CN106187198A - 耐热震基底材料及其用作太阳能热发电吸热材料的用途 - Google Patents

耐热震基底材料及其用作太阳能热发电吸热材料的用途 Download PDF

Info

Publication number
CN106187198A
CN106187198A CN201610562392.XA CN201610562392A CN106187198A CN 106187198 A CN106187198 A CN 106187198A CN 201610562392 A CN201610562392 A CN 201610562392A CN 106187198 A CN106187198 A CN 106187198A
Authority
CN
China
Prior art keywords
parts
weight ratio
carbide
resistance
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610562392.XA
Other languages
English (en)
Other versions
CN106187198B (zh
Inventor
范瑶飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Minghua Power Technology Co.,Ltd.
Original Assignee
范瑶飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 范瑶飞 filed Critical 范瑶飞
Priority to CN201610562392.XA priority Critical patent/CN106187198B/zh
Priority to CN201810408800.5A priority patent/CN108558424B/zh
Publication of CN106187198A publication Critical patent/CN106187198A/zh
Application granted granted Critical
Publication of CN106187198B publication Critical patent/CN106187198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

本发明公开了耐热震基底材料及其用作太阳能热发电吸热材料的用途,通过如下重量份比例的原料制备而成:碳化硅,35~45份;二氧化硅,8~12份;三氧化二铝,4~8份;碳化铝,3~5份;钼酸锌,1~3份;聚乙二醇,4~6份;氮化硅,0.3~0.5份;氧化铯,0.4~0.8份;三氧化钼,0.3~0.5份;玻璃纤维,0.8~1.2份;氟硅酸锌和二碳化钡共0.7~0.9份,氟硅酸锌和二碳化钡的重量份之比为6~8:1。本发明提供的耐热震基底材料具有优良的耐热震性、较高的强度及耐火度,满足当前太阳能热发电吸热材料要求。这种效果与原料中氟硅酸锌和二碳化钡的重量份之比有关,氟硅酸锌和二碳化钡的重量份之比为6~8:1时,抗热震性最优。

Description

耐热震基底材料及其用作太阳能热发电吸热材料的用途
技术领域
本发明属于材料领域,具体涉及耐热震基底材料及其用作太阳能热发电吸热材料的用途。
背景技术
太阳能作为一种绿色能源对环境没有任何无污染性,而且它的来源简单,可以说是在人类的生存年限内其是取之不尽用之不竭的。太阳能不仅是一次性能源,还是清洁能源,它资源丰富、普遍存在、无需运输、还可免费使用、最重要的是对环境没有任何污染。太阳能电池也因太阳能的特殊性具有许多其他发电方式所不具备的优点:不受地域限制、不消耗燃料、规模可大可小、灵活性大、无污染、无噪音、安全可靠、建设周期短、维护简单、最具有大规模应用的可能性。所以很多专家把太阳能能源作为可替代的能源去开发,希望太阳能够造福于人类。现如今所使用的太阳能有很大一部分是由太阳电池转换得来的。因为太阳能电池对光有感应,能够把照射在其表面的光能转换为电能。目前,在有关专家的努力下,太阳能电池己经走向了商业化和产业化。
太阳能发电种类很多,较为成熟的有太阳能光伏发电和太阳能热发电。在众多的太阳能利用技术中,太阳能热发电技术被誉为最有前景,最有可能大规模利用太阳能的技术。太阳能热发电是利用聚光器聚集太阳能,经吸收器吸收后,转化成热能,产生高温蒸汽或气体进入汽轮机发电机组或燃气轮机发电机组产生电能。按聚光形式不同,太阳能热发电可分为塔式太阳能热发电、槽式太阳能热发电和碟式太阳能热发电。塔式太阳能热发电系统由于聚光比高、热力循环温度高、热损耗小、系统简单且效率高的特点得到世界各国的重视,是目前各国都在大力研究的先进的大规模太阳能热发电技术。而作为塔式太阳能热发电核心的空气吸热器,其中的高温吸热体材料担负着接收太阳聚光能量,以及吸热、换热的重要作用,影响着整个热发电系统的稳定性及效率的高低。
研发一种耐热震的基底材料迫在眉睫。
发明内容
本发明的目的在于提供一种耐热震基底材料及其用作太阳能热发电吸热材料的用途。
本发明的上述目的是通过下面的技术方案得以实现的:
一种耐热震基底材料,通过如下重量份比例的原料制备而成:碳化硅,35~45份;二氧化硅,8~12份;三氧化二铝,4~8份;碳化铝,3~5份;钼酸锌,1~3份;聚乙二醇,4~6份;氮化硅,0.3~0.5份;氧化铯,0.4~0.8份;三氧化钼,0.3~0.5份;玻璃纤维,0.8~1.2份;氟硅酸锌和二碳化钡共0.7~0.9份,氟硅酸锌和二碳化钡的重量份之比为6~8:1。
进一步地,所述的耐热震基底材料通过如下重量份比例的原料制备而成:碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为7:1。
进一步地,所述的耐热震基底材料通过如下重量份比例的原料制备而成:碳化硅,35份;二氧化硅,8份;三氧化二铝,4份;碳化铝,3份;钼酸锌,1份;聚乙二醇,4份;氮化硅,0.3份;氧化铯,0.4份;三氧化钼,0.3份;玻璃纤维,0.8份;氟硅酸锌和二碳化钡共0.7份,氟硅酸锌和二碳化钡的重量份之比为6:1。
进一步地,所述的耐热震基底材料通过如下重量份比例的原料制备而成:碳化硅,45份;二氧化硅,12份;三氧化二铝,8份;碳化铝,5份;钼酸锌,3份;聚乙二醇,6份;氮化硅,0.5份;氧化铯,0.8份;三氧化钼,0.5份;玻璃纤维,1.2份;氟硅酸锌和二碳化钡共0.9份,氟硅酸锌和二碳化钡的重量份之比为8:1。
进一步地,碳化硅粒径为0.4~0.6mm。
上述耐热震基底材料的制备方法,包括如下步骤:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
上述耐热震基底材料用作太阳能热发电吸热材料的用途。
本发明的优点:
本发明提供的耐热震基底材料具有优良的耐热震性、较高的强度及耐火度,满足当前太阳能热发电吸热材料要求。
具体实施方式
下面结合实施例进一步说明本发明的实质性内容,但并不以此限定本发明保护范围。尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
实施例1:耐热震基底材料的制备
原料重量份比:
碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为7:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例2:耐热震基底材料的制备
原料重量份比:
碳化硅,35份;二氧化硅,8份;三氧化二铝,4份;碳化铝,3份;钼酸锌,1份;聚乙二醇,4份;氮化硅,0.3份;氧化铯,0.4份;三氧化钼,0.3份;玻璃纤维,0.8份;氟硅酸锌和二碳化钡共0.7份,氟硅酸锌和二碳化钡的重量份之比为6:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例3:耐热震基底材料的制备
原料重量份比:
碳化硅,45份;二氧化硅,12份;三氧化二铝,8份;碳化铝,5份;钼酸锌,3份;聚乙二醇,6份;氮化硅,0.5份;氧化铯,0.8份;三氧化钼,0.5份;玻璃纤维,1.2份;氟硅酸锌和二碳化钡共0.9份,氟硅酸锌和二碳化钡的重量份之比为8:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例4:耐热震基底材料的制备
原料重量份比:
碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为6:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例5:耐热震基底材料的制备
原料重量份比:
碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为8:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例6:对比实施例,氟硅酸锌和二碳化钡的重量份之比为5:1
原料重量份比:
碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为5:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例7:对比实施例,氟硅酸锌和二碳化钡的重量份之比为9:1
原料重量份比:
碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为9:1。
制备方法:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
实施例8:效果实施例
抗热震性反映的是材料承受温度的急剧变化而不致破坏的能力,它是决定材料使用寿命的最关键的参数之一。实验步骤如下:将样品放入高温炉,以5℃/min的升温速率升至1100℃,保温60min后取出放在室温空气中自然冷却,将实施例1~7配方试样置于高温电阻炉内,热震至60次。分别在第10次、20次、30次、40次、50次以及60次抗热震后取出测试抗折强度,计算强度损失率并描述圆片样品的外观,结果如下表所示。
采用日本真空理工株式会社激光热常数测试仪TC-7000H测试实施例1~7配方试样的导热系数进行了测试,结果见下表。
抗氧化测试采用不连续称重法测试,将试样放入空气流动状态良好的箱式硅钥帮电阻炉中,1300℃下保温3h。然后将试样从炉内取出,在空气中缓慢冷却后,用电子天平称量试样的质量,记录前后变化量,以变化量比试样未氧化前的质量计算抗氧化性,结果见下表。
出现裂纹的热震次数 抗折强度/MPa 导热系数W/(m·k) 抗氧化性/%
实施例1 60次无裂纹 110 33.5 0.35
实施例4 60次无裂纹 103 31.8 0.38
实施例5 60次无裂纹 105 32.3 0.39
实施例6 30次 55 15.4 1.45
实施例7 30次 53 15.1 1.49
实施例2、3的测试结果与实施例4、5基本一致。
上述结果表明,本发明提供的耐热震基底材料具有优良的耐热震性、较高的强度及耐火度,满足当前太阳能热发电吸热材料要求。这种效果与原料中氟硅酸锌和二碳化钡的重量份之比有关,氟硅酸锌和二碳化钡的重量份之比为6~8:1时,抗热震性最优。
上述实施例的作用在于说明本发明的实质性内容,但并不以此限定本发明的保护范围。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和保护范围。

Claims (7)

1.一种耐热震基底材料,其特征在于,通过如下重量份比例的原料制备而成:碳化硅,35~45份;二氧化硅,8~12份;三氧化二铝,4~8份;碳化铝,3~5份;钼酸锌,1~3份;聚乙二醇,4~6份;氮化硅,0.3~0.5份;氧化铯,0.4~0.8份;三氧化钼,0.3~0.5份;玻璃纤维,0.8~1.2份;氟硅酸锌和二碳化钡共0.7~0.9份,氟硅酸锌和二碳化钡的重量份之比为6~8:1。
2.根据权利要求1所述的耐热震基底材料,其特征在于,通过如下重量份比例的原料制备而成:碳化硅,40份;二氧化硅,10份;三氧化二铝,6份;碳化铝,4份;钼酸锌,2份;聚乙二醇,5份;氮化硅,0.4份;氧化铯,0.6份;三氧化钼,0.4份;玻璃纤维,1.0份;氟硅酸锌和二碳化钡共0.8份,氟硅酸锌和二碳化钡的重量份之比为7:1。
3.根据权利要求1所述的耐热震基底材料,其特征在于,通过如下重量份比例的原料制备而成:碳化硅,35份;二氧化硅,8份;三氧化二铝,4份;碳化铝,3份;钼酸锌,1份;聚乙二醇,4份;氮化硅,0.3份;氧化铯,0.4份;三氧化钼,0.3份;玻璃纤维,0.8份;氟硅酸锌和二碳化钡共0.7份,氟硅酸锌和二碳化钡的重量份之比为6:1。
4.根据权利要求1所述的耐热震基底材料,其特征在于,通过如下重量份比例的原料制备而成:碳化硅,45份;二氧化硅,12份;三氧化二铝,8份;碳化铝,5份;钼酸锌,3份;聚乙二醇,6份;氮化硅,0.5份;氧化铯,0.8份;三氧化钼,0.5份;玻璃纤维,1.2份;氟硅酸锌和二碳化钡共0.9份,氟硅酸锌和二碳化钡的重量份之比为8:1。
5.根据权利要求1~4任一所述耐热震基底材料,其特征在于:碳化硅粒径为0.4~0.6mm。
6.权利要求1~4任一所述耐热震基底材料的制备方法,其特征在于,包括如下步骤:
步骤S1,将碳化硅置于聚乙二醇中浸泡24h,然后升温至100℃,加入二氧化硅和三氧化二铝,搅拌,混合均匀得物料A;
步骤S2,将剩余物料按比例加入步骤S1的物料A中,混合均匀,研磨至物料细度在300目,然后造粒,压制;
步骤S3,将步骤S2压制好的坯体烘干,烘干温度为140℃,烧制得到产品;烧制条件为:在120℃下保温30min,然后程序升温,初始以12℃/min的升温速率升温至750℃时,降低升温速率至5℃/min,升温过程中,分别在250℃、480℃保温30min,在800℃、1000℃、1200℃、1300℃、1400℃以及1500℃下分别保温50min,最后升温至1800℃,保温2h。
7.权利要求1~4任一所述耐热震基底材料用作太阳能热发电吸热材料的用途。
CN201610562392.XA 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途 Active CN106187198B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610562392.XA CN106187198B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途
CN201810408800.5A CN108558424B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610562392.XA CN106187198B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810408800.5A Division CN108558424B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途

Publications (2)

Publication Number Publication Date
CN106187198A true CN106187198A (zh) 2016-12-07
CN106187198B CN106187198B (zh) 2018-08-07

Family

ID=57475597

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810408800.5A Active CN108558424B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途
CN201610562392.XA Active CN106187198B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810408800.5A Active CN108558424B (zh) 2016-07-14 2016-07-14 耐热震基底材料及其用作太阳能热发电吸热材料的用途

Country Status (1)

Country Link
CN (2) CN108558424B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129280A (zh) * 2017-04-06 2017-09-05 浙江伟豪能源科技有限公司 一种高抗热震性能的太阳能吸热陶瓷材料及其制备方法
CN107140964A (zh) * 2017-04-06 2017-09-08 浙江伟豪能源科技有限公司 一种高抗高温氧化性能的太阳能吸热陶瓷材料及其制备方法
CN107935598A (zh) * 2017-12-05 2018-04-20 郑州搜趣信息技术有限公司 一种高性能的碳化硅陶瓷材料低温烧结方法
CN111253158A (zh) * 2020-01-21 2020-06-09 武汉理工大学 太阳能热发电吸/储热一体化刚玉/SiC陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191060A (ja) * 1984-03-12 1985-09-28 科学技術庁無機材質研究所長 高密度炭化けい素焼結体の製造法
CN102173678A (zh) * 2010-12-29 2011-09-07 上海东升新材料有限公司 砂壁状双组分抹面砂浆组合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671787A (zh) * 2013-12-02 2015-06-03 青岛事百嘉电子科技有限公司 一种太阳能热发电吸热体材料的制备
DE102014217165A1 (de) * 2014-08-28 2016-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterstruktur, Verfahren zu deren Herstellung und deren Verwendung
CN104446489B (zh) * 2014-11-13 2016-04-06 无锡中洁能源技术有限公司 太阳能热发电用吸热体基体材料及其制备方法
CN104860690A (zh) * 2015-05-04 2015-08-26 安徽省亚欧陶瓷有限责任公司 一种高抗热震陶瓷砖及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191060A (ja) * 1984-03-12 1985-09-28 科学技術庁無機材質研究所長 高密度炭化けい素焼結体の製造法
CN102173678A (zh) * 2010-12-29 2011-09-07 上海东升新材料有限公司 砂壁状双组分抹面砂浆组合物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129280A (zh) * 2017-04-06 2017-09-05 浙江伟豪能源科技有限公司 一种高抗热震性能的太阳能吸热陶瓷材料及其制备方法
CN107140964A (zh) * 2017-04-06 2017-09-08 浙江伟豪能源科技有限公司 一种高抗高温氧化性能的太阳能吸热陶瓷材料及其制备方法
CN107129280B (zh) * 2017-04-06 2020-07-17 郎溪品旭科技发展有限公司 一种高抗热震性能的太阳能吸热陶瓷材料及其制备方法
CN107140964B (zh) * 2017-04-06 2020-09-15 旌德君创科技发展有限公司 一种高抗高温氧化性能的太阳能吸热陶瓷材料及其制备方法
CN107935598A (zh) * 2017-12-05 2018-04-20 郑州搜趣信息技术有限公司 一种高性能的碳化硅陶瓷材料低温烧结方法
CN107935598B (zh) * 2017-12-05 2021-03-19 山东圣诺实业有限公司 一种高性能的碳化硅陶瓷材料低温烧结方法
CN111253158A (zh) * 2020-01-21 2020-06-09 武汉理工大学 太阳能热发电吸/储热一体化刚玉/SiC陶瓷材料及其制备方法
CN111253158B (zh) * 2020-01-21 2022-02-01 武汉理工大学 太阳能热发电吸/储热一体化刚玉/SiC陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN106187198B (zh) 2018-08-07
CN108558424B (zh) 2020-10-23
CN108558424A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
CN106187198A (zh) 耐热震基底材料及其用作太阳能热发电吸热材料的用途
CN102787981B (zh) 太阳能储能发电系统
CN104446489B (zh) 太阳能热发电用吸热体基体材料及其制备方法
CN106986662B (zh) 一种太阳能吸热陶瓷材料及其制备方法
CN201926020U (zh) 光电驱动式太阳能暖风器
CN106588029A (zh) 一种新型太阳能吸热陶瓷材料及其制备方法
CN213585606U (zh) 一种太阳能集热发电装置
CN101586881B (zh) 集热式太阳能光热电系统
CN103233868A (zh) 一种低温太阳能和旋转风能综合利用装置
WO2013113267A1 (zh) 太阳能综合应用系统及其实现方法
Jiajia et al. Integrated energy system planning in parks and optimal allocation schemes
CN206345823U (zh) 干熄炉结构及红焦显热发电系统
CN104986756A (zh) 一种适用于光热沸腾的改性膨胀石墨材料的制备方法
CN109279776A (zh) 一种太阳能真空管用玻璃管及其制备方法
CN104403243A (zh) 一种太阳能高效吸热材料及其制备方法
CN110336488A (zh) 一种基于宽光谱光源的光热蒸汽发电系统
CN201450463U (zh) 集热式太阳能光热电系统
CN205092795U (zh) 一种利用红外光发电的设备
CN107162577B (zh) 一种应用于塔式太阳能热发电系统的太阳能陶瓷材料
CN107162623B (zh) 一种应用于太阳能热发电系统的低成本太阳能陶瓷材料
CN105906852A (zh) 吸热材料及其制作方法
Han et al. Exergy analysis of concentrated solar CHP system for building scale utilization
CN206787083U (zh) 一种可调焦太阳能集热置
CN205829576U (zh) 一种分布式光电站热水装置
CN112187111A (zh) 一种太阳能集热发电装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201125

Address after: Room 801, building 9, 171 Handan Road, Hongkou District, Shanghai

Patentee after: Shanghai Minghua Power Technology Co.,Ltd.

Address before: Feng Xiang Qiao Peng Cun Tiantai County of Taizhou City, Zhejiang province 317203 Lei 9 Group No. 8

Patentee before: Fan Yaofei

TR01 Transfer of patent right