CN113788685A - 一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法 - Google Patents

一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法 Download PDF

Info

Publication number
CN113788685A
CN113788685A CN202111049078.9A CN202111049078A CN113788685A CN 113788685 A CN113788685 A CN 113788685A CN 202111049078 A CN202111049078 A CN 202111049078A CN 113788685 A CN113788685 A CN 113788685A
Authority
CN
China
Prior art keywords
silicon carbide
cordierite
power generation
thermal power
solar thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111049078.9A
Other languages
English (en)
Inventor
陈健
祝明
黄政仁
马宁宁
陈文辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202111049078.9A priority Critical patent/CN113788685A/zh
Publication of CN113788685A publication Critical patent/CN113788685A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的原料组成包括碳化硅和堇青石;优选,包括:60~90wt%碳化硅,10~40wt%堇青石,各组分含量之和为100wt%。

Description

一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体 材料及其制备方法
技术领域
本发明涉及一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法,属于太阳能热发电吸热体材料领域。
背景技术
当今世界能源危机日益加剧,如何开发和使用新能源,并实现低碳减排,成为了世界各国关注的问题。太阳能是一种清洁可再生能源,在解决能源危机问题上是一种较佳选择。因此如何利用太阳能成为了人类需要共同面对的课题。
采用太阳能热发电技术可以有效地将太阳能转化为可供人类使用的电能。太阳能热发电技术主要可分为塔式、抛物线槽式、线性菲涅耳式、抛物面碟式等四种系统。其中,塔式太阳能热发电系统被各国重视而大力发展,这是因为该系统具有聚光比高(200-1000kw/m2)、热力循环温度高、系统简单等优势。
塔式太阳能热发电系统的组成主要包括集热系统、热传输与交换系统、发电系统三大部分,具体包括:定日镜、吸热器、塔架、蓄热器、传热器和发电机组。塔式太阳能热发电系统的工作原理为:通过定日镜将太阳光聚集到塔顶的吸热器上,吸热器吸收太阳辐射能量,在其腔体内产生高温,再将通过传热工质实现热循环,将热能转换为电能。
吸热器是塔式太阳能热发电系统中的关键部件,它决定着整个热发电系统的发电效率,因此对此展开研究具有重要意义。吸热器材料需要具有高太阳能吸收率、高热导率、良好的抗热震性能和抗氧化性能。碳化硅陶瓷可以符合上述要求,但是碳化硅陶瓷的烧结难度极高,固相烧结碳化硅陶瓷需要超过2000℃的高温,这大大提高了其大规模应用的成本。采用液相烧结碳化硅的办法可以解决这一问题,因为高温下形成的液相可以起到加速碳化硅传质的效果,采用这种办法可以实现在较低温度下快速烧结碳化硅陶瓷的目的。
发明内容
基于碳化硅陶瓷难以烧结的问题,本发明旨在用过引入堇青石材料作为液相烧结助剂以促进碳化硅陶瓷烧结。本发明旨在提供一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法。
一方面,本发明提供了一种堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的原料组成包括碳化硅和堇青石;优选,包括:60~90wt%碳化硅,10~40wt%堇青石,各组分含量之和为100wt%。
本发明中,堇青石材料具有较低的软化温度,可以在较低的温度下得到堇青石液相,并且其与碳化硅之间具有较好的浸润性,这使得碳化硅可以在堇青石液相中快速传质,从而可以在较低的温度下、较短的保温时间下得到高致密的堇青石/碳化硅复相陶瓷。
较佳的,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为1.8~2.97g·cm-3,相对致密度为55%~99.5%。
较佳的,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的抗弯强度为50~420MPa,热导率为5~30W·(m·K)-1
较佳的,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的太阳能吸收率为0.65~0.8,红外发射率为0.65~0.85,光谱选择性为0.8~1.2。
另一方面,本发明提供了一种堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的制备方法,包括:
(1)将碳化硅粉体和堇青石粉体混合,得到堇青石/碳化硅复相陶瓷粉体;;
(2)将所得堇青石/碳化硅复相陶瓷粉体置于石墨模具中,在干压压机上进行预压,随后进行热压烧结,得到所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。
较佳的,所述碳化硅粉体粒径为0.2~2μm,堇青石粉体粒径为200~400目。
较佳的,将碳化硅粉体和堇青石粉体混合,再加入溶剂,并球磨混合,得到混合均匀的浆料;将所得浆料进行烘干,随后破碎、过筛,和造粒,得到所述堇青石/碳化硅复相陶瓷粉体。
较佳的,所述溶剂为水或/和无水乙醇;所述浆料的固含量为40~60wt%,优选为50~60wt%。
较佳的,所述球磨混合的转速为200~400转/分钟,时间为12~48小时。
较佳的,所述烘干的温度为60~90℃时间为6~24小时。
较佳的,所述过筛的目数为60~120目。
较佳的,所述预压的压力为10~25MPa。
较佳的,所述热压烧结的气氛为氩气或真空、压力为10~50MPa、温度为1100~1700℃,时间为1~3小时;优选地,所述热压烧结的压力为30~50MPa,所述热压烧结的升温速率为5~20℃/分钟。
有益效果:
本发明采用热压烧结的办法,将碳化硅和堇青石复合,在较低的温度下制备得到了堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。该方法解决了碳化硅常规烧结温度过高的问题(往往需要超过2000℃),在1650℃下便得到材料,并且所述材料具有极高的抗弯强度,达到了411.4MPa,且具有较好的光学性能和较高的热导率,有望在块体太阳能热发电吸热体上展开应用。
附图说明
图1为各样品的太阳能吸收率变化图;
图2为各样品的红外发射率变化图;
图3为各样品的光谱选择性变化图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本公开中,低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料组成包括碳化硅和堇青石;优选包括60~90wt%碳化硅,10~40wt%堇青石,各组分含量之和为100wt%。本发明中,在碳化硅中加入特定含量堇青石制成复相陶瓷作为太阳能热发电吸热体材料,堇青石的加入除了利用其具有较低软化温度实现其低温烧结外,因为堇青石由氧化物组成,其在氧化环境下使用无限制。将其与碳化硅复合,使得碳化硅颗粒包裹于堇青石中,从而增加样品整体的抗氧化性。此外堇青石还具有较低的密度,这使得复相陶瓷作为太阳能热发电吸热体材料具有轻量化的特性。
其中,碳化硅具有高太阳能吸收率、高热导率等优势性能,但是其难以烧结,烧结往往要求超过2000℃,本发明中采用液相烧结的办法,选择堇青石材料作为液相烧结助剂。因为堇青石材料具有较低的软化温度(约为1400℃),可以在较低的温度下得到堇青石液相,并且其与碳化硅之间具有较好的浸润性,这使得碳化硅可以在堇青石液相中快速传质,从而可以在较低的温度下、较短的保温时间下得到高致密的堇青石/碳化硅复相陶瓷。
本发明采用热压烧结的办法,将碳化硅和堇青石复合,在较低的温度下制备得到了堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。
以下示例性地说明所述低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的制备方法。
称取适量碳化硅粉体和堇青石粉体,在混合粉体中加入适量溶剂和一定质量的碳化硅球磨球置于行星球磨机上球磨混合12-48小时,优选可为24-48小时,得到均匀混合浆料。所述碳化硅含量粉体占比可为60-90wt%,堇青石粉体含量占比可为10-40wt%。所述碳化硅粉体粒径可为0.2-2μm,堇青石粉体粒径可为200-400目。所述适量溶剂为水或无水乙醇。所述均匀混合浆料的固含量可为40-60wt%,优选可为50-60wt%。
将均匀混合浆料置于烘箱中,采用60-100℃温度进行干燥,优选可为70-90℃;将干燥完成浆料经过破碎、过筛等步骤得到堇青石/碳化硅复相陶瓷粉体。所述干燥时间可为6-24小时,可优选可为12-24小时。所述过筛目数可为60-120目。
称取适量所述堇青石/碳化硅粉体,置于石墨坩埚中,在干压压机上进行预压,预压压力可为10-25MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加一定压力,在较低的温度下烧结,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述热压烧结的压力可为10-50MPa,可优选为30-50MPa。所述热压烧结温度可为1100-1700℃,保温时间为1-3小时,烧结过程中升温速率可为5-20℃/min。所述热压烧结气氛可为氩气或真空。
在本发明中,采用阿基米德排水法测得低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度可为1.8~2.97g·cm-3
在本发明中,低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的相对密度可为55~99.5%。
在本发明中,采用三点抗弯法测得低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的抗弯强度为50~420MPa。
在本发明中,采用紫外分光光度计和傅里叶红外光谱仪分别测的低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的太阳能吸收率可为0.65~0.8,红外发射率可为0.65~0.85,并计算得到光谱选择性可为0.8~1.2。
在本发明中,采用激光热导仪测得低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的热导率为5~30W·(m·K)-1
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
称取碳化硅粉体70g,堇青石粉体30g,加入一定量无水乙醇作为溶剂,再加入100g碳化硅球磨球,使用行星球磨机球磨24小时,使得粉体粒径降低并混合均匀,得到固含量优选为50-60wt%的均匀混合浆料。将所述均匀混合浆料置于烘箱中烘干,干燥条件为70℃,时间为12小时;随后将上述干燥浆料破碎、过100目筛得到造粒完成的堇青石/碳化硅复相陶瓷粉体。称取适量所述造粒完成粉体置于石墨坩埚中,在干压压机上进行预压,预压压力为15MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加40MPa压力,在1450℃下烧结,升温速率为10℃/min,保温时间为2小时,烧结气氛为氩气气氛,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为2.56g/cm-3,相对密度为85.45%,抗弯强度为219.52MPa,太阳能吸收率为0.781,红外发射率为0.724,光谱选择性为1.08,热导率为11.553W·(m·K)-1
实施例2
称取碳化硅粉体70g,堇青石粉体30g,加入一定量无水乙醇作为溶剂,再加入100g碳化硅球磨球,使用行星球磨机球磨24小时,使得粉体粒径降低并混合均匀,得到固含量优选为50-60wt%的均匀混合浆料。将所述均匀混合浆料置于烘箱中烘干,干燥条件为70℃,时间为12小时;随后将上述干燥浆料破碎、过100目筛得到造粒完成的堇青石/碳化硅复相陶瓷粉体。称取适量所述造粒完成粉体置于石墨坩埚中,在干压压机上进行预压,预压压力为15MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加40MPa压力,在1550℃下烧结,升温速率为10℃/min,保温时间为2小时,烧结气氛为氩气气氛,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为2.79g/cm-3,相对密度为93.13%,抗弯强度为260.54MPa,太阳能吸收率为0.778,红外发射率为0.691,光谱选择性为1.13。
实施例3
称取碳化硅粉体70g,堇青石粉体30g,加入一定量无水乙醇作为溶剂,再加入100g碳化硅球磨球,使用行星球磨机球磨24小时,使得粉体粒径降低并混合均匀,得到固含量优选为50-60wt%的均匀混合浆料。将所述均匀混合浆料置于烘箱中烘干,干燥条件为70℃,时间为12小时;随后将上述干燥浆料破碎、过100目筛得到造粒完成的堇青石/碳化硅复相陶瓷粉体。称取适量所述造粒完成粉体置于石墨坩埚中,在干压压机上进行预压,预压压力为15MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加40MPa压力,在1650℃下烧结,升温速率为10℃/min,保温时间为2小时,烧结气氛为氩气气氛,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为2.97g/cm-3,相对密度为99.08%,抗弯强度为411.44MPa,太阳能吸收率为0.778,红外发射率为0.677,光谱选择性为1.15,热导率为25.049W·(m·K)-1
实施例4
称取碳化硅粉体70g,堇青石粉体30g,加入一定量无水乙醇作为溶剂,再加入100g碳化硅球磨球,使用行星球磨机球磨24小时,使得粉体粒径降低并混合均匀,得到固含量优选为50-60wt%的均匀混合浆料。将所述均匀混合浆料置于烘箱中烘干,干燥条件为70℃,时间为12小时;随后将上述干燥浆料破碎、过100目筛得到造粒完成的堇青石/碳化硅复相陶瓷粉体。称取适量所述造粒完成粉体置于石墨坩埚中,在干压压机上进行预压,预压压力为15MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加40MPa压力,在1350℃下烧结,升温速率为10℃/min,保温时间为2小时,烧结气氛为氩气气氛,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为2.3g/cm-3,相对密度为76.97%,抗弯强度为181.51MPa,太阳能吸收率为0.729,红外发射率为0.778,光谱选择性为0.94,热导率为8.341W·(m·K)-1
实施例5
称取碳化硅粉体80g,堇青石粉体20g,加入一定量无水乙醇作为溶剂,再加入100g碳化硅球磨球,使用行星球磨机球磨24小时,使得粉体粒径降低并混合均匀,得到固含量优选为50-60wt%的均匀混合浆料。将所述均匀混合浆料置于烘箱中烘干,干燥条件为70℃,时间为12小时;随后将上述干燥浆料破碎、过100目筛得到造粒完成的堇青石/碳化硅复相陶瓷粉体。称取适量所述造粒完成粉体置于石墨坩埚中,在干压压机上进行预压,预压压力为15MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加40MPa压力,在1350℃下烧结,升温速率为10℃/min,保温时间为2小时,烧结气氛为氩气气氛,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为2.05g/cm-3,相对密度为67.03%,抗弯强度为113.48MPa,太阳能吸收率为0.725,红外发射率为0.794,光谱选择性为0.91。
实施例6
称取碳化硅粉体90g,堇青石粉体10g,加入一定量无水乙醇作为溶剂,再加入100g碳化硅球磨球,使用行星球磨机球磨24小时,使得粉体粒径降低并混合均匀,得到固含量优选为50-60wt%的均匀混合浆料。将所述均匀混合浆料置于烘箱中烘干,干燥条件为70℃,时间为12小时;随后将上述干燥浆料破碎、过100目筛得到造粒完成的堇青石/碳化硅复相陶瓷粉体。称取适量所述造粒完成粉体置于石墨坩埚中,在干压压机上进行预压,预压压力为15MPa;随后将预压好的装有粉体的石墨坩埚置于热压炉中,施加40MPa压力,在1300℃下烧结,升温速率为10℃/min,保温时间为2小时,烧结气氛为氩气气氛,得到堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为1.84g/cm-3,相对密度为58.88%,抗弯强度为63.45MPa,太阳能吸收率为0.682,红外发射率为0.818,光谱选择性为0.83。
表1为本发明制备的堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的性能参数:
Figure BDA0003252188990000071

Claims (10)

1.一种堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料,其特征在于,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的原料组成包括碳化硅和堇青石;优选,包括:60~90wt%碳化硅,10~40wt%堇青石,各组分含量之和为100wt%。
2.根据权利要求1所述的堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料,其特征在于,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的密度为1.8~2.97g·cm-3,相对致密度为55%~99.5%。
3.根据权利要求1所述的堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料,其特征在于,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的抗弯强度为50~420MPa,热导率为5~30 W·(m·K)-1
4.根据权利要求1所述的堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料,其特征在于,所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的太阳能吸收率为0.65~0.8,红外发射率为0.65~0.85,光谱选择性为0.8~1.2。
5.一种如权利要求1-4中任一项所述的堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料的制备方法,其特征在于,包括:
(1)将碳化硅粉体和堇青石粉体混合,得到堇青石/碳化硅复相陶瓷粉体;;
(2)将所得堇青石/碳化硅复相陶瓷粉体置于石墨模具中,在干压压机上进行预压,随后进行热压烧结,得到所述堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料。
6.根据权利要求5所述的制备方法,其特征在于,所述碳化硅粉体粒径为0.2~2μm,堇青石粉体粒径为200~400目。
7.根据权利要求5或6所述的制备方法,其特征在于,将碳化硅粉体和堇青石粉体混合,再加入溶剂,并球磨混合,得到混合均匀的浆料;将所得浆料进行烘干,随后破碎、过筛,和造粒,得到所述堇青石/碳化硅复相陶瓷粉体。
8.根据权利要求7所述的制备方法,其特征在于,所述溶剂为水或/和无水乙醇;所述浆料的固含量为40~60wt%,优选为50~60wt%。
9.根据权利要求7或8所述的制备方法,其特征在于,所述球磨混合的转速为200~400转/分钟,时间为12~48小时;所述烘干的温度为60~90℃时间为6~24小时;所述过筛的目数为60~120目。
10.根据权利要求7-9中任一项所述的制备方法,其特征在于,所述预压的压力为10~25MPa;所述热压烧结的气氛为氩气或真空、压力为10~50MPa、温度为1100~1700℃,时间为1~3小时;优选地,所述热压烧结的压力为30~50MPa,所述热压烧结的升温速率为5~20℃/分钟。
CN202111049078.9A 2021-09-08 2021-09-08 一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法 Pending CN113788685A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111049078.9A CN113788685A (zh) 2021-09-08 2021-09-08 一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111049078.9A CN113788685A (zh) 2021-09-08 2021-09-08 一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113788685A true CN113788685A (zh) 2021-12-14

Family

ID=79182939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111049078.9A Pending CN113788685A (zh) 2021-09-08 2021-09-08 一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113788685A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800097A (zh) * 2006-01-18 2006-07-12 中国科学院上海硅酸盐研究所 一种碳化硅─堇青石复合多孔陶瓷及其制备方法
CN104788107A (zh) * 2015-03-18 2015-07-22 蚌埠市英路光电有限公司 一种以堇青石基复合红外辐射材料做填料的隔热涂料及其制备方法
CN107619267A (zh) * 2017-10-24 2018-01-23 郑州大学 一种碳化硅增强堇青石‑莫来石陶瓷复合材料及其制备方法
CN111170743A (zh) * 2020-01-19 2020-05-19 中国科学院上海硅酸盐研究所 一种碳化硅红外辐射陶瓷材料及其制备方法
CN113277852A (zh) * 2021-05-21 2021-08-20 景德镇陶瓷大学 一种堇青石基微晶玻璃结合碳化硅陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800097A (zh) * 2006-01-18 2006-07-12 中国科学院上海硅酸盐研究所 一种碳化硅─堇青石复合多孔陶瓷及其制备方法
CN104788107A (zh) * 2015-03-18 2015-07-22 蚌埠市英路光电有限公司 一种以堇青石基复合红外辐射材料做填料的隔热涂料及其制备方法
CN107619267A (zh) * 2017-10-24 2018-01-23 郑州大学 一种碳化硅增强堇青石‑莫来石陶瓷复合材料及其制备方法
CN111170743A (zh) * 2020-01-19 2020-05-19 中国科学院上海硅酸盐研究所 一种碳化硅红外辐射陶瓷材料及其制备方法
CN113277852A (zh) * 2021-05-21 2021-08-20 景德镇陶瓷大学 一种堇青石基微晶玻璃结合碳化硅陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
X.XU等: ""In-situ synthesis and thermal shock resistance of cordierite/silicon carbide composites used for solar absorber coating"", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
段辉平等: "《材料科学与工程实验教程》", 30 April 2019, 北京航空航天大学出版社 *

Similar Documents

Publication Publication Date Title
Tamaura et al. Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle
CN100466305C (zh) 一种制备铜铟硒薄膜太阳能电池富铟光吸收层的方法
CN106478105A (zh) 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
CN110257019B (zh) 一种具有光热转换功能的相变复合材料及其制备方法
CN112521158B (zh) 一种仿骨头等级孔陶瓷基光热储存材料及制备方法
CN1843667A (zh) 一种Bi-Sb-Te系热电材料的制备方法
CN104559936A (zh) 一种中温用相变蓄热材料及其制备方法
CN109401729A (zh) 一种电池热管理系统用导热定型相变材料及其制备方法
CN106986662B (zh) 一种太阳能吸热陶瓷材料及其制备方法
CN114292628A (zh) 仿竹子相变储热材料及制备方法
CN104150911B (zh) 一种微波辅助低温快速合成纳米氮化硅-碳化硅复合粉体的方法
CN102653470B (zh) 铬二铝碳陶瓷靶材及其真空热压制备方法
CN114573346A (zh) 一种热光伏用稀土高熵铝酸盐陶瓷选择性发射体及其制备方法及应用
CN111640853A (zh) 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法
CN113788685A (zh) 一种低温烧结堇青石/碳化硅复相陶瓷太阳能热发电吸热体材料及其制备方法
CN106187198A (zh) 耐热震基底材料及其用作太阳能热发电吸热材料的用途
CN115433007B (zh) 一种太阳能光谱宽频吸收材料及其制备方法
CN104671787A (zh) 一种太阳能热发电吸热体材料的制备
CN109735310B (zh) 一种全光谱光热转换储热材料及其制备方法
CN103626495B (zh) 一种铜铟镓硒靶材的无压烧结制备方法
CN113248258B (zh) 一种具有高光谱选择性的碳化硅基复相陶瓷材料及其制备方法和应用
CN106673669B (zh) 一种镁铝尖晶石-氮化硅基蜂窝陶瓷吸热体及其制备方法
CN113621348B (zh) 一种基于甲壳素衍生碳的高导热相变材料及其制备方法与储热应用
US20220306543A1 (en) Method for preparing boron carbide material
Zhang et al. Effect of Sm2O3 on microstructure and high-temperature stability of MgAl2O4-Si3N4 ceramic for solar thermal absorber

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211214