CN113811106B - 壳体的制备方法、壳体以及应用 - Google Patents

壳体的制备方法、壳体以及应用 Download PDF

Info

Publication number
CN113811106B
CN113811106B CN202010529057.6A CN202010529057A CN113811106B CN 113811106 B CN113811106 B CN 113811106B CN 202010529057 A CN202010529057 A CN 202010529057A CN 113811106 B CN113811106 B CN 113811106B
Authority
CN
China
Prior art keywords
ion implantation
shell
layer
ions
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010529057.6A
Other languages
English (en)
Other versions
CN113811106A (zh
Inventor
李可峰
许仁
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weidali Technology Co ltd
Original Assignee
Weidali Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weidali Technology Co ltd filed Critical Weidali Technology Co ltd
Priority to CN202010529057.6A priority Critical patent/CN113811106B/zh
Publication of CN113811106A publication Critical patent/CN113811106A/zh
Application granted granted Critical
Publication of CN113811106B publication Critical patent/CN113811106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

本发明涉及一种壳体的制备方法、壳体以及应用。该壳体的制备方法中,通过第一离子注入处理对壳体基材进行表层注入改性、通过第二离子注入对壳体基材表面的沉积层进行改性处理,能够有效提高壳体的表面硬度和改性层间稳定性。第一离子注入处理中通过非气体元素的离子进行处理,第二离子注入处理中采用气体元素的离子进行处理,能够使沉积层表现出良好的硬度,使沉积层更加稳定,有利于提高壳体表面硬度的稳定性;还能够使沉积层具有更好的加工性能,在后续热处理、加工镀层或者加工装饰层等过程中,热处理更加充分,镀层或装饰层与沉积层的结合力更好,由此得到的多层结构的壳体更加稳定。

Description

壳体的制备方法、壳体以及应用
技术领域
本发明涉及电子元器件技术领域,尤其是涉及一种壳体的制备方法、壳体以及应用。
背景技术
目前,电子设备的使用越来越频繁,在生活节奏不断变快的今天,电子设备几乎成为人们的必备品。支付、导航、拍照摄影等等都离不开电子设备的使用。在这样高强度的使用下,电子设备的壳体的作用就显得尤为重要,性能优良的壳体能够保证在使用过程中外界环境的变换不会对电子设备内部造成不利影响,同时使电子设备保持稳定的外观。
电子设备的外观性能主要是靠安装在电子设备上的壳体来体现。然而,传统的壳体往往会表现为表面硬度欠佳,在使用过程中,电子设备的表面容易出现磨损和划痕等问题,这样会直接导致电子设备的外观质量下降。
发明内容
基于此,有必要提供一种壳体的制备方法,所述制备方法能够有效提高壳体的表面硬度。
另外,还有必要提供一种壳体,所述壳体具有稳定且优良的表面硬度,在使用过程中,壳体的表面不易出现磨损和划痕等问题,能够表现出稳定的外观质量。
除了以上壳体的制备方法和壳体,还有必要提供一种电子设备,所述电子设备包括所述壳体,所述电子设备具有稳定且优良的表面硬度,在日常使用过程中,电子设备的表面不易出现磨损和划痕等问题,能够表现出稳定的外观质量。
本发明解决上述技术问题的具体方案如下:
本发明的一个目的在于提供一种壳体的制备方法,所述制备方法包括如下步骤:
在壳体基材的一个表面进行第一离子注入处理,在所述壳体基材上形成渗入所述壳体基材的第一离子注入层以及凸出于所述壳体基材的沉积层;
在所述沉积层远离所述壳体基材的表面进行第二离子注入处理;
所述第一离子注入处理中注入的离子为非气体元素的离子中的至少一种;
所述第二离子注入处理中注入的离子为气体元素的离子中的至少一种。
在其中一个实施例中,所述第一离子注入处理中注入的离子为硅、硼、金、银、铁、铝、钛、铬、钨、镍以及铜中的至少一种;所述第二离子注入处理中注入的离子为氮和氧中的至少一种。
在其中一个实施例中,所述壳体基材为碳纤维壳体基材、树脂壳体基材、复合材料壳体基材、金属壳体基材或玻璃壳体基材。
在其中一个实施例中,所述第一离子注入处理时,离子注入能为0.1keV~1000keV,离子注入剂量为102ions/cm2~1018ions/cm2
在其中一个实施例中,所述第二离子注入处理时,离子注入能为1keV~1000keV,离子注入剂量为1012ions/cm2~1028ions/cm2
在其中一个实施例中,所述第一离子注入层的厚度为0.01μm~100μm;和/或,
所述沉积层的厚度为0.01μm~100μm;和/或,
所述第二离子注入处理的离子注入深度为0.01μm~100μm。
在其中一个实施例中,所述制备方法还包括如下步骤:对经过所述第二离子注入处理之后的所述壳体基材进行热处理;所述热处理的温度为200℃~1200℃,所述热处理的时间为0.1s~120s。
在其中一个实施例中,所述制备方法还包括如下步骤:所述第二离子注入处理之后,在所述沉积层远离所述壳体基材的表面加工装饰层。
本发明另一个目的在于提供一种壳体,所述壳体包括壳体基材、第一离子注入层、沉积层以及第二离子注入层;所述壳体基材具有相对设置的安装面和离子注入面;
所述第一离子注入层渗入所述壳体基材且所述第一离子注入层的一个表面与所述离子注入面平齐,所述沉积层凸出于所述壳体基材且所述沉积层的一个表面与所述离子注入面平齐;
所述第二离子注入层渗入所述沉积层且所述第二离子注入层的一个表面与所述沉积层远离所述壳体基材的表面平齐。
在其中一个实施例中,所述第一离子注入层的厚度为0.01μm~100μm;和/或,
所述沉积层的厚度为0.01μm~100μm;和/或,
所述第二离子注入层的厚度为0.01μm~100μm。
除了以上目的,本发明还有一个目的在于提供一种电子设备,所述电子设备包括上述任一实施例中所述的制备方法制备得到的壳体,所述第二离子注入处理的表面靠近所述电子设备的外表面;
或者,所述电子设备包括上述任一实施例中所述的壳体,所述沉积层远离所述壳体基材的表面靠近所述电子设备的外表面。
本发明还有一个目的在于提供一种结构件,所述结构件包括上述任一实施例中所述的制备方法制备得到的壳体,所述第二离子注入处理的表面靠近所述结构件的外表面;
或者,所述结构件包括上述任一实施例中所述的壳体,所述沉积层远离所述壳体基材的表面靠近所述结构件的外表面。
上述壳体的制备方法包括如下步骤:在壳体基材的一个表面进行第一离子注入处理,在壳体基材上形成渗入壳体基材的第一离子注入层以及凸出于壳体基材的沉积层;在沉积层远离壳体基材的表面进行第二离子注入处理。第一离子注入处理中注入的离子为非气体元素的离子中的至少一种;第二离子注入处理中注入的离子为气体元素的离子中的至少一种。上述壳体的制备方法中,通过第一离子注入处理对壳体基材进行诱导处理、通过第二离子注入对壳体基材表面的沉积层进行诱导处理,能够有效提高壳体的表面硬度。第一离子注入处理中通过非气体元素的离子进行处理,第二离子注入处理中采用气体元素的离子进行处理,能够使沉积层表现出良好的硬度。同时,第一离子注入处理和第二离子注入处理采用不同的离子进行注入能够使沉积层更加稳定,有利于提高壳体表面硬度的稳定性。另外,第一离子注入处理和第二离子注入处理采用不同的离子进行注入能够使沉积层具有更好的加工性能,在后续热处理、加工镀层或者加工装饰层等过程中,热处理更加充分,镀层或装饰层与沉积层的结合力更好,由此得到的多层结构的壳体更加稳定,在壳体的表面不易出现磨损和划痕,在壳体的内部不易出现分层和开裂等问题。
上述壳体包括壳体基材、第一离子注入层、沉积层以及第二离子注入层;壳体基材具有相对设置的安装面和离子注入面。第一离子注入层渗入壳体基材且第一离子注入层的一个表面与离子注入面平齐,沉积层凸出于壳体基材且沉积层的一个表面与离子注入面平齐。第二离子注入层渗入沉积层且第二离子注入层的一个表面与沉积层远离壳体基材的表面平齐。上述壳体通过壳体基材、第一离子注入层、沉积层与第二离子注入层的配合,使壳体表现出优良的表面硬度。壳体基材与沉积层之间以第一离子注入层为衔接,使得壳体各层之间的配合更加稳定,使壳体表现出稳定且优良的表面硬度。
上述电子设备或结构件包括上述壳体或上述制备方法制备得到的壳体,该电子设备具有优良且稳定的表面硬度。在日常使用过程中,该电子设备不易出现磨损和划痕等问题,能够保持稳定的外观质量。
附图说明
图1为本发明一实施例中壳体的结构示意图。
图中标记说明:
10、壳体;11、壳体基材;1101、第一离子注入层;12、沉积层;1201、第二离子注入层;13、装饰层。
具体实施方式
为了便于理解本发明,下面将参照相关实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明一实施例提供了一种壳体的制备方法,该壳体的制备方法包括如下步骤:在壳体基材的一个表面进行第一离子注入处理,在壳体基材上形成渗入壳体基材的第一离子注入层以及凸出于壳体基材的沉积层。在沉积层远离壳体基材的表面进行第二离子注入处理。第一离子注入处理中注入的离子为非气体元素的离子中的至少一种;第二离子注入处理中注入的离子为气体元素的离子中的至少一种。本实施例中,通过第一离子注入处理对壳体基材进行诱导处理、通过第二离子注入对壳体基材表面的沉积层进行诱导处理,能够有效提高壳体的表面硬度。第一离子注入处理中通过非气体元素的离子进行处理,第二离子注入处理中采用气体元素的离子进行处理,能够使沉积层表现出良好的硬度。同时,第一离子注入处理和第二离子注入处理采用不同的离子进行注入能够使沉积层更加稳定,有利于提高壳体表面硬度的稳定性。另外,同时,第一离子注入处理和第二离子注入处理采用不同的离子进行注入能够使沉积层具有更好的加工性能,在后续热处理、加工镀层或者加工装饰层等过程中,热处理更加充分,镀层或装饰层与沉积层的结合力更好,由此得到的多层结构的壳体更加稳定,在壳体的表面不易出现磨损和划痕,在壳体的内部不易出现分层和开裂等问题。
本发明中的壳体可以用于制备电子设备中的外壳、防护盖板、功能性部件等,例如,本发明中的壳体的具体形状可以是板状、框形、网状、四周具有凸边的槽状等,如2D、2.5D、3D或者多曲面异形形状,也即壳体的具体应用可以根据需要对壳体基材进行加工成型获得所需的任何形状。
在一个具体的示例中,第一离子注入处理中注入的离子为硅、硼、金、银、铁、铝、钛、铬、钨、镍以及铜中的至少一种;第二离子注入处理中注入的离子为氮和氧中的至少一种。
在一个具体的示例中,壳体基材为碳纤维壳体基材、树脂壳体基材、复合材料壳体基材、金属壳体基材或玻璃壳体基材。
可以理解的是,在对壳体基材进行离子注入处理之前,对壳体基材进行预处理。对壳体基材进行预处理,去除壳体基材表面的杂质。通过预处理去除壳体基材表面的灰尘、油污、手印等杂质、或表层的不均质层,便于对壳体基材进行后续加工,有利于提高后续加工的精度。预处理包括清洗、抛光等步骤。可以理解的是,预处理还包括外形加工等操作,先按设计要求将壳体基材加工成相应的形状,再进行后续加工。
在一个具体的示例中,第一离子注入处理时,离子注入能为0.1keV~1000keV,离子注入剂量为102ions/cm2~1018ions/cm2。优选地,第一离子注入处理时,离子注入剂量为105ions/cm2~1015ions/cm2,进一步地,离子注入剂量为106ions/cm2~1010ions/cm2,更进一步地,离子注入剂量为108ions/cm2~1010ions/cm2。在进行第一离子注入处理时,离子注入剂量可以是但不限定为102ions/cm2、103ions/cm2、104ions/cm2、105ions/cm2、106ions/cm2、107ions/cm2、108ions/cm2、109ions/cm2、1010ions/cm2、1012ions/cm2、1015ions/cm2
在一个具体的示例中,第二离子注入处理时,离子注入能为1keV~1000keV,离子注入剂量为1012ions/cm2~1028ions/cm2。优选地,第二离子注入处理时,离子注入剂量为1013ions/cm2~1026ions/cm2,进一步地,离子注入剂量为1015ions/cm2~1022ions/cm2,更进一步地,离子注入剂量为1016ions/cm2~1018ions/cm2。在第二离子注入处理时,离子注入剂量可以是但不限定为1011ions/cm2、1012ions/cm2、1013ions/cm2、1014ions/cm2、1015ions/cm2、1016ions/cm2、1017ions/cm2、1018ions/cm2、1019ions/cm2、1022ions/cm2
在一个具体的示例中,第一离子注入处理时的离子注入剂量小于第二离子注入处理时的离子注入剂量。第一离子注入处理时的离子注入剂量小于第二离子注入处理时的离子注入剂量能够使两次离子注入处理的诱导作用更加充分,对沉积层的离子注入改性更加彻底,有利于进一步提高壳体的表面硬度。同时,第一离子注入处理时的离子注入剂量小于第二离子注入处理时的离子注入剂量能够减少在第一离子注入处理时对壳体基材造成损伤,继而对壳体的稳定性和均匀性造成不利的影响。
在一个具体的示例中,第一离子注入层的厚度为0.01μm~100μm。沉积层的厚度为0.01μm~100μm。第二离子注入处理的离子注入深度为0.01μm~100μm。
在一个具体的示例中,第一离子注入层的厚度为0.1μm~50μm。具体地,第一离子注入层的厚度可以是但不限定为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、1.8μm、2μm、2.5μm、2.8μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、60μm、70μm、80μm、90μm。沉积层的厚度为0.1μm~50μm。具体地,沉积层的厚度可以是但不限定为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、1.8μm、2μm、2.5μm、2.8μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、60μm、70μm、80μm、90μm。第二离子注入处理的离子注入深度为0.1μm~50μm。具体地,第二离子注入处理的离子注入深度可以是但不限定为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、1.8μm、2μm、2.5μm、2.8μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、60μm、70μm、80μm、90μm。
在一个具体的示例中,第二离子注入处理的离子注入深度小于沉积层的厚度。
在另一个具体的示例中,第二离子注入处理的离子注入深度大于沉积层的厚度。
在一个具体的示例中,制备方法还包括加工镀层的步骤。加工镀层时,可以在经过第二离子注入处理之后的壳体基材的至少一个表面上加工镀层。在沉积层的离子注入处理的表面加工镀层,有利于进一步提高壳体的表面硬度;在与沉积层的离子注入处理的表面相对的表面加工镀层,有利于提高壳体的整体装饰特性。加工镀层的方法可以采用常规的真空电镀的方法,镀层可以为氮化物镀层、碳化物镀层以及碳镀层中的一种或几种。具体地,镀层的厚度为0~3μm。
在一个具体的示例中,制备方法还包括如下步骤:第二离子注入处理之后,在壳体基材远离沉积层的基材表面加工氧化物镀层(比如氧化硅镀层)和/或油墨层。油墨层可以是聚氨酯层,厚度为0~100μm,能够提高壳体的强度以及防爆性能。
可以理解的是,镀层、沉积层、装饰层三者的位置关系可以是:镀层位于壳体基材与装饰层之间,或者镀层位于沉积层远离壳体基材一侧,或者镀层位于沉积层远离壳体基材一侧且具有装饰功能。
在一个具体的示例中,制备方法还包括如下步骤:对经过第二离子注入处理之后的壳体基材进行热处理;热处理的温度为200℃~1200℃,热处理的时间为0.1s~120s。热处理的温度可以是但不限定为250℃、300℃、350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃、800℃、900℃、1000℃、1100℃、。热处理的时间可以是但不限定为0.5s、1s、2s、3s、4s、5s、10s、20s、30s、40s、50s、60s、70s、80s、90s、100s、110s。热处理的次数可以是一次,也可以是多次。
在一个具体的示例中,制备方法还包括在热处理之后,在沉积层的离子注入处理的表面加工抗指纹层的步骤。消费者的触摸或触控会在壳体表面留下指纹,影响壳体的外观。因此,热处理之后,加工抗指纹层,有利于保持壳体外表的美观。可以理解的是,在壳体的制备过程中,为了使壳体表现为其他的外观性能,比如需要壳体具有防眩光性能,可以在沉积层的离子注入的表面形成防眩光层,或在基材外表面先制作防眩光层后再做离子注入等处理。
在一个具体的示例中,在热处理之后,在沉积层的离子注入处理的表面加工抗指纹层和/或防眩光层。
请参见图1,本发明另一实施例提供了一种壳体10,该壳体10包括壳体基材11、第一离子注入层1101、沉积层12以及第二离子注入层1201;壳体基材11具有相对设置的安装面和离子注入面。第一离子注入层1101渗入壳体基材11且第一离子注入层1101的一个表面与离子注入面平齐,沉积层12凸出于壳体基材11且沉积层12的一个表面与离子注入面平齐。第二离子注入层1201渗入沉积层12且第二离子注入层1201的一个表面与沉积层12远离壳体基材11的表面平齐。在沉积层12远离壳体基材11的表面设有装饰层13。
需要说明的是,壳体基材的安装面是指在将壳体安装到电子设备预成品上时,壳体与电子设备预成品接触的表面。
在一个具体的示例中,第一离子注入层1101的厚度为0.1μm~100μm。沉积层12的厚度为0.1μm~100μm。第二离子注入层1201的厚度为0.1μm~100μm。
在一个具体的示例中,第一离子注入层1101的厚度为0.1μm~50μm。具体地,第一离子注入层1101的厚度可以是但不限定为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、1.8μm、2μm、2.5μm、2.8μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、60μm、70μm、80μm、90μm。沉积层12的厚度为0.1μm~50μm。具体地,沉积层12的厚度可以是但不限定为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、1.8μm、2μm、2.5μm、2.8μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、60μm、70μm、80μm、90μm。第二离子注入处理的离子注入深度为0.1μm~50μm。具体地,第二离子注入处理的离子注入深度可以是但不限定为0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、1.8μm、2μm、2.5μm、2.8μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、7μm、8μm、9μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、60μm、70μm、80μm、90μm。
本实施例中的壳体10通过壳体基材11、第一离子注入层1101、沉积层12与第二离子注入层1201的配合,使壳体10表现出优良的表面硬度。壳体基材11与沉积层12之间以第一离子注入层1101为衔接,使得壳体10各层之间的配合更加稳定,使壳体10表现出稳定且优良的表面硬度。
本发明还有一个实施例提供了一种电子设备,该电子设备包括上述制备方法制备得到的壳体,具体地,该电子设备的壳体为上述制备方法制备得到的壳体,第二离子注入处理的表面靠近电子设备的外表面。
本发明还有一个实施例提供了另外一种电子设备,该电子设备包括上述壳体10,具体地,该电子设备的壳体为上述壳体10,沉积层12远离壳体基材11的表面靠近电子设备的外表面。
本发明还有一个实施例提供了一种结构件,该结构件包括上述制备方法制备得到的壳体,具体地,该结构件的壳体为上述制备方法制备得到的壳体,第二离子注入处理的表面靠近结构件的外表面。
本发明还有一个实施例提供了另外一种结构件,该结构件包括上述壳体10,具体地,该结构件的壳体为上述壳体10,沉积层12远离壳体基材11的表面靠近结构件的外表面。
以下为具体实施例。
实施例1
本实施例中壳体基材为复合材料壳体基材。本实施例中壳体的制备方法为:
S01,对壳体基材进行预处理:通过外形加工、清洗对壳体基材进行预处理。
S02,在壳体基材的一个表面进行第一离子注入处理,在壳体基材上形成渗入壳体基材的第一离子注入层以及凸出于壳体基材的沉积层。第一离子注入处理的条件为:注入离子为铬离子,离子注入能100keV,离子注入剂量为1012ions/cm2。第一离子注入处理的离子注入深度为2μm,沉积层的厚度为1.2μm。
S03,在沉积层远离壳体基材的表面进行第二离子注入处理:第二离子注入处理的条件为:注入离子为氮离子,离子注入能200keV,离子注入剂量为1018ions/cm2。第二离子注入处理的离子注入深度为1μm。获得本实施例的壳体。
实施例2
本实施例中壳体基材为复合材料壳体基材。本实施例中壳体的制备方法为:
S01,对壳体基材进行预处理:通过外形加工、清洗对壳体基材进行预处理。
S02,在壳体基材的一个表面进行第一离子注入处理,在壳体基材上形成渗入壳体基材的第一离子注入层以及凸出于壳体基材的沉积层。第一离子注入处理的条件为:注入离子为铬离子,离子注入能100keV,离子注入剂量为1012ions/cm2。第一离子注入处理的离子注入深度为2μm,沉积层的厚度为1.2μm。
S03,在沉积层远离壳体基材的表面进行第二离子注入处理:第二离子注入处理的条件为:注入离子为氮离子,离子注入能160keV,离子注入剂量为1018ions/cm2。第二离子注入处理的离子注入深度为1μm。
S04,热处理,对经过第二离子注入处理之后的壳体基材进行热处理,热处理的温度为1000℃,热处理的时间为1s。得到本实施例中的壳体。
实施例3
本实施例中壳体基材为复合材料壳体基材。本实施例中壳体的制备方法为:
S01,对壳体基材进行预处理:通过外形加工、清洗对壳体基材进行预处理。
S02,在壳体基材的一个表面进行第一离子注入处理,在壳体基材上形成渗入壳体基材的第一离子注入层以及凸出于壳体基材的沉积层。第一离子注入处理的条件为:注入离子为铬离子,离子注入能100keV,离子注入剂量为1012ions/cm2。第一离子注入处理的离子注入深度为2μm,沉积层的厚度为1.2μm。
S03,在沉积层远离壳体基材的表面进行第二离子注入处理:第二离子注入处理的条件为:注入离子为氮离子,离子注入能160keV,离子注入剂量为1018ions/cm2。第二离子注入处理的离子注入深度为1μm。
S04,加工装饰层,第二离子注入处理之后,在沉积层远离壳体基材的表面加工装饰层。采用PVD氮化铬镀层加工装饰层,装饰层的厚度为0.8μm。加工装饰层之后得到本实施例中的壳体。
实施例4
本实施例中壳体基材为透明树脂壳体基材。本实施例中壳体的制备方法为:
S01,对壳体基材进行预处理:通过外形加工、清洗等对壳体基材进行预处理。
S02,在壳体基材的一个表面进行第一离子注入处理,在壳体基材上形成渗入壳体基材的第一离子注入层以及凸出于壳体基材的沉积层。第一离子注入处理的条件为:注入离子为硅离子,离子注入能50keV,离子注入剂量为1010ions/cm2。第一离子注入处理的离子注入深度为0.06μm,沉积层的厚度为0.06μm。
S03,在沉积层远离壳体基材的表面进行第二离子注入处理:第二离子注入处理的条件为:注入离子为氮氧混合离子,离子注入能120keV,离子注入剂量为1017ions/cm2。第二离子注入处理的离子注入深度为0.06μm。
S04,热处理,对经过第二离子注入处理之后的壳体基材进行热处理,热处理的温度为1000℃,热处理的时间为1s。
S05,加工装饰层,热处理之后,在壳体基材远离沉积层的表面加工装饰层。采用聚氨酯加工装饰层,装饰层的厚度为10μm。加工装饰层之后得到本实施例中的壳体。
实施例5
与实施例2相比,实施例5的不同之处在于,第一离子注入处理中注入的离子为铝,第二离子注入处理中注入的离子为氮、氧混合离子。
实施例6
与实施例3相比,实施例6的不同之处在于,所用壳体基材为玻璃壳体基材。
对比例1
与实施例1相比,对比例1的不同之处在于,第一离子注入处理中注入的离子为氮离子,第二离子注入处理中注入的离子为氧离子。
对比例2
与实施例1相比,对比例2的不同之处在于,第一离子注入处理中注入的离子为铬离子,第二离子注入处理中注入的离子为铝离子。
测试例
对实施例1~6、对比例1~2中得到的壳体进行表面硬度测试。测试方法为AntonPaar纳米硬度仪测试;0.5mN最大载荷载;1mN/min加载速率,测试结果如下表所示。
表面硬度检测结果
实施例1 4Gpa
实施例2 8Gpa
实施例3 11Gpa
实施例4 7Gpa
实施例5 7Gpa
实施例6 11Gpa
对比例1 0.5Gpa
对比例2 3Gpa
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

1.一种壳体的制备方法,其特征在于:包括如下步骤:
在壳体基材的一个表面进行第一离子注入处理,在所述壳体基材上形成渗入所述壳体基材的第一离子注入层以及凸出于所述壳体基材的沉积层,所述沉积层的厚度为0.01μm~100μm;
在所述沉积层远离所述壳体基材的表面进行第二离子注入处理;
所述第一离子注入处理中注入的离子为非气体元素的离子中的至少一种;
所述第二离子注入处理中注入的离子为气体元素的离子中的至少一种。
2.如权利要求1所述的壳体的制备方法,其特征在于:所述第一离子注入处理中注入的离子为硅、硼、金、银、铁、铝、钛、铬、钨、镍以及铜中的至少一种;所述第二离子注入处理中注入的离子为氮和氧中的至少一种。
3.如权利要求1所述的壳体的制备方法,其特征在于:所述壳体基材为碳纤维壳体基材、树脂壳体基材、复合材料壳体基材、金属壳体基材或玻璃壳体基材。
4.如权利要求1-3中任一项所述的壳体的制备方法,其特征在于:所述第一离子注入处理时,离子注入能为0.1keV~1000keV,离子注入剂量为102ions/cm2~1018ions/cm2
5.如权利要求1-3中任一项所述的壳体的制备方法,其特征在于:所述第二离子注入处理时,离子注入能为1keV~1000keV,离子注入剂量为1012ions/cm2~1028ions/cm2
6.如权利要求1-3中任一项所述的壳体的制备方法,其特征在于:所述第一离子注入层的厚度为0.01μm~100μm;和/或,
所述第二离子注入处理的离子注入深度为0.01μm~100μm。
7.如权利要求1-3中任一项所述的壳体的制备方法,其特征在于:所述制备方法还包括如下步骤:对经过所述第二离子注入处理之后的所述壳体基材进行热处理;所述热处理的温度为200℃~1200℃,所述热处理的时间为0.1s~120s。
8.如权利要求1-3中任一项所述的壳体的制备方法,其特征在于:所述制备方法还包括如下步骤:所述第二离子注入处理之后,在所述沉积层远离所述壳体基材的表面加工装饰层。
9.一种壳体,其特征在于:包括壳体基材、第一离子注入层、沉积层以及第二离子注入层;所述壳体基材具有相对设置的安装面和离子注入面,所述壳体采用权利要求1-8任一项所述壳体的制备方法制备得到;
所述第一离子注入层渗入所述壳体基材且所述第一离子注入层的一个表面与所述离子注入面平齐,所述沉积层凸出于所述壳体基材且所述沉积层的一个表面与所述离子注入面平齐;
所述第二离子注入层渗入所述沉积层且所述第二离子注入层的一个表面与所述沉积层远离所述壳体基材的表面平齐。
10.如权利要求9所述的壳体,其特征在于:所述第一离子注入层的厚度为0.01μm~100μm;和/或,
所述第二离子注入层的厚度为0.01μm~100μm。
11.一种电子设备,其特征在于:包括权利要求1-8中任一项所述的制备方法制备得到的壳体,所述第二离子注入处理的表面靠近所述电子设备的外表面。
12.一种结构件,其特征在于:包括权利要求1-8中任一项所述的制备方法制备得到的壳体,所述第二离子注入处理的表面靠近所述结构件的外表面。
CN202010529057.6A 2020-06-11 2020-06-11 壳体的制备方法、壳体以及应用 Active CN113811106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010529057.6A CN113811106B (zh) 2020-06-11 2020-06-11 壳体的制备方法、壳体以及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010529057.6A CN113811106B (zh) 2020-06-11 2020-06-11 壳体的制备方法、壳体以及应用

Publications (2)

Publication Number Publication Date
CN113811106A CN113811106A (zh) 2021-12-17
CN113811106B true CN113811106B (zh) 2023-06-27

Family

ID=78943823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010529057.6A Active CN113811106B (zh) 2020-06-11 2020-06-11 壳体的制备方法、壳体以及应用

Country Status (1)

Country Link
CN (1) CN113811106B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684512A (ja) * 1992-09-01 1994-03-25 Nippondenso Co Ltd リチウム二次電池用負極
WO1995013024A1 (en) * 1993-11-09 1995-05-18 Devices For Vascular Intervention, Inc. Improved cutter device
JPH0827564A (ja) * 1994-07-12 1996-01-30 Kobe Steel Ltd 表面硬化処理方法および表面硬化部材
JPH08193266A (ja) * 1995-01-13 1996-07-30 Nippon Steel Corp 超硬合金の表面処理方法
JPH0946956A (ja) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd モータのピボットスラスト軸受システム
JP2007238378A (ja) * 2006-03-09 2007-09-20 Central Glass Co Ltd 高破壊靱性を有するガラス板およびその製造方法
CN102345103A (zh) * 2011-09-23 2012-02-08 佳木斯大学 镁锂合金表面钛改性层的制备方法
CN102978579A (zh) * 2012-12-11 2013-03-20 上海工程技术大学 一种轴承钢表面Ta薄膜的制备方法
JP2016119426A (ja) * 2014-12-23 2016-06-30 学校法人 名古屋電気学園 表面加工方法及び構造体の製造方法
CN110079779A (zh) * 2019-04-15 2019-08-02 华南理工大学 一种高性能陶瓷涂层及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791034B2 (ja) * 1996-02-08 2006-06-28 住友電気工業株式会社 耐磨硬質膜とその製造法
US6209481B1 (en) * 1996-08-30 2001-04-03 University Of Maryland Baltimore County Sequential ion implantation and deposition (SIID) system
CN102453857A (zh) * 2010-10-28 2012-05-16 鸿富锦精密工业(深圳)有限公司 非晶合金壳体及其制造方法
EP2948978A4 (en) * 2014-04-24 2015-12-16 Halliburton Energy Services Inc MANIPULATION OF THE OPTICAL PROPERTIES OF AN INTEGRATED CALCULATION ELEMENT THROUGH ION IMPLANTATION
CN107620051B (zh) * 2017-09-04 2021-06-22 武汉光谷创元电子有限公司 覆铜板及其制造方法
CN108588651A (zh) * 2017-12-29 2018-09-28 深圳市旺鑫精密工业有限公司 一种脉冲溅射镀膜工艺
CN110230026B (zh) * 2019-06-26 2021-01-29 西安交通大学 一种提高铌合金表面抗氧化能力的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684512A (ja) * 1992-09-01 1994-03-25 Nippondenso Co Ltd リチウム二次電池用負極
WO1995013024A1 (en) * 1993-11-09 1995-05-18 Devices For Vascular Intervention, Inc. Improved cutter device
JPH0827564A (ja) * 1994-07-12 1996-01-30 Kobe Steel Ltd 表面硬化処理方法および表面硬化部材
JPH08193266A (ja) * 1995-01-13 1996-07-30 Nippon Steel Corp 超硬合金の表面処理方法
JPH0946956A (ja) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd モータのピボットスラスト軸受システム
JP2007238378A (ja) * 2006-03-09 2007-09-20 Central Glass Co Ltd 高破壊靱性を有するガラス板およびその製造方法
CN102345103A (zh) * 2011-09-23 2012-02-08 佳木斯大学 镁锂合金表面钛改性层的制备方法
CN102978579A (zh) * 2012-12-11 2013-03-20 上海工程技术大学 一种轴承钢表面Ta薄膜的制备方法
JP2016119426A (ja) * 2014-12-23 2016-06-30 学校法人 名古屋電気学園 表面加工方法及び構造体の製造方法
CN110079779A (zh) * 2019-04-15 2019-08-02 华南理工大学 一种高性能陶瓷涂层及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
注入能量对304不锈钢离子注N表面改性层组织与性能的影响;金淼;邹树梁;任宇宏;唐德文;吕希建;;材料保护(第05期);全文 *
钛离子注入对AZ31镁合金表面力学性能及耐蚀性的影响;谭雪霏;张新;赵春波;;轻合金加工技术(第08期);全文 *

Also Published As

Publication number Publication date
CN113811106A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US20110151120A1 (en) Surface treating method for making the same
CN113811106B (zh) 壳体的制备方法、壳体以及应用
US8507107B2 (en) Electronic device housing and method for making the same
US20130143065A1 (en) Method for electromagnetic shielding and product made by same
CN113199825A (zh) 壳体组件及其制作方法、电子设备
CN115243884A (zh) 电磁波透过性金属光泽构件、及其制造方法
JP2022088457A (ja) 窒化モリブデンベースの被覆を用いる摩耗及び/又は摩擦の低減
US8431239B2 (en) Article and method for manufacturing same
US20120164475A1 (en) Coated article and method for manufacturing coated article
WO2021182380A1 (ja) 電磁波透過性積層部材、及びその製造方法
CN111116237A (zh) 一种手机后盖用3d氧化锆陶瓷的生产工艺
CN101890828A (zh) 不导电且具金属质感的塑料件
CN113800754B (zh) 柔性壳体及其制备方法和应用
CN111559151A (zh) 3d复合板材及其制备方法
CN114247884A (zh) 金属部件的表面处理
KR20060121334A (ko) 플라스틱성형품의 표면코팅방법 및 이를 이용한 코팅층
CN111246692A (zh) 壳体、壳体的制备方法及具有该壳体的电子装置
CN113811107B (zh) 壳体的制备方法、壳体以及电子产品
US8357452B2 (en) Article and method for manufacturing same
US20090163103A1 (en) Multi-layered molded article with emi protection
JP4096373B2 (ja) 硬質被膜とその製造方法
JP4994078B2 (ja) 装飾部品
JP2001301400A (ja) 硬質装飾被膜を有する基材及びその製造方法
US8545990B2 (en) Coated article and method for manufacturing
US6682674B2 (en) Method of making a shield can

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 437300 Zhonghuo Optical Valley Industrial Park, Xianning Economic Development Zone, Hubei Province

Applicant after: Weidali Technology Co.,Ltd.

Address before: 437300 Zhonghuo Optical Valley Industrial Park, Xianning Economic Development Zone, Hubei Province

Applicant before: WEIDALI INDUSTRY (CHIBI) CO.,LTD.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant