CN113769764A - 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用 - Google Patents
一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用 Download PDFInfo
- Publication number
- CN113769764A CN113769764A CN202110966602.2A CN202110966602A CN113769764A CN 113769764 A CN113769764 A CN 113769764A CN 202110966602 A CN202110966602 A CN 202110966602A CN 113769764 A CN113769764 A CN 113769764A
- Authority
- CN
- China
- Prior art keywords
- cds
- heterostructure
- cdmoo
- nano
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002073 nanorod Substances 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 20
- 239000001257 hydrogen Substances 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 18
- 239000000725 suspension Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 60
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 11
- 230000001699 photocatalysis Effects 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 238000009210 therapy by ultrasound Methods 0.000 claims description 5
- 230000004298 light response Effects 0.000 claims description 4
- 238000001132 ultrasonic dispersion Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 5
- 238000005342 ion exchange Methods 0.000 abstract description 4
- 238000006467 substitution reaction Methods 0.000 abstract description 3
- 238000006303 photolysis reaction Methods 0.000 abstract description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 abstract description 2
- 238000000527 sonication Methods 0.000 abstract description 2
- 238000009826 distribution Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 238000000627 alternating current impedance spectroscopy Methods 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 2
- 229910015667 MoO4 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000002159 adsorption--desorption isotherm Methods 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001055 reflectance spectroscopy Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Catalysts (AREA)
Abstract
一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用。该方法为:首先通过水热的方式制备在可见光下具有较强光响应的催化剂CdS纳米棒,然后利用离子交换法,用Cu+去部分取代CdS形成了CdS/Cu7S4异质结构催化剂,然后将其分散在水中超声,以获得均匀的悬浮液。向此悬浮液中加入(NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并在高温水浴条件下搅拌,即可获得墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。本材料可以充分利用紫外、可见和近红外光,是一种可以吸收太阳能全光谱的催化剂,该材料可用作光解水制氢反应中。本发明解决现有催化剂对太阳能转化率低、成本高的技术问题。
Description
技术领域
本发明属于半导体复合材料制备方法领域,具体涉及一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用。
背景技术
经历了漫长地质年代而形成的化石燃料在人类生活中扮演着不可或缺的角色。然而,随着能源消耗量的日益增加,化石燃料储量也在逐渐减少。同时这些化石燃料在燃烧的过程中,会释放很多空气污染物,导致大气污染和温室效应,使得全球气候发生变化,严重影响着人类的健康。因此,寻找可再生、清洁的能源,成了当今世界迫在眉睫的任务。众所周知,太阳能转化为化学能主要依靠以下步骤:光的吸收,电荷分离与转移和表面发生氧化还原过程。因此,合理的设计制备高效的产氢催化剂也是紧紧围绕以上三点而展开的。太阳光谱中包含5%的紫外、50%的可见光和45%的近红外区域的光,那么从波谱的分布可以看出,发展在紫外、可见和近红外光下都有响应的催化剂,并且具有价廉、有效稳定优点的催化剂是一项非常有意义的工作。但是,目前多种半导体相结合的异质结构催化剂,不能充分的利用太阳能光谱,大多数催化剂依靠贵金属等作为助催化剂,从而使制备成本较高。而如果在光催化领域设计并合成可以吸收全光谱的催化剂,对于光催化领域而言,又将会是一个新的突破。
发明内容
本发明要解决现有催化剂对太阳能转化率低、成本高的技术问题,而提供一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法。
本发明技术方案如下。
一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,包括如下步骤:
一、将Cd(NO3)2·4H2O和NH2CSNH2放入乙二胺溶液中,进行超声处理,溶液变澄清后,放入聚四氟乙烯反应釜中,进行水热反应;然后冷却到室温,再用去离子水和无水乙醇清洗,干燥,得到CdS纳米棒;
二、将步骤一得到的CdS纳米棒分散在甲醇溶液中,超声分散均匀后,用胶头滴管逐滴将[MeCN]4CuPF6的甲醇溶液加入到分散有CdS纳米棒分散的甲醇溶液中,搅拌,用甲醇洗涤干燥,得到CdS/Cu7S4纳米异质结构;
三、将步骤二得到的CdS/Cu7S4纳米异质结构,超声分散在水中,加入 (NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并将此悬浮液在水浴加热条件下搅拌。待冷却至室温后,用去离子水和无水乙醇洗涤,干燥,即可获得墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。
进一步,步骤一中Cd(NO3)2·4H2O、NH2CSNH2和乙二胺溶液的质量体积比为(1~2)g∶(1~2)g∶(30~50)mL。
进一步,步骤一中所述的水热温度为160~180℃,水热时间为24~48 h。
进一步,步骤二中CdS与[MeCN]4CuPF6粉末样品的质量比为15:1~1:8;所述[MeCN]4CuPF6的甲醇溶液的质量浓度为0.6-4.8 mg/mL。
进一步,步骤二中搅拌时间为6-12 h。
进一步,步骤三中CdS/Cu7S4纳米异质结构的质量为50-100 mg。
进一步,步骤三中(NH4)6Mo7O24·4H2O的质量为50-100 mg。
进一步,步骤三中的水浴加热温度为50-100 ℃。
进一步,步骤三中搅拌时间为6-12 h。
一种CdS/Cu7S4/CdMoO4纳米异质结构, CdS/Cu7S4/CdMoO4纳米异质结构在紫外、可见和近红外光下均具有光响应,且三种半导体之间交错的能带更好的促进了电子和空穴的分离。
一种CdS/Cu7S4/CdMoO4纳米异质结构应用于光催化产氢催化剂,作为光催化产氢催化剂时,在没有贵金属等助催化剂存在的条件下,产氢速率达到16.55mmol·g-1·h-1;;所述CdS/Cu7S4/CdMoO4纳米异质结构催化剂具有很好的重复利用性,在重复五次实验后,只有较小幅度的降低。
与现有技术相比,本发明的有益效果是:
本发明将在可见光下具有较强光响应的催化剂CdS纳米棒分散在甲醇中,然后利用离子交换法,用Cu+去部分取代CdS形成了CdS/Cu7S4异质结构催化剂,然后将其分散在水中超声,以获得均匀的悬浮液。向此悬浮液中加入 (NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并在高温水浴条件下搅拌,即可获得墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。
本发明得到的CdS/Cu7S4/CdMoO4纳米异质结构,在紫外、可见和近红外光下都有很好的光响应,并且三种半导体之间交错的能带更好的促进了电子和空穴的分离,使之作为光催化产氢催化剂时,在没有贵金属等助催化剂存在的条件下,产氢速率可以达到16.55mmol·g-1·h-1。并且这种三元异质结构的催化剂具有很好的重复利用性,在重复五次实验后,有较小幅度的降低,但是依然可以维持在一定的范围内。
本材料在没有贵金属材料作为助催化剂的条件下,可以在全光谱下有响应,增加了太阳能的转化利用率,促进了光生电子和空穴的分离,降低了反应成本,为制备具有高效率的催化剂提供了新思路。
本发明制备的CdS/Cu7S4/CdMoO4纳米异质结构用作光解水制氢反应中,应用于催化剂领域。
附图说明
图1是实施例1制备的CdS纳米棒的扫描电子显微镜(SEM)图;
图2是实施例1制备的CdS/Cu7S4纳米异质结构扫描电子显微镜(SEM)图;
图3是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构扫描电子显微镜(SEM)图;
图4是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构透射电子显微镜(TEM)图;
图5是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构高倍透射电子显微镜(HRTEM)图;
图6是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的XRD谱图;
图7是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的Raman谱图;
图8是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的XPS谱图(全谱图);
图9是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构Cd元素的X射线光电子能谱图;
图10是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构S元素的X射线光电子能谱图;
图11是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构Cu元素的X射线光电子能谱图;
图12是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构Mo元素的X射线光电子能谱图;
图13是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构O元素的X射线光电子能谱图;
图14是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构N2吸附-脱附等温线;
图15是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的UV-vis-NIR漫反射光谱;
图16是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的产氢速率对比图谱;
图17是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的产氢循环测试图;
图18是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的光电流响应;
图19是实施例1制备的CdS/Cu7S4/CdMoO4纳米异质结构的电化学交流阻抗谱。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,按以下步骤进行:
一、将Cd(NO3)2·4H2O和NH2CSNH2放入乙二胺溶液中,进行超声处理,溶液变澄清后,放入聚四氟乙烯反应釜中,进行水热反应;然后冷却到室温,再用去离子水和无水乙醇清洗,干燥,得到CdS纳米棒;
二、将步骤一得到的CdS纳米棒分散在甲醇溶液中,超声分散均匀后,用胶头滴管逐滴将[MeCN]4CuPF6的甲醇溶液,加入到上述溶液中搅拌,用甲醇洗涤干燥,得到CdS/Cu7S4纳米异质结构;
三、将步骤二得到的CdS/Cu7S4纳米异质结构,超声分散在水中,加入 (NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并将此悬浮液在水浴加热条件下搅拌。待冷却至室温后,用去离子水和无水乙醇洗涤,干燥,即可获得墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中Cd(NO3)2·4H2O、NH2CSNH2和乙二胺溶液的质量体积比为(1~2)g∶(1~2)g∶(30~50)mL。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中所述的水热温度为160~180℃,水热时间为24~48 h。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中CdS与[MeCN]4CuPF6粉末样品的质量比为15:1~1:8。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中搅拌时间为6-12 h。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三CdS/Cu7S4纳米异质结构的质量为50-100 mg。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤三中(NH4)6Mo7O24·4H2O的质量为50-100 mg。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤三中水浴加热温度为50-100 ℃。其它与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三中搅拌时间为6-12 h。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤三中煅烧温度为500 ℃,煅烧时间为3 h。其它与具体实施方式一至九之一相同。
本发明实施例如下:
实施例1:
本实施例中CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,按以下步骤进行:
一、将1.87g Cd(NO3)2·4H2O和1.38g NH2CSNH2放入30mL乙二胺溶液中,进行超声处理,溶液变澄清后,放入聚四氟乙烯反应釜中,进行水热反应,水热温度为160℃,水热时间为24 h;然后冷却到室温,再用去离子水和无水乙醇清洗,干燥,得到CdS纳米棒;
二、将步骤一得到的300 mg CdS纳米棒将超声分散在50 mL甲醇溶液中待用,然后将120 mg[MeCN]4CuPF6粉末样品溶于20 mL甲醇中,接下来将此溶液用胶头滴管逐滴加入到上述溶液中。此时,溶液颜色由黄色慢慢变为墨绿色,搅拌12 h后,用甲醇洗涤干燥,得到CdS/Cu7S4纳米复合物;
三、将100 mg 制备得到的CdS/Cu7S4异质结构催化剂分散在20 mL水中并超声10min,以获得均匀的悬浮液。然后,向此悬浮液中加入80 mg的(NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并将此悬浮液在70℃的水浴条件下搅拌12 h。待冷却至室温后,用去离子水和无水乙醇洗涤四次,并在60℃真空干燥器中干燥12 h,即可获得墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。
本实施例步骤一制备的CdS纳米棒的扫描电子显微镜(SEM)图如图1所示,从图1可以看出,CdS纳米棒的宽度为20-80 nm左右,长度为300-500 nm。
本实施例步骤二和三得到的CdS/Cu7S4纳米异质结构和CdS/Cu7S4/CdMoO4的SEM图如图2和图3所示,用Cu+去取代CdS中的Cd2+,就会得到表面粗糙的CdS/Cu7S4异质结构催化剂(图2)。当向CdS/Cu7S4异质结构催化剂中加入(NH4)6Mo7O24·4H2O时,MoO4 2-会与Cd相连,从而获得CdS/Cu7S4/CdMoO4异质结构催化剂(图3)。可以发现CdS/Cu7S4/CdMoO4与CdS/Cu7S4异质结构催化剂相比,其表面更加粗糙并且表面有很多突起产生,样品粒径尺寸变得更小。
本实施例步骤三得到的CdS/Cu7S4/CdMoO4纳米异质结构透射电子显微镜(TEM)照片和高倍透射电子显微镜(HRTEM)照片如图4和5所示,可以看出,CdS纳米棒的主要生长晶面为(100)晶面,其晶面间距为0.316 nm,晶面间距为0.336 nm的晶格条纹则对应着CdS纳米棒的(002)晶面。并且在图中也可以发现归属于CdMoO4的(204)晶面的晶格条纹,其间距为0.189 nm。以上实验结果再次证明通过离子交换方法成功制备了CdS/Cu7S4/CdMoO4异质结构催化剂。
本实施例步骤三得到的CdS/Cu7S4/CdMoO4纳米异质结构的XRD谱图如图6所示,CdS纳米棒的衍射峰与六方晶系CdS(JCPDS No.41-1049)的衍射峰完全匹配。而通过观察CdS/Cu7S4异质结构催化剂的XRD图谱发现,图谱中只有CdS纳米棒的衍射峰,而观察不到Cu7S4的衍射峰,这主要是因为在此样品中Cu7S4的含量较少。对于CdS/Cu7S4/CdMoO4异质结构催化剂来说,其中2θ=24.8、26.5、28.1和47.8°的四个衍射峰分别归属于CdS的(100)、(002)、(101)和(103)晶面。而2θ= 29.2、31.9、34.7、47.9、49.9和58.9°处的峰则正好与四方晶系CdMoO4(JCPDS No.07-0209)的(112)、(004)、(200)、(204)、(220)和(312)晶面是完全匹配的,这也与之前获得的HRTEM结果一致,证明已经通过这种方法成功制备出了CdS/Cu7S4/CdMoO4异质结构催化剂。
本实施例步骤三得到的CdS/Cu7S4/CdMoO4纳米异质结构的Raman谱图如图7所示,可以发现CdS的特征峰位于294.4和592.9 cm-1处。而在CdS/Cu7S4异质结构催化剂中,只能发现归属于CdS的特征峰却没有Cu7S4的特征峰,这是由于CdS/Cu7S4异质结构催化剂中Cu7S4的含量较少所导致的。通过观察CdS/Cu7S4/CdMoO4异质结构催化剂的Raman光谱图可以发现,位于129.2、146.6、185.1、392.2、468.8、754.1、818.6和859.5 cm-1处有归属于CdMoO4的特征峰存在。
本实施例步骤三得到的CdS/Cu7S4/CdMoO4纳米异质结构的XPS谱图(全谱图)如图8所示,其中Cd元素分布图如图9所示,S元素分布图如图10所示,Cu元素分布图如图11所示,Mo元素分布图如图12所示,O元素分布图如图13所示,从图8~图13可以看出,Cd、S、Cu、Mo和O五种元素均匀分布在CdS纳米棒表面,同时这也说明了本试验已经成功制备出CdS/Cu7S4/CdMoO4纳米异质结构。
本实施例步骤三得到的CdS/Cu7S4/CdMoO4纳米异质结构N2吸附-脱附等温线如图14所示,CdS、CdS/Cu7S4和CdS/Cu7S4/CdMoO4异质结构催化剂的比表面积分别为26、46和58m2·g-1。这种比表面积会发生变化的原因,主要是由于在Cd、Cu和Mo三种元素之间进行离子交换时,对催化剂材料造成了不同程度的腐蚀所引起的。催化剂材料比表面积的增加,将会在光催化反应中提供更多的催化活性位点,并有效地促进载流子的传输。
图15为CdS/Cu7S4/CdMoO4纳米异质结构的UV-vis-NIR漫反射光谱,CdS纳米棒在可见光区有很好的光响应,而当引入Cu7S4后,不仅提高了CdS/Cu7S4异质结构催化剂对于可见光的吸收,更是将材料对于太阳光的吸收拓展至近红外区。因为CdMoO4是一种在紫外光下有响应的半导体,所以从图中可以看出,CdS/Cu7S4/CdMoO4异质结构催化剂在紫外、可见和近红外区域都有很好的光响应。
为了验证光催化剂的光催化产氢活性,接下来分别对CdS、CdS/Cu7S4和CdS/Cu7S4/CdMoO4异质结构催化剂做了光催化产氢性能实验测试,结果如图16所示。CdS光催化产氢速率可以达到0.20 mmol·g-1·h-1,体系中引入Cu7S4后,性能有了明显的提升,产氢速率可以达到1.73 mmol·g-1·h-1,而当向体系中引入钼源形成CdS/Cu7S4/CdMoO4异质结构催化剂后,由于三者之间存在的协同作用,有效地促进了光生电子和空穴的分离,从而提高了其催化性能,光催化产氢速率可以达到最高值16.55 mmol·g-1·h-1。
图17是本案例步骤三制备的CdS/Cu7S4/CdMoO4纳米异质结构的产氢循环测试图,发现在进行了4次,每次3个小时,一共为期12个小时以后的循环反应后,发现CdS/Cu7S4/CdMoO4异质结构催化剂的产氢性能有较小幅度的降低,但是依然可以维持在一定的范围内,说明此类催化剂稳定性较好。
从图18可以看出,CdS/Cu7S4/CdMoO4异质结构催化剂的光电流响应要高于CdS和CdS/Cu7S4,这是由于三者中的协同作用促进了电子的传输,并且在催化反应进行的同时,催化剂中电子和空穴的高效分离也使得催化剂具有很高的催化性能。这一点在电化学交流阻抗谱中(图19),也得到了很好地验证。
实施例2
本实施例中CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,按以下步骤进行:
一、将2.0g Cd(NO3)2·4H2O和2.0g NH2CSNH2放入30mL乙二胺溶液中,进行超声处理,溶液变澄清后,放入聚四氟乙烯反应釜中,进行水热反应,水热温度为180℃,水热时间为48 h;然后冷却到室温,再用去离子水和无水乙醇清洗,干燥,得到CdS纳米棒;
二、将步骤一得到的300 mg CdS纳米棒将超声分散在50 mL甲醇溶液中待用,然后将240 mg[MeCN]4CuPF6粉末样品溶于10 mL甲醇中,接下来将此溶液用胶头滴管逐滴加入到上述溶液中。此时,溶液颜色由黄色慢慢变为墨绿色,搅拌10 h后,用甲醇洗涤干燥,就可以得到CdS/Cu7S4纳米复合物;
三、将步骤二将80 mg CdS/Cu7S4异质结构催化剂分散在20 mL水中并超声10 min,以获得均匀的悬浮液。然后,向此悬浮液中加入60 mg的(NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并将此悬浮液在80℃的水浴条件下搅拌10 h。待冷却至室温后,用去离子水和无水乙醇洗涤四次,真空干燥器中干燥,即可获得墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。
Claims (10)
1.一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,包括如下步骤:
一、将Cd(NO3)2·4H2O和NH2CSNH2放入乙二胺溶液中,进行超声处理,溶液变澄清后,放入反应釜中,进行水热反应;冷却到室温,再用去离子水和无水乙醇清洗,干燥,得到CdS纳米棒;
二、将步骤一所得的CdS纳米棒分散在甲醇溶液中,超声分散均匀后,逐滴将[MeCN]4CuPF6的甲醇溶液加入到分散有CdS纳米棒分散的甲醇溶液中,搅拌,用甲醇洗涤干燥,得到CdS/Cu7S4纳米异质结构;
三、将步骤二所得的CdS/Cu7S4纳米异质结构,超声分散在水中,加入 (NH4)6Mo7O24·4H2O粉末样品,使其充分混合,并将此悬浮液在水浴加热条件下搅拌,待冷却至室温后,用去离子水和无水乙醇洗涤,干燥,得到墨绿色的CdS/Cu7S4/CdMoO4异质结构催化剂。
2.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,步骤一中,所述Cd(NO3)2·4H2O、NH2CSNH2和乙二胺溶液的质量体积比为(1~2)g∶(1~2)g∶(30~50)mL。
3.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,步骤一中,所述的水热温度为160~180℃,水热时间为24~48 h。
4.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,步骤二中,所述CdS与[MeCN]4CuPF6粉末样品的质量比为15:1~1:8;所述[MeCN]4CuPF6的甲醇溶液的质量浓度为0.6-4.8 mg/mL。
5.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,步骤二中,搅拌时间为6-12 h。
6.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,步骤三中,CdS/Cu7S4纳米异质结构的质量为50-100 mg。
7.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于步骤三中,(NH4)6Mo7O24·4H2O的质量为50-100 mg。
8.根据权利要求1所述CdS/Cu7S4/CdMoO4纳米异质结构的制备方法,其特征在于,步骤三中,水浴加热温度为50-100 ℃;所述搅拌时间为6-12 h。
9.权利要求1~8任一项所述方法制备得到CdS/Cu7S4/CdMoO4纳米异质结构,其特征在于,CdS/Cu7S4/CdMoO4纳米异质结构在紫外、可见和近红外光下均具有光响应,且三种半导体之间交错的能带更好的促进了电子和空穴的分离;所述CdS/Cu7S4/CdMoO4纳米异质结构催化剂具有很好的重复利用性,在重复五次实验后,只有较小幅度的降低。
10.权利要求9所述CdS/Cu7S4/CdMoO4纳米异质结构应用于光催化产氢催化剂,其特征在于,作为光催化产氢催化剂时,在没有贵金属等助催化剂存在的条件下,产氢速率达到16.55 mmol·g-1·h-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110966602.2A CN113769764B (zh) | 2021-08-23 | 2021-08-23 | 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110966602.2A CN113769764B (zh) | 2021-08-23 | 2021-08-23 | 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113769764A true CN113769764A (zh) | 2021-12-10 |
CN113769764B CN113769764B (zh) | 2023-06-02 |
Family
ID=78838723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110966602.2A Active CN113769764B (zh) | 2021-08-23 | 2021-08-23 | 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113769764B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114618532A (zh) * | 2022-04-02 | 2022-06-14 | 吉林化工学院 | 具有光催化性能的CdMoO4/CdS纳米微球制备及其应用 |
CN115518690A (zh) * | 2022-07-28 | 2022-12-27 | 广东工业大学 | 一种Cu7S4-MOF复合材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103623803A (zh) * | 2012-08-30 | 2014-03-12 | 上海纳晶科技有限公司 | 一种可见光光催化剂及其制备方法 |
CN106622293A (zh) * | 2016-12-30 | 2017-05-10 | 哈尔滨工业大学 | 一种H‑TiO2/CdS/Cu2‑xS纳米带的制备方法 |
CN109433229A (zh) * | 2018-12-21 | 2019-03-08 | 哈尔滨工业大学 | 一种CdS/CoO纳米异质结构的制备方法 |
-
2021
- 2021-08-23 CN CN202110966602.2A patent/CN113769764B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103623803A (zh) * | 2012-08-30 | 2014-03-12 | 上海纳晶科技有限公司 | 一种可见光光催化剂及其制备方法 |
CN106622293A (zh) * | 2016-12-30 | 2017-05-10 | 哈尔滨工业大学 | 一种H‑TiO2/CdS/Cu2‑xS纳米带的制备方法 |
CN109433229A (zh) * | 2018-12-21 | 2019-03-08 | 哈尔滨工业大学 | 一种CdS/CoO纳米异质结构的制备方法 |
Non-Patent Citations (1)
Title |
---|
谭亮;邓明龙;张朝良;李晓燕;: "Cu_7S_4/CuO微纳米异质结构的同步合成及光催化性能研究", 化工新型材料, no. 01 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114618532A (zh) * | 2022-04-02 | 2022-06-14 | 吉林化工学院 | 具有光催化性能的CdMoO4/CdS纳米微球制备及其应用 |
CN115518690A (zh) * | 2022-07-28 | 2022-12-27 | 广东工业大学 | 一种Cu7S4-MOF复合材料及其制备方法和应用 |
CN115518690B (zh) * | 2022-07-28 | 2023-11-10 | 广东工业大学 | 一种Cu7S4-MOF复合材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113769764B (zh) | 2023-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution | |
CN111389442B (zh) | 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用 | |
Huang et al. | A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution | |
CN110152711B (zh) | 一种CeO2@MoS2/g-C3N4三元复合光催化剂及其制备方法 | |
Wang et al. | A facile synthesis of Zn x Cd 1− x S/CNTs nanocomposite photocatalyst for H 2 production | |
CN106111174A (zh) | g‑C3N4/高岭石复合光催化剂及其制备方法 | |
CN108927188B (zh) | 一种碳酸氧铋光催化剂及其制备方法 | |
CN113769764B (zh) | 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用 | |
CN109225298B (zh) | 一种具有高可见光活性的MnISCN纳米复合材料及其制备方法和应用 | |
CN109433229B (zh) | 一种CdS/CoO纳米异质结构的制备方法 | |
CN113751029B (zh) | 一种Co9S8/ZnIn2S4光催化产氢材料及其制备方法和应用 | |
CN110227500A (zh) | 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用 | |
CN110721698B (zh) | 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用 | |
CN112439416A (zh) | 一种高分散铜负载二氧化钛纳米片的制备方法及其应用 | |
CN108940255A (zh) | 一种氧化锌催化材料及其制备方法与应用 | |
CN112076769A (zh) | 圆球状钒酸铋/黑磷复合光催化剂及制备方法 | |
CN113952986A (zh) | 一种WO3/TpPa-1-COF复合材料及其制备方法与应用 | |
CN108246241A (zh) | 一种由螺旋状g-C3N4/ZnO复合纳米棒组装的海胆型超结构材料 | |
CN112774718A (zh) | 一种氧化亚铜/管状类石墨相氮化碳复合催化剂及其制备方法和应用 | |
CN114054066B (zh) | 一种掺杂g-C3N4纳米管光催化剂及制备方法与应用 | |
CN113842939B (zh) | 光催化剂及其制备方法 | |
Li et al. | Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications | |
Jia et al. | A direct Z-scheme S-Co 3 O 4/Bi 2 WO 6 heterostructure for enhanced photoelectrocatalytic degradation of tetracycline under visible light | |
CN117583001A (zh) | 一种BiOBr-Bi2O2SO4异质结光催化剂的制备方法及其应用 | |
CN115069291B (zh) | 一种Ni/VN/g-C3N4复合光催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |