CN113741491A - 一种基于故障诊断结果的x型四旋翼无人机控制方法 - Google Patents

一种基于故障诊断结果的x型四旋翼无人机控制方法 Download PDF

Info

Publication number
CN113741491A
CN113741491A CN202110890650.8A CN202110890650A CN113741491A CN 113741491 A CN113741491 A CN 113741491A CN 202110890650 A CN202110890650 A CN 202110890650A CN 113741491 A CN113741491 A CN 113741491A
Authority
CN
China
Prior art keywords
network
unmanned aerial
aerial vehicle
target
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110890650.8A
Other languages
English (en)
Inventor
张刚
刘志坚
侯文宝
李德路
沈永跃
吴玮
张维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Institute of Architectural Technology
Original Assignee
Jiangsu Institute of Architectural Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Institute of Architectural Technology filed Critical Jiangsu Institute of Architectural Technology
Priority to CN202110890650.8A priority Critical patent/CN113741491A/zh
Publication of CN113741491A publication Critical patent/CN113741491A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Abstract

本发明公开了一种基于故障诊断结果的X型四旋翼无人机控制方法,其步骤包括:步骤一,建立X型四旋翼无人机的运动学模型;步骤二,进行位姿PID控制器设计;步骤三,建立执行机构故障模型;步骤四,进行PID控制器参数智能调节。本控制方法通过将PID控制器与强化学习调参技术相结合,在四旋翼无人机出现执行机构故障的情况下,基于强化学习,根据四旋翼无人机自身状态和故障诊断结果,对姿态控制和位置控制的PID控制参数自整定,实现了四旋翼无人机位姿系统的稳定控制,保证了四旋翼无人机位姿系统的可靠性和安全性,实现了位姿的到达与稳定,提高了其自主飞行的安全性。

Description

一种基于故障诊断结果的X型四旋翼无人机控制方法
技术领域
本发明涉及一种基于故障诊断结果的X型四旋翼无人机控制方法,属于无人机智能控制技术领域。
背景技术
随着人工智能技术的飞速发展,传统控制框架与人工智能相结合的技术在航空航天领域越来越受到重视。四旋翼无人机凭借其结构特点,可以通过更简单的控制方式飞行。但由于其四输入、六自由度的特性,系统具有非线性、欠驱动、强耦合等特点,是一种典型的不确定非线性系统,同时在控制系统设计时必须满足尽可能减少人员的干预,加强其抗干扰能力。
对于四旋翼无人机的位姿控制,常见的有PID控制方法、滑膜控制方法、反步控制方法、神经网络控制方法和模糊逻辑控制方法。这些方法能够实现位姿的稳定,但同时也存在以下局限性:1)在自主飞行的过程中,四旋翼无人机遭受系统崩溃等故障造成的打击是致命的,需加入故障容错控制系统来保证系统能够自发处理突发故障,但现有的控制方法中,控制器中控制增益的人工整定较为繁杂,阻碍了控制性能的提升,无法满足四旋翼无人系统自发处理突发故障的要求,自主飞行的安全性得不到保障;2)对于安全性要求很高的航空航天控制领域,现有的控制方法难以对系统预期功能进行精确的描述,并且缺乏对系统鲁棒性的保证。
发明内容
针对上述现有技术存在的问题,本发明提供一种基于故障诊断结果的X型四旋翼无人机控制方法,该控制方法基于四旋翼无人机的故障诊断信息,将传统PID控制器与强化学习调参技术结合,保证四旋翼无人机位姿系统的可靠性和安全性,实现位姿的到达与稳定,提高其自主飞行的安全性,为系统鲁棒性提供保证。
为了实现上述目的,本发明提供一种基于故障诊断结果的X型四旋翼无人机控制方法,包括如下步骤:
步骤一,建立X型四旋翼无人机的运动学模型,其具体形式如下:
Figure BDA0003195891220000021
其中,
Figure BDA0003195891220000022
为滚转角,θ为俯仰角,ψ为偏航角,
Figure BDA0003195891220000023
分别为三轴角加速度,
Figure BDA0003195891220000024
分别为三轴角速度,
Figure BDA0003195891220000025
分别为三轴线加速度,
Figure BDA0003195891220000026
分别为三轴线速度,Ix,Iy,Iz为机身在x,y,z三个方向上的转动惯量,Jr为转动惯量,K1,…,K6为空气阻力系数,l为电机到质心的臂长,m为机身重量,g为重力加速度;U1,…,U4,Ω存在如下关系:
Figure BDA0003195891220000027
其中,U1为总升力,U2为滚转力矩,U3为俯仰力矩,U4为偏航力矩,b为升力系数,d为阻力系数,Ω1,…,Ω4分别为1至4号电机的转速;
步骤二,进行位姿PID控制器设计:
1)姿态控制回路为:
Figure BDA0003195891220000028
其中,k1...k9为姿态控制器参数,俯仰角误差
Figure BDA0003195891220000031
滚转角误差eθ=θc-θ,偏航角误差eψ=ψc-ψ,
Figure BDA0003195891220000032
为目标姿态角,
Figure BDA0003195891220000033
为当前姿态角,
Figure BDA0003195891220000034
分别为三轴目标角加速度,
Figure BDA0003195891220000035
分别为俯仰角误差速度、滚转角误差速度、偏航角误差速度;对应电机的转速表示如下:
Figure BDA0003195891220000036
其中,CT为升力系数,CQ为阻力系数;
2)位置控制回路为:
Figure BDA0003195891220000037
其中,k1...k9为位置控制器参数,x轴方向位置误差ex=xc-x,y轴方向位置误差ey=yc-y,z轴方向位置误差ez=zc-z,[xc,yc,zc]T为目标位置,[x,y,z]T为当前位置,
Figure BDA0003195891220000038
分别为x轴、y轴、z轴方向误差速度,
Figure BDA0003195891220000039
为x轴、y轴、z轴方向目标加速度;设ψc已知,可得:
Figure BDA00031958912200000310
步骤三,建立执行机构故障模型:
Figure BDA00031958912200000311
其中,控制输入u=[U1,U2,U3,U4],uF为受电机故障影响的真实的控制器输入,
Figure BDA0003195891220000043
Figure BDA0003195891220000041
为不确定的故障;
步骤四,进行PID控制器参数智能调节:
基于步骤三中的故障诊断信息,采用强化学习DDPG算法,通过搭建动作神经网络和评价神经网络,输入四旋翼无人机当前四旋翼的位置、速度、姿态角和角速度的状态,输出最优的控制器参数,实现PID控制器参数的智能调节,具体的DDPG算法过程如下:
1)随机初始化当前评价网络Q(S,A|θQ)和当前动作网络μ(S|θμ),以及评价网络参数θQ和动作网络参数θμ,其中S为状态,A为动作;
2)初始化目标评价网络Q′和目标动作网络μ′,并将网络参数赋值为θQ′←θQμ′←θμ
3)初始化经验回放池,以用于存放过往数据和提高数据利用率并降低数据相关性;
4)for episode=1 to M进行迭代,其中,M为最大训练回合数:
①为动作选择初始化一个随机过程N;
②获得初始状态S;
③在当前动作网络基于状态S得到动作A=μ(S|θμ)+N;
④执行动作A,得到新状态S′、奖励R和终止状态的标志end;
⑤将{S,A,S′,R,end}五元组存入经验回放池;
⑥当S=S′,从经验回放池中采样128个样本{Sj,Aj,S′j,Rj,endj},j=1,2,...,128,计算当前目标Q值yj
Figure BDA0003195891220000042
⑦使用均方损失误差
Figure BDA0003195891220000051
通过神经网络的梯度反向传播来更新当前评价网络的网路参数θQ;使用
Figure BDA0003195891220000052
更新当前动作网络的网络参数θμ
⑧每隔100个episode,更新目标评价网络和目标动作网络的网络参数:
Figure BDA0003195891220000053
⑨若S′为终止状态,则当前轮迭代完毕,否则跳转步骤③,进行下一轮迭代。
进一步地,步骤四中的奖励,分为稀疏奖励和reward shaping奖励两种;其中,稀疏奖励为:在一个迭代回合中,当四旋翼均达到目标点时给予智能体奖励,其余时刻奖励为0,直至回合结束,每当四旋翼到达目标点获得奖励R=1,如果四旋翼越界,则给予惩罚R=-1,并结束回合;reward shaping奖励为:在一个迭代回合中,四旋翼每一步有一个基础奖励,并将四旋翼当前位置与目标位置的距离作为惩罚项,直至回合结束,每多一步给予奖励R=10,再减去四旋翼距目标点的距离作为惩罚,如果四旋翼越界,则给予惩罚R=-100,并结束回合。
本控制方法通过将PID控制器与强化学习调参技术相结合,在四旋翼无人机出现执行机构故障的情况下,基于强化学习,根据四旋翼无人机自身状态和故障诊断结果,对姿态控制和位置控制的PID控制参数自整定,实现了四旋翼无人机位姿系统的稳定控制,保证了四旋翼无人机位姿系统的可靠性和安全性,实现了位姿的到达与稳定,提高了其自主飞行的安全性,对四旋翼无人机系统鲁棒性提供了保证。
附图说明
图1是本发明故障下四旋翼无人机俯仰角的响应图;
图2是本发明故障下四旋翼无人机滚转角的响应图;
图3是本发明故障下四旋翼无人机偏航角的响应图;
图4是本发明故障下四旋翼无人机x轴距离的响应图;
图5是本发明故障下四旋翼无人机y轴距离的响应图;
图6是本发明故障下四旋翼无人机z轴距离的响应图。
具体实施方式
下面结合附图对本发明作进一步说明。
一种基于故障诊断结果的X型四旋翼无人机控制方法,包括如下步骤:
步骤一,建立X型四旋翼无人机的运动学模型,其具体形式如下:
Figure BDA0003195891220000061
其中,
Figure BDA0003195891220000062
为滚转角,θ为俯仰角,ψ为偏航角,
Figure BDA0003195891220000063
分别为三轴角加速度,
Figure BDA0003195891220000064
分别为三轴角速度,
Figure BDA0003195891220000065
分别为三轴线加速度,
Figure BDA0003195891220000066
分别为三轴线速度,Ix,Iy,Iz为机身在x,y,z三个方向上的转动惯量,Jr为转动惯量,K1,…,K6为空气阻力系数,l为电机到质心的臂长,m为机身重量,g为重力加速度;U1,…,U4,Ω存在如下关系:
Figure BDA0003195891220000067
其中,U1为总升力,U2为滚转力矩,U3为俯仰力矩,U4为偏航力矩,b为升力系数,d为阻力系数,Ω1,…,Ω4分别为1至4号电机的转速;
步骤二,进行位姿PID控制器设计:
1)姿态控制回路为:
Figure BDA0003195891220000071
其中,k1...k9为姿态控制器参数,俯仰角误差
Figure BDA0003195891220000072
滚转角误差eθ=θc-θ,偏航角误差eψ=ψc-ψ,
Figure BDA0003195891220000073
为目标姿态角,
Figure BDA0003195891220000074
为当前姿态角,
Figure BDA0003195891220000075
分别为三轴目标角加速度,
Figure BDA0003195891220000076
分别为俯仰角误差速度、滚转角误差速度、偏航角误差速度;对应电机的转速表示如下:
Figure BDA0003195891220000077
其中,CT为升力系数,CQ为阻力系数;
2)位置控制回路为:
Figure BDA0003195891220000078
其中,k1...k9为位置控制器参数,x轴方向位置误差ex=xc-x,y轴方向位置误差ey=yc-y,z轴方向位置误差ez=zc-z,[xc,yc,zc]T为目标位置,[x,y,z]T为当前位置,
Figure BDA0003195891220000079
分别为x轴、y轴、z轴方向误差速度,
Figure BDA00031958912200000710
为x轴、y轴、z轴方向目标加速度;设ψc已知,可得:
Figure BDA00031958912200000711
步骤三,建立执行机构故障模型:
Figure BDA0003195891220000082
其中,控制输入u=[U1,U2,U3,U4],uF为受电机故障影响的真实的控制器输入,
Figure BDA0003195891220000083
Figure BDA0003195891220000081
为不确定的故障;
步骤四,进行PID控制器参数智能调节:
基于步骤三中的故障诊断信息,采用强化学习DDPG算法,通过搭建动作神经网络和评价神经网络,输入四旋翼无人机当前四旋翼的位置、速度、姿态角和角速度的状态,输出最优的控制器参数,实现PID控制器参数的智能调节,具体的DDPG算法过程如下:
1)随机初始化当前评价网络Q(S,A|θQ)和当前动作网络μ(S|θμ),以及评价网络参数θQ和动作网络参数θμ,其中S为状态,A为动作;
2)初始化目标评价网络Q′和目标动作网络μ′,并将网络参数赋值为θQ′←θQμ′←θμ
3)初始化经验回放池,以用于存放过往数据和提高数据利用率并降低数据相关性;
4)for episode=1 to M进行迭代,其中,M为最大训练回合数:
①为动作选择初始化一个随机过程N,选择高斯过程,提高探索率;
②获得初始状态S;
③在当前动作网络基于状态S得到动作A=μ(S|θμ)+N;
④执行动作A,得到新状态S′、奖励R和终止状态的标志end;
⑤将{S,A,S′,R,end}五元组存入经验回放池;
⑥当S=S′,从经验回放池中采样128个样本{Sj,Aj,S′j,Rj,endj},j=1,2,...,128,计算当前目标Q值yj
Figure BDA0003195891220000091
⑦使用均方损失误差
Figure BDA0003195891220000092
通过神经网络的梯度反向传播来更新当前评价网络的网路参数θQ;使用
Figure BDA0003195891220000093
更新当前动作网络的网络参数θμ
⑧每隔100个episode,更新目标评价网络和目标动作网络的网络参数:
Figure BDA0003195891220000094
⑨若S′为终止状态,则当前轮迭代完毕,否则跳转步骤③,进行下一轮迭代。
具体的DDPG算法参数设置如表1所示:
表1 DDPG算法参数设置
参数 设置值
最大训练回合数M 1×10<sup>4</sup>
学习率 2×10<sup>-3</sup>
衰减因子γ 0.99
经验回放池大小 1000
评价网络隐含层神经元个数 [300,400]
动作网络隐含层神经元个数 [300,400]
优选地,步骤四中的奖励,分为稀疏奖励和reward shaping奖励两种;其中,稀疏奖励为:在一个迭代回合中,当四旋翼均达到目标点时给予智能体奖励,其余时刻奖励为0,直至回合结束,每当四旋翼到达目标点获得奖励R=1,如果四旋翼越界,则给予惩罚R=-1,并结束回合;reward shaping奖励为:在一个迭代回合中,四旋翼每一步有一个基础奖励,并将四旋翼当前位置与目标位置的距离作为惩罚项,直至回合结束,每多一步给予奖励R=10,再减去四旋翼距目标点的距离作为惩罚,如果四旋翼越界,则给予惩罚R=-100,并结束回合。
实施例:
针对X型四旋翼无人机位姿系统,具体的仿真参数如下:惯性矩阵参数分别为Ix=1.75×10-2kg·m2,Iy=1.75×10-2kg·m2,Iz=3.18×10-2kg·m2;质量为1.5kg,螺旋桨升力系数为1.11×10-5N/(rad/s)2,螺旋桨扭力系数为1.49×10-7N·m/(rad/s)2,电机转速比例参数为646rad/s,电机转速偏执参数为166rad/s,转子的转动惯量为9.9×10-5kg·m2
仿真实验环境设置如下,姿态初值为[0,0,0]rad,位置初值为[0,0,5]m,目标位置为[0,0,5]m,给定初始扰动,即初始角速度[0.5,0.5,0.5]rad/s,初始速度为[0.5,0.5,0.5]m/s,
Figure BDA0003195891220000101
仿真过程中,根据X型四旋翼无人机自身状态和故障诊断,本发明通过位姿PID控制器结合强化学习调参技术,对四旋翼无人机的姿态和位置控制的PID控制参数进行了自整定,故障下的姿态角度响应如图1至图3所示,在惯性坐标下的位置响应如图4至图6所示,最终实现了目标位姿的到达与稳定。
以上仿真验证了本发明控制方法的有效性和对四旋翼无人机系统鲁棒性的保证。

Claims (2)

1.一种基于故障诊断结果的X型四旋翼无人机控制方法,其特征在于,包括如下步骤:
步骤一,建立X型四旋翼无人机的运动学模型,其具体形式如下:
Figure FDA0003195891210000011
其中,
Figure FDA0003195891210000012
为滚转角,θ为俯仰角,ψ为偏航角,
Figure FDA0003195891210000013
分别为三轴角加速度,
Figure FDA0003195891210000014
分别为三轴角速度,
Figure FDA0003195891210000015
分别为三轴线加速度,
Figure FDA0003195891210000016
分别为三轴线速度,Ix,Iy,Iz为机身在x,y,z三个方向上的转动惯量,Jr为转动惯量,K1,…,K6为空气阻力系数,l为电机到质心的臂长,m为机身重量,g为重力加速度;U1,…,U4,Ω存在如下关系:
Figure FDA0003195891210000017
其中,U1为总升力,U2为滚转力矩,U3为俯仰力矩,U4为偏航力矩,b为升力系数,d为阻力系数,Ω1,…,Ω4分别为1至4号电机的转速;
步骤二,进行位姿PID控制器设计:
1)姿态控制回路为:
Figure FDA0003195891210000021
其中,k1...k9为姿态控制器参数,俯仰角误差
Figure FDA0003195891210000022
滚转角误差eθ=θc-θ,偏航角误差eψ=ψc-ψ,
Figure FDA0003195891210000023
为目标姿态角,
Figure FDA0003195891210000024
为当前姿态角,
Figure FDA0003195891210000025
分别为三轴目标角加速度,
Figure FDA0003195891210000026
分别为俯仰角误差速度、滚转角误差速度、偏航角误差速度;对应电机的转速表示如下:
Figure FDA0003195891210000027
其中,CT为升力系数,CQ为阻力系数;
2)位置控制回路为:
Figure FDA0003195891210000028
其中,k1...k9为位置控制器参数,x轴方向位置误差ex=xc-x,y轴方向位置误差ey=yc-y,z轴方向位置误差ez=zc-z,[xc,yc,zc]T为目标位置,[x,y,z]T为当前位置,
Figure FDA0003195891210000029
分别为x轴、y轴、z轴方向误差速度,
Figure FDA00031958912100000210
为x轴、y轴、z轴方向目标加速度;设ψc已知,可得:
Figure FDA00031958912100000211
步骤三,建立执行机构故障模型:
Figure FDA0003195891210000031
其中,控制输入u=[U1,U2,U3,U4],uF为受电机故障影响的真实的控制器输入,
Figure FDA0003195891210000032
Figure FDA0003195891210000034
为不确定的故障;
步骤四,进行PID控制器参数智能调节:
基于步骤三中的故障诊断信息,采用强化学习DDPG算法,通过搭建动作神经网络和评价神经网络,输入四旋翼无人机当前四旋翼的位置、速度、姿态角和角速度的状态,输出最优的控制器参数,实现PID控制器参数的智能调节,具体的DDPG算法过程如下:
1)随机初始化当前评价网络Q(S,A|θQ)和当前动作网络μ(S|θμ),以及评价网络参数θQ和动作网络参数θμ,其中S为状态,A为动作;
2)初始化目标评价网络Q′和目标动作网络μ′,并将网络参数赋值为θQ′←θQμ′←θμ
3)初始化经验回放池,以用于存放过往数据和提高数据利用率并降低数据相关性;
4)for episode=1 to M进行迭代,其中,M为最大训练回合数:
①为动作选择初始化一个随机过程N;
②获得初始状态S;
③在当前动作网络基于状态S得到动作A=μ(S|θμ)+N;
④执行动作A,得到新状态S′、奖励R和终止状态的标志end;
⑤将{S,A,S′,R,end}五元组存入经验回放池;
⑥当S=S′,从经验回放池中采样128个样本{Sj,Aj,Sj′,Rj,endj},j=1,2,...,128,计算当前目标Q值yj
Figure FDA0003195891210000033
⑦使用均方损失误差
Figure FDA0003195891210000041
通过神经网络的梯度反向传播来更新当前评价网络的网路参数θQ;使用
Figure FDA0003195891210000042
更新当前动作网络的网络参数θμ
⑧每隔100个episode,更新目标评价网络和目标动作网络的网络参数:
Figure FDA0003195891210000043
⑨若S′为终止状态,则当前轮迭代完毕,否则跳转步骤③,进行下一轮迭代。
2.根据权利要求1所述的一种基于故障诊断结果的X型四旋翼无人机控制方法,其特征在于,步骤四中的奖励,分为稀疏奖励和reward shaping奖励两种;其中,稀疏奖励为:在一个迭代回合中,当四旋翼均达到目标点时给予智能体奖励,其余时刻奖励为0,直至回合结束,每当四旋翼到达目标点获得奖励R=1,如果四旋翼越界,则给予惩罚R=-1,并结束回合;reward shaping奖励为:在一个迭代回合中,四旋翼每一步有一个基础奖励,并将四旋翼当前位置与目标位置的距离作为惩罚项,直至回合结束,每多一步给予奖励R=10,再减去四旋翼距目标点的距离作为惩罚,如果四旋翼越界,则给予惩罚R=-100,并结束回合。
CN202110890650.8A 2021-08-04 2021-08-04 一种基于故障诊断结果的x型四旋翼无人机控制方法 Withdrawn CN113741491A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110890650.8A CN113741491A (zh) 2021-08-04 2021-08-04 一种基于故障诊断结果的x型四旋翼无人机控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110890650.8A CN113741491A (zh) 2021-08-04 2021-08-04 一种基于故障诊断结果的x型四旋翼无人机控制方法

Publications (1)

Publication Number Publication Date
CN113741491A true CN113741491A (zh) 2021-12-03

Family

ID=78730155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110890650.8A Withdrawn CN113741491A (zh) 2021-08-04 2021-08-04 一种基于故障诊断结果的x型四旋翼无人机控制方法

Country Status (1)

Country Link
CN (1) CN113741491A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083543A (zh) * 2021-12-22 2022-02-25 清华大学深圳国际研究生院 一种空间机械臂主动故障诊断方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083543A (zh) * 2021-12-22 2022-02-25 清华大学深圳国际研究生院 一种空间机械臂主动故障诊断方法

Similar Documents

Publication Publication Date Title
CN110673620B (zh) 一种基于深度强化学习的四旋翼无人机航线跟随控制方法
CN109343341B (zh) 一种基于深度强化学习的运载火箭垂直回收智能控制方法
Das et al. Dynamic inversion with zero-dynamics stabilisation for quadrotor control
CN106094860A (zh) 四旋翼飞行器及其控制方法
CN108803317A (zh) 自适应多变量四旋翼无人机有限时间容错控制方法
CN111273688B (zh) 基于事件触发的四旋翼无人机一致性编队控制方法
CN106707754A (zh) 一种基于切换系统的货物搬运旋翼无人机建模及自适应控制方法
CN111625019A (zh) 基于强化学习的四旋翼无人机悬挂空运系统轨迹规划方法
CN111781942B (zh) 一种基于自构造模糊神经网络的容错飞行控制方法
CN112684705B (zh) 一种四旋翼飞行器编队追踪控制方法
CN115657730B (zh) 一种大规模多旋翼无人机鲁棒分簇编队控制方法
CN112230670A (zh) 一种含预估器的多四旋翼飞行器的编队控制方法
CN115793453A (zh) 融合ai深度学习的旋翼飞行器轨迹跟踪自适应控制方法
CN113671825A (zh) 一种基于强化学习的机动智能决策规避导弹方法
CN113741491A (zh) 一种基于故障诊断结果的x型四旋翼无人机控制方法
CN111781945A (zh) 具有随机时延的多智能体编队控制方法
CN113268084B (zh) 一种无人机编队智能容错控制方法
CN111061282A (zh) 基于能量法的四旋翼无人机吊挂飞行系统控制方法
CN116820134A (zh) 基于深度强化学习的无人机编队保持控制方法
CN113568423A (zh) 一种考虑电机故障的四旋翼无人机智能容错控制方法
CN117215197A (zh) 四旋翼飞行器在线轨迹规划方法、系统、电子设备及介质
CN113885549B (zh) 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法
CN116301007A (zh) 基于强化学习的多四旋翼无人机集结型任务路径规划方法
CN113655808B (zh) 用于集群的有限时间自主编队控制方法及控制系统
Suprapto et al. Optimized neural network-direct inverse control for attitude control of heavy-lift hexacopter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211203

WW01 Invention patent application withdrawn after publication