUE411-sgRNA(otub1);测序检验载体序列的正确性;然后用本领域公知的方法将构建好的PBUE411-sgRNA(otub1)基因组编辑载体导入农杆菌EHA105菌系。
其中,TaOTUB1基因三个部分同源基因序列及sgRNA位点的序列如下所示:
>seq1[organism=Triticum aestivum]CDS of TaOTUB1-A
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGTCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGTTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTGGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA。
其中加粗且带下划线的为sgRNA位点。
>seq2[organism=Triticum aestivum]CDS of TaOTUB1-B
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGCCGCCCGTCGAGGGGGGAGGAAGCGATGGGGCCGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTACCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCGGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGGCATGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGCTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTAGACCGAAGCTCTTGTGACACAGGCAATCTAAGCGTGAACCACCATGATTTCATCCCTGCAACCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA。
其中加粗且带下划线的为sgRNA位点。
>seq3[organism=Triticum aestivum]CDS of TaOTUB1-D
ATGGGCGACGCGCCCCCACCGCCCCCCGCGCCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCCGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCGGACCCCGACCACAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGGCGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTAGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGATGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAGACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGACTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGTGTGATGTACCTAGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA。
其中加粗且带下划线的为sgRNA位点。
sgRNA位点的核酸序列为:
CCATGTGCACATTATTGCTCTG。
其次,以普通春性小麦品系JW1为转基因受体材料,取花后15天大小的幼胚,用本领域公知的方法进行愈伤组织诱导;利用携带小麦基因组编辑载体PBUE411-sgRNA(otub1)的农杆菌EHA105遗传转化小麦幼胚愈伤组织,用本领域公知的方法筛选和分化培养,获得41个转基因小麦再生植株;在转基因小麦再生植株长至3-5叶期时,用HI-TOM试剂盒及ApaL1酶切检测,筛选得到7株TaOTUB1基因发生突变的植株;将筛选得到的TaOTUB1基因突变植株进行温室加代,连续自交,并在后代植株3-5叶期用叶片涂抹BASTA,HI-TOM试剂盒及ApaL1酶切检测,筛选获得不携带外源载体序列的TaOTUB1基因三个部分同源基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)。
在杨凌曹新庄农场转基因植物试验示范基地种植野生型小麦JW1(对照)和不携带外源载体序列的TaOTUB1基因三个部分同源基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd),进行农艺性状和产量相关性状调查。结果表明,与野生型小麦JW1相比,TaOTUB1基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)植株的有效分蘖数、单株籽粒数显著增加,种子大小和千粒重显著分别增大,单株产量显著提高。
本实施例所利用的引物序列信息如下列表所示。
图1展示了野生型小麦(JW1)和TaOTUB1三个部分同源基因功能缺失纯合突变体otub1(otub1-aa、otub1-bb或otub1-dd)的表型及产量性状的差异。由图1可以看出,与JW1相比,TaOTUB1基因功能缺失纯合突变体otub1-aa、otub1-bb或otub1-dd植株的有效分蘖数和单株籽粒数分别增加24.34%-49.96%和31.88%-64.65%(参见图1f和图1g);TaOTUB1基因功能缺失纯合突变体otub1-aa和otub1-bb的种子大小和千粒重分别增大7.86%-9.38%和5.51%-6.36%(参见图1k和图1l);单株籽粒产量提高24.61%-59.74%(参见图1m)。
综上所述,采用本实施例给出的利用基因组编辑技术创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,具有快速、有效、重复性好的特点,在3-4年内可以创建籽粒产量显著提高的小麦新品系。
核苷酸或氨基酸序列表
<110> 西北农林科技大学
<120> 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法
<140>
<141>
<160> 14
<210> 1
<211> 960
<212> DNA
<213>同源基因TaOTUB1-A的CDS序列
<220>
<400> 1
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGTCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGTTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTGGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA
<210> 2
<211> 960
<212> DNA
<213>同源基因TaOTUB1-B的CDS序列
<220>
<400>2
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGCCGCCCGTCGAGGGGGGAGGAAGCGATGGGGCCGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTACCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCGGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGGCATGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGCTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTAGACCGAAGCTCTTGTGACACAGGCAATCTAAGCGTGAACCACCATGATTTCATCCCTGCAACCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA
<210> 3
<211> 960
<212> DNA
<213>同源基因TaOTUB1-D的CDS序列
<220>
<400> 3
ATGGGCGACGCGCCCCCACCGCCCCCCGCGCCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCCGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCGGACCCCGACCACAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGGCGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTAGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGATGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAGACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGACTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGACCATGTGCACATTATTGCTCTGTCAGATGCGTTAGGGGTGCCAATCCGTGTGATGTACCTAGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA
<210> 4
<211> 21
<212> DNA
<213> sgRNA位点核苷酸序列
<220>
<400> 4
CCATGTGCACATTATTGCTCTG
<210> 5
<211> 36
<212> DNA
<213> otub1-F(Bsa I)引物序列
<220>
<400> 5
aataatggtctcAGGCgCAGAGCAATAATGTGCACA
<210> 6
<211> 36
<212> DNA
<213> otub1-R(Bsa I)引物序列
<220>
<400> 6
attattggtctcTAAACTGTGCACATTATTGCTCTG
<210> 7
<211> 20
<212> DNA
<213> otub1-HI-F引物序列
<220>
<400> 7
TTGCAAGTCTTCTGTGGAGC
<210> 8
<211> 25
<212> DNA
<213> otub1-HI-R引物序列
<220>
<400> 8
GGTAGAGCAGAGTAATGTAAGGTTT
<210> 9
<211> 21
<212> DNA
<213> otub1-A-F引物序列
<220>
<400> 9
CCTGTGGTGTAGCTGAACAAG
<210> 10
<211> 23
<212> DNA
<213> otub1-A-R引物序列
<220>
<400> 10
GCAGTGACAAGTAAAGCATGCTC
<210> 11
<211> 20
<212> DNA
<213> otub1-B-F引物序列
<220>
<400> 11
TGGAGGATTGGTAACCATCA
<210> 12
<211> 22
<212> DNA
<213> otub1-B-R引物序列
<220>
<400> 12
TGTTAAATCGTTGTGCTAGAGC
<210> 13
<211> 22
<212> DNA
<213> otub1-D-F引物序列
<220>
<400> 13
ATTCATTAGGTATGGTGCCTCT
<210> 14
<211> 23
<212> DNA
<213> otub1-D-R引物序列
<220>
<400> 14
TGATTACGCCCCAAGAACACACC

Claims (4)

1.利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法,其特征在于,包括以下步骤:
1)在小麦基因组参考序列中,查找TaOTUB1基因三个同源基因TaOTUB1-A、TaOTUB1-B和TaOTUB1-D的CDS序列,并筛选所述三个同源基因TaOTUB1-A、TaOTUB1-B和TaOTUB1-D的CDS序列,寻找TaOTUB1-A、TaOTUB1-B和TaOTUB1-D三个部分同源基因中共有序列sgRNA位点,并设计和合成相应的带限制性内切酶BsaⅠ酶切位点的正反向互补引物otub1-F和otub1-R;用限制性内切酶BsaⅠ对正反向互补引物otub1-F和otub1-R和载体PBUE411进行酶切,再用T4连接酶连接两个酶切片段,将sgRNA插入到PBUE411载体中,得到小麦基因组编辑载体PBUE411-sgRNA;测序检验载体序列的正确性;然后将构建好的PBUE411-sgRNA基因组编辑载体导入农杆菌EHA105菌系;
所述的共有序列sgRNA位点包含22个核苷酸,序列为:CCATGTGCACATTATTGCTCTG;
所述的带限制性内切酶BsaⅠ的酶切位点的正反向互补引物及限制性内切酶Bsa I的酶切位点为:
引物otub1-F:5'-aataatggtctcAGGCgCAGAGCAATAATGTGCACA-3'
引物otub1-R:5'-attattggtctcTAAACTGTGCACATTATTGCTCTG-3'
其中,下划线序列为限制性内切酶Bsa I的酶切位点;
2)利用携带PBUE411-sgRNA载体的农杆菌菌系EHA105遗传转化小麦幼胚愈伤组织,筛选和分化培养获得小麦再生植株;用HI-TOM检测和酶切检测鉴定筛选TaOTUB1基因的三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB1-D突变的小麦再生植株;在温室加代、连续自交、酶切检测,筛选TaOTUB1基因三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB1-D突变的小麦植株,并用叶片涂抹100mg/L草铵膦的方法鉴定筛选不含PBUE411-sgRNA编辑载体的植株;最终获得不含外源载体的TaOTUB1基因功能缺失纯合突变体otub1-aa、otub1-bb或otub1-dd;
所述的TaOTUB1基因的三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB1-D突变的HI-TOM检测所用引物序列为:
引物otub1-HI-F:5'-TTGCAAGTCTTCTGTGGAGC-3'
引物otub1-HI-R:5'-GGTAGAGCAGAGTAATGTAAGGTTT-3'
所述的TaOTUB1基因的三个部分同源基因TaOTUB1-A、TaOTUB1-B或TaOTUB1-D突变的酶切检测所用引物序列为:
TaOTUB1-A位点酶切检测引物:
引物otub1-A-F:5'-CCTGTGGTGTAGCTGAACAAG-3';
引物otub1-A-R:5'-GCAGTGACAAGTAAAGCATGCTC-3';
TaOTUB1-B位点酶切检测引物:
引物otub1-B-F:5'-TGGAGGATTGGTAACCATCA-3';
引物otub1-B-R:5'-TGTTAAATCGTTGTGCTAGAGC-3';
TaOTUB1-D位点酶切检测引物:
引物otub1-D-F:5'-ATTCATTAGGTATGGTGCCTCT-3';
引物otub1-D-R:5'-TGATTACGCCCCAAGAACACACC-3';
所述的酶切检测用的限制性内切酶为:ApaL I;其酶切位点为:GTGCAC;
3)种植不含外源载体的TaOTUB1基因功能缺失纯合突变体otub1-aa、otub1-bb或otub1-dd,其有效分蘖数和单株籽粒数显著增多,种子大小和千粒重显著增大,单株籽粒产量提高。
2.如权利要求1所述的方法,其特征在于,所述TaOTUB1基因的部分同源基因TaOTUB1-A的CDS序列及sgRNA位点为:
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGTCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGTTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGATCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTGGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA其中加粗且带下划线的序列为sgRNA位点。
3.如权利要求1所述的方法,其特征在于,所述TaOTUB1基因的部分同源基因TaOTUB1-B的CDS序列及sgRNA位点为:
ATGGGCGACGCGCCCCCGCCGGCCCCCGCGCCGCCCGTCGAGGGGGGAGGAAGCGATGGGGCCGGGCCTGACCCTAACTCGCACCGGTTGAGCCCGGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCCGACCCCGACCCCAAGCCCGAGGGACCCCAGGTACCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGACGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTTGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGAAGACACTTTCGGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGGCATGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAAACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGGCTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGATCAGATGCGTTAGGGGTGCCAATCCGCGTGATGTACCTAGACCGAAGCTCTTGTGACACAGGCAATCTAAGCGTGAACCACCATGATTTCATCCCTGCAACCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA
其中加粗且带下划线的序列为sgRNA位点。
4.如权利要求1所述的方法,其特征在于,所述TaOTUB1基因的部分同源基因TaOTUB1-D的CDS序列及sgRNA位点为:
ATGGGCGACGCGCCCCCACCGCCCCCCGCGCCGCTCGTCGAGGGGGGAGGAAGCGATGGGGCGGGGCCTGACCCTAACTCGCACCGGTTGAGCCCCGAGACCGTGTCGGTGGAGCTCTCCATGGGCGGGGACTACTACCACGCCTGCTGCGGCGACCCGGACCCCGACCACAAGCCCGAGGGACCCCAGGTGCCGTACATCGGTAACAAGGAACCTCTCTCCGCCTTAGCAGCAGAGTTCCAGTCTGGCAGCCCCATTTTACAGGAGAAAATAAAGTTGCTTGGTGAACAATATGATGCTTTAAGGCGAACACGAGGAGATGGAAACTGCTTTTATCGAAGCTTTATGTTCTCCTACCTGGAACATATCCTAGAGACACAAGATAGAGCTGAGGTTGAGCGCATCCTAAAAAACATTGAACAGTGCAAGATGACACTTTCAGGTCTTGGATACATTGAATTCACTTTTGAAGACTTCTTCTCTATGTTCATTGAGGAGCTGCAAAATGTTCTGCAGGGACACGAAACTTCTATTGGGCCTGAAGAACTTCTAGAAAGAACCAGGGATCAGACGACTTCTGATTATGTTGTCATGTTCTTTAGGTTTGTTACCTCTGGTGAAATTCAAAGGAGGGCTGAGTTCTTTGAACCATTTATTTCTGGCTTGACAAATTCGACCGTGACTCAGTTTTGCAAGTCTTCTGTGGAGCCAATGGGCGAGGAAAGCGATCAGATGCGTTAGGGGTGCCAATCCGTGTGATGTACCTAGACCGAAGCTCCTGTGACACAGGCAATCTAAGTGTGAACCACCATGATTTCATTCCTGCAGCCAATTCCTCTGAAGGTGATGCTGCAATGGGATTAAATCCGGCTGAGGAGAAACCTTACATTACTCTGCTCTACCGGCCTGGTCACTATGATATTCTCTACCCAAAGTGA
其中加粗且带下划线的序列为sgRNA位点。
CN202110954599.2A 2021-08-19 2021-08-19 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法 Active CN113817767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110954599.2A CN113817767B (zh) 2021-08-19 2021-08-19 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110954599.2A CN113817767B (zh) 2021-08-19 2021-08-19 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法

Publications (2)

Publication Number Publication Date
CN113817767A CN113817767A (zh) 2021-12-21
CN113817767B true CN113817767B (zh) 2023-09-12

Family

ID=78913347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110954599.2A Active CN113817767B (zh) 2021-08-19 2021-08-19 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法

Country Status (1)

Country Link
CN (1) CN113817767B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969796A (zh) * 2016-06-23 2016-09-28 福建省农业科学院生物技术研究所 一种利用TALENs技术定点突变GW2基因创制水稻高产材料的方法
CN107164347A (zh) * 2017-06-16 2017-09-15 中国科学院遗传与发育生物学研究所 控制水稻茎秆粗度、分蘖数、穗粒数、千粒重和产量的理想株型基因npt1及其应用
WO2018215779A1 (en) * 2017-05-25 2018-11-29 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Methods for increasing grain productivity
CN113265422A (zh) * 2021-05-24 2021-08-17 扬州大学 靶向敲除水稻粒型调控基因slg7的方法、水稻粒型调控基因slg7突变体及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969796A (zh) * 2016-06-23 2016-09-28 福建省农业科学院生物技术研究所 一种利用TALENs技术定点突变GW2基因创制水稻高产材料的方法
WO2018215779A1 (en) * 2017-05-25 2018-11-29 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Methods for increasing grain productivity
CN107164347A (zh) * 2017-06-16 2017-09-15 中国科学院遗传与发育生物学研究所 控制水稻茎秆粗度、分蘖数、穗粒数、千粒重和产量的理想株型基因npt1及其应用
CN113265422A (zh) * 2021-05-24 2021-08-17 扬州大学 靶向敲除水稻粒型调控基因slg7的方法、水稻粒型调控基因slg7突变体及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姜登基.小麦株型调控相关基因TαOTUB1s的分离及功能分析.中国优秀硕士学位论文全文数据库 农业科技辑.2021,(第1期),D047-140. *

Also Published As

Publication number Publication date
CN113817767A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
Romero et al. CRISPR/Cas9: development and application in rice breeding
US20210403901A1 (en) Targeted mutagenesis using base editors
CN108165554B (zh) 控制玉米叶宽基因ZmNL4及其应用
CN110862993B (zh) 控制玉米株高和穗位高基因zkm89及其应用
CN113265422B (zh) 靶向敲除水稻粒型调控基因slg7的方法、水稻粒型调控基因slg7突变体及其应用
CN115315516A (zh) 一种提高植物遗传转化和基因编辑效率的方法
CN108642067A (zh) 一种水稻胚乳粉质相关的基因OsHsp70cp-2及其编码蛋白质和应用
CN106754967A (zh) 一种水稻粒型基因OsLG1及其编码蛋白质和应用
CN109912702A (zh) 蛋白质OsARE1在调控植物抗低氮性中的应用
CN114540369A (zh) OsBEE1基因在提高水稻产量中的应用
CN104628839B (zh) 一种水稻胚乳造粉体发育相关蛋白及其编码基因和应用
CN107326035B (zh) 一种调控水稻粒型和叶色的去泛素化酶基因ubp5及其应用
CN112662687A (zh) 推迟玉米花期的方法、试剂盒、基因
Mao et al. Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium hirsutum)
CN113817767B (zh) 利用创制小麦TaOTUB1基因功能缺失纯合突变体提高小麦产量的方法
CN116286873A (zh) 一种普通小麦高千粒重基因以及该基因的构建方法和应用
CN116694799A (zh) 水稻OsAUX5基因中与稻米必需氨基酸积累相关InDel的位点及应用
CN113372424B (zh) 玉米南方锈病抗性基因及其应用
CN105925587B (zh) 一个受低温响应的早期水稻叶绿体发育基因及其检测方法和应用
CN104650204B (zh) 与水稻atp运输和叶绿体发育相关的蛋白及其编码基因和应用
CN117069813A (zh) 孤雌生殖单倍体诱导基因BnDMP及其应用
CN116004570B (zh) 一种水稻叶绿素含量调控基因OsCTR1及其编码蛋白质和应用
CN115806605B (zh) 一种玉米氮高效利用基因及其分子标记和应用
CN114516906B (zh) 玉米与菌根真菌共生相关蛋白及其编码基因与应用
US20220259611A1 (en) Method for increasing yield in plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant