CN113885549B - 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法 - Google Patents

基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法 Download PDF

Info

Publication number
CN113885549B
CN113885549B CN202111395210.1A CN202111395210A CN113885549B CN 113885549 B CN113885549 B CN 113885549B CN 202111395210 A CN202111395210 A CN 202111395210A CN 113885549 B CN113885549 B CN 113885549B
Authority
CN
China
Prior art keywords
rotor
dimension
clipping
neural network
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111395210.1A
Other languages
English (en)
Other versions
CN113885549A (zh
Inventor
薛文涛
吴行行
吴帅
叶辉
杨晓飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Xiaobo Intelligent Technology Co ltd
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202111395210.1A priority Critical patent/CN113885549B/zh
Publication of CN113885549A publication Critical patent/CN113885549A/zh
Application granted granted Critical
Publication of CN113885549B publication Critical patent/CN113885549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft

Abstract

本发明公开一种基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法。步骤是:1)构建四旋翼动力学模型,结合起飞悬停的任务要求搭建环境;2)完善任务环境,加入两种类型的风场模型;3)设置动作空间和状态空间,制定环境规则和状态边界值;4)优化PPO算法;基于维度裁剪修改目标函数、提出额外损失来解决零梯度问题;5)探索分布式奖励值信号;对分层的奖惩函数给予相应的权值;6)设计神经网络更新控制策略;使用MLP结构,包含价值神经网络和策略神经网络;7)使用基于维度裁剪的PPO算法训练无人机控制策略。本发明优化了强化学习PPO算法,用于训练在风场环境下四旋翼无人机的控制策略,以达到起飞悬停的姿态轨迹控制要求。

Description

基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法
技术领域
本发明属于四旋翼无人机的智能控制技术领域,尤其涉及一种基于维度裁剪的近端策略优化算法的无人机姿态轨迹控制方法。
背景技术
近年来,无人机被广泛应用于农业植保、公安、军事、消防应急等领域。四旋翼是典型的欠驱动非线性强耦合系统,其姿态控制和轨迹控制一直是研究的热点之一。但是,影响四旋翼飞行器的因素很多,如环境干扰、飞行时电机快速旋转产生的陀螺扭矩、空气阻力干扰、旋翼质量分布不均等。这种不确定性使得对四旋翼飞行器进行精确建模非常困难。因此,依赖精确建模的传统控制算法难以满足控制要求,探索一种能够将环境与可变动态适应性相结合的方法是非常必要的。在四旋翼控制方法研究中,根据预设的性能范围,传统控制方法难以快速收敛控制系统的跟踪误差。强化学习作为一种有效的无模型方法并应用于四旋翼飞行器以实现四旋翼飞行器系统的优化控制。利用神经网络开发智能飞行控制系统已逐渐成为一个非常热门的研究领域。
强化学习算法可以在接近现实世界复杂性的情况下取得成功。专利号CN111460650 A的专利采用了一种基于深度强化学习的无人机端到端控制方法,来完成无人机的自主着陆任务,该发明用到的Actor-Critic算法虽然在应对不同阶段中导航的高端控制策略上优于DQN等值函数强化学习算法,但在训练控制策略时,Actor网络的策略更新还是过于依赖Critic网络给出的优势值,样本采样率较低。专利号CN 108319286 A的专利采用一体化控制器来取代传统的内外环控制器,提供了一种基于近端策略优化算法的无人机目标跟踪控制方法,其仿真环境仅考虑在室内无干扰的情况下进行,这并不足以验证PPO算法能否有效的应用于真实情况下的无人机飞行。专利号CN 112650058 A的专利提出了一种基于强化学习四旋翼无人机轨迹控制方法,其设置的控制器回报函数过于简单,不利于四旋翼控制策略的探索。专利号CN 110488872A的专利一种基于深度强化学习的无人机实时路径规划方法,利用双重Q网络完成无人机的实施路径规划,但其设置的无人机动作空间集太少,仅8个方向(前进,左转45°,左转90°,左转135°,后退,右转135°,右转90°,右转45°),这使得在未知的干扰环境下(如随机风场、磁场等)四旋翼不能够快速收敛到稳定状态。
近端策略优化算法使用裁剪目标函数绑定当前策略的策略更新,实现稳定学习。当迭代从第i次开始时,策略生成当前样本批次Bi={(si,0,ai,0,ri,0),…,(si,N-1,ai,N-1,ri,N-1)},长度为N。然后策略πθ根据在Bi中采样的多个小批量完成更新。由于生成Bi的策略πθi与策略更新的目标策略πθ之间存在差异,PPO算法根据重要性采样(IS)权重rt校准策略πθi与目标策略πθ之间的统计差异。
此外,在“Schulman,J.,Levine,S.,Abbeel,P.,Jordan,M.,and Moritz,P.Trustregion policy optimization.In Proceedings of the 32nd InternationalConference on Machine Learning(ICML-15),pp.1889–1897,2015a.”中,为了限制策略更新量以保证学习的稳定性,PPO降低了IS权重。因此,PPO的目标函数由下式给出:
其中是/>的估计值,Bi在每个小批量中随机采样M个样本。
PPO通过裁剪目标函数而不是使用KL散度约束来限制策略更新次数稳定更新。好处是这种裁剪机制可以防止rt变得过小或过大,尤其是对于很多复杂的环境,稳定的更新范围更有利于更快更高效的训练。当简化裁剪后的目标函数时,可以得到:
且rt<1–ε时,/>
且rt>1+ε时,/>
在上述情况下,是常数并且梯度消失。这种零梯度的问题,尤其是在高动作维度的任务中,是非常严重的。所以正是因为PPO直接裁剪损失函数,PPO生成的零梯度样本极大地影响了样本效率,从而也影响了复杂四旋翼系统中的学习效率和跟踪精度。本发明提出的基于维度裁剪的PPO强化学习算法,在复杂的高维度环境下能够有效增加样本效率,在风切变和离散突风的风场环境下进行测试,也有效的验证了控制策略的抗干扰能力。
发明内容
本发明的目的是提出一种基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,用于四旋翼飞行器的姿态轨迹控制。不仅有效解决了PPO算法的零梯度问题,可以在保持良好采样效率的同时快速收敛,而且在控制精度上也有更好的表现。
本发明解决其技术问题所采用的技术方案如下。
一种基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,包括以下步骤:
S1:搭建四旋翼任务环境;
无人机控制系统为欠驱动系统,四输入六输出。建立固定在四旋翼上的惯性坐标系和体坐标系来描述四旋翼的姿态和位置。两个坐标系有如下转换关系:
其中为四旋翼的三个欧拉角,S{·}和C{·}表示为sin(·)和cos(·)。
四旋翼的非线性动力学方程如下:
设定任务要求为控制四旋翼从[0,0,0]的起始点起飞至[5,5,5]的目标点并稳定的悬停在目标点。
S2:对四旋翼无人机任务环境进行完善,加入风切变和离散突风两种风场模型;其中风切变的模型为其中,Vpw为产生的风切变风速值,Vw0为摩擦速度,由空气密度ρ和地面剪应力τ0决定,表达式为:/>k为Karman常数,H为四旋翼的飞行高度,一般取0.4,H0为粗糙度高度,一般取为0.05。离散突风的模型为其中Vwm为突风的峰值,dm为突风尺度范围,x为离突风中心的距离。
S3:根据任务环境中不同的姿态、轨迹控制要求来设置相应的动作空间和状态空间,制定环境规则和状态边界值;
S4:根据维度裁剪机制优化PPO算法,以训练任务环境的控制策略;将现有PPO算法的各个维度的重要性采样权重分别裁剪,更改为一个新的目标函数,如下所示:
其中πθ(·|st)=N(μ,σ2I)为目标策略,μ=(μ01,...,μD-1)是均值向量,D是动作维度,σ是方差,I是单位矩阵。当策略πθ被分解为策略维度时,πθ(·|st)=N(μ,σ2I),假设at,d是at的第d个元素,则
本发明还新增了一个额外的损失以防止IS权重离太远。最后的目标函数如下:
其中αIS是权重因子,类似于PPO的KL散度约束。它通过自适应方式改变其价值:
S5:在优化后的PPO算法中引入分布式奖励值信号;设置了一个结合多种奖励策略的奖励函数来替代单一简单的奖励函数。
S6:设计深度神经网络架构,强化学习算法的策略更新将作为神经网络的输入端;训练使用了两种神经网络,一个是critic神经网络,另一个是actor神经网络θ。四个策略子网络θi(i=1,2,3,4)组成了actor神经网络。
S7:使用基于维度裁剪的PPO算法在风场环境下训练策略,通过神经网络输出四旋翼的控制策略;训练过程中强化学习算法对控制策略进行更新,设定训练周期为N,四旋翼与环境在每个周期内进行交互,经验池中将存储所得到的信息,存储到一定批次后,数据将进入神经网络,用于算法对策略的更新迭代,直到N个周期全部训练完毕,所得到的策略网络结构将作为四旋翼无人机的控制策略来使用。
与现有的技术相比,本发明有如下优点:
1.本发明在近端策略优化算法的基础上训练控制策略,这是一种随即策略梯度算法,与如今相对成熟的确定性策略梯度的强化学习算法相比,确定性策略梯度的优势都建立在有良好的探索策略的基础上。而随机策略梯度可以提供更好的样本效率,这也直接影响控制策略收敛所需的时间步长,使训练相对更快更有效。
2.本发明通过在四旋翼的环境模型中加入了风切变和离散突风两种风场模型,极大程度的模拟真实环境,不仅为强化学习运用到实际环境提供了良好基础,也更能验证强化学习算法在复杂环境下的抗干扰能力很强。
3.现有的强化学习奖励函数设置都较为简单,本发明探索稀疏奖励、形式化奖励和分布奖励等多种奖励相结合的方法,可以共同促进强化学习算法有效的收敛,有效减少四旋翼控制策略的无效探索。
4.本发明的动作集为四旋翼四个转子的转速,在训练时面对未知的复杂环境时,四个转子转速作为控制器的四个输出通道能够更精准的控制无人机。
5.本发明在近端策略优化算法上增加了维度裁剪机制,加快了PPO算法的样本学习效率,有效的解决了PPO算法的零梯度问题。
附图说明
图1是本发明的方法流程图;
图2(a)是本发明的无人机轨迹观测模型示意图;
图2(b)是本发明的无人机姿态观测3D模型示意图;
图3是本发明的风场模型风切变示意图;
图4是本发明的风场模型半波长离散突风示意图;
图5是本发明无人机起飞悬停任务流程图;
图6是无人机强化学习控制系统结构图;
图7(a)是本发明的策略子网络结构图;
图7(b)是本发明的价值函数估计器网络结构图;
图8是本发明的系统网络框架结构图;
图9是控制器与环境交互流程图;
图10(a)是本发明实施例的算法优化前后的稳态误差对比图;
图10(b)是本发明实施例的算法优化前后的平均累计奖励对比图;
图11是本发明实施例两种算法在无人机悬停时姿态的仿真对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,包括以下步骤:
S1:搭建四旋翼任务环境;
本发明的无人机轨迹观测模型示意图和姿态观测3D模型示意图如图2所示。建立了两个坐标系来描述四旋翼的姿态和位置:第一个是惯性坐标系,固定在地球上,第二个是惯性坐标系,它是固定在四旋翼飞行器上的身体固定坐标系,其原点是四旋翼飞行器的质心。一开始两个坐标系是重合的,但在飞行过程中,机身固定坐标系会旋转移动,而惯性坐标系始终保持不变。
在本发明中,使用三个欧拉角来描述绕x轴、y轴和z轴的旋转过程。四旋翼飞行器质心的位置在惯性坐标系中定义为p=[x,y,z]T,并且/>可以表示为四旋翼飞行器的速度和加速度。
分布在十字形框架末端的四个旋翼用于驱动四旋翼。质心到每个转子的距离为L。电子调速器(ESC)通过脉宽调制信号控制转子的转速。通过电调,转子产生的推力可以与发送到转子的PWM信号近似成正比,即
Ti=Kui,i=1,2,3,4.
其中Ti(i=1,2,3,4)代表产生的推力。K代表推力增益。ui(i=1,2,3,4)代表归一化为[0,1]的PWM信号;ui=1时,表示系统将获得最大推力,ui=0表示系统将获得零推力。
接着利用扭矩驱动的旋转运动和力驱动的平移运动的动力学特性来建立动力学模型。
对于旋转运动特性,欧拉旋转方程将应用于固定的四旋翼框架:
其中I=diag(Ix,Iy,Iz)是四旋翼的对角惯性矩阵,是四旋翼三轴的角速度,M是施加到四旋翼上的扭矩之和。/>是四旋翼的控制力矩,是不同升力和推力的结果:
控制力矩和τθ围绕车身固定框架的x轴和y轴。控制力矩τψ的方向为z轴方向,即四个转子产生的反作用力矩之和。反作用力矩的值与推力成正比,系数为Kψ。陀螺效应由四个微调器产生,其中每个转子的转动惯量为Ip,Ω是每个转子的扰动效应。/>是四旋翼飞行的阻力力矩,其中/>和dψ是三个轴的旋转阻力系数。
对于平移运动,根据牛顿第二定律在惯性坐标系中得到:
其中Fe表示作用在四旋翼机身上的合力,Fl=[0,0,Tz]表示升力矢量,其中是产生的升力之和,Ti是每个螺旋桨产生的升力。/>为空气阻力,其中dx,dy,dz为绕三个轴方向的阻力系数。G=[0,0,-mg]T是重力,其中g是重力加速度。m是四旋翼飞行器的质量。
当固定坐标系中的升力转换为惯性坐标系时,需要用到变换矩阵R来实现坐标系的统一:
其中为四旋翼的三个欧拉角,S{·}和C{·}表示为sin(·)和cos(·)。
最后,四旋翼的非线性动力学方程如下:
模型中所使用的参数及意义如下表1所示:
S2:对四旋翼无人机任务环境进行完善,加入风场模型;
对风场进行工程化建模,模型主要反映了风场现象最本质的机理和形成过程,可以利用此模型产生风速,为模拟飞行器飞行时较真实的外界风场环境提供了技术手段。以下为本发明中用到的风场模型:
S2.1:风切变
本发明主要研究地面边界层风切变,是考虑到在实际飞行中,四旋翼飞行器的飞行高度有限。风切变模型示意图如图3所示,该模型的风速值在水平方向上为定值,竖直方向上与飞行器飞行高度有关。其对数模型可表达为:
式中,Vpw为产生的风切变风速值,Vw0为摩擦速度,由空气密度ρ和地面剪应力τ0决定,表达式为:k为Karman常数,H为四旋翼的飞行高度,一般取0.4,H0为粗糙度高度,一般取为0.05。
S2.2:离散突风
离散突风的风速在各个方向上会产生突然剧烈的变化,又称为阵风,通常在应用研究中采用半波长离散突风。离散突风模型示意图如图4所示,其模型可表示为:
其中Vwm为突风的峰值,dm为突风尺度范围,x为离突风中心的距离。
S3:根据任务环境中不同的姿态、轨迹控制要求来设置相应的动作空间和状态空间,制定环境规则和状态边界值。
S3.1:姿态控制是四旋翼无人机控制系统中最基础也是最重要的部分,在机体与环境交互的过程中,设定转子转速为四旋翼控制策略需要选择的动作,三个欧拉角和其角速度为四旋翼的状态,这样就得到了三维的动作空间和六维的状态空间。为了满足四旋翼飞行器实际飞行的安全要求,在保证物理可行性的条件下对其进行约束,设置动作空间的大小为[0,500],姿态角速度的状态空间大小设置为[-4.5,4.5],也满足陀螺仪传感器的限制,姿态角的状态空间大小设置为[-45°,45°]。
S3.2:无人机的轨迹控制,设定转子转速为四旋翼控制策略需要选择的动作,其位置为四旋翼的状态,这样就得到了三维的动作空间和三维的状态空间。设置动作空间的大小为[0,500],状态空间大小为[-10,10]。
S3.3:无人机的姿态和轨迹同时控制的起飞悬停任务,任务流程图如图5所示。控制四旋翼从[0,0,0]的起始点起飞至[5,5,5]的目标点并稳定的悬停在目标点。设定转子转速为四旋翼控制策略需要选择的动作,三个欧拉角速度、滚转角、俯仰角以及四旋翼的位置作为四旋翼的观测状态,偏航角不作限制,这样就得到了三维的动作空间和八维的状态空间。设置动作空间的大小为[0,500],位置的状态空间大小为[-10,10],姿态角速度的状态空间大小设置为[-4.5,4.5],滚转、俯仰角的状态空间大小设置为[-45°,45°]。
S4:根据维度裁剪机制优化PPO算法,以训练任务环境的控制策略;
强化学习控制系统结构图如图6所示,近端策略优化算法在执行连续动作任务时使用高斯分布作为随机策略,πθ(·|st)=N(μ,σ2I),即其中μ=(μ01,...,μD-1)是均值向量,D是动作维度,σ是方差,I是单位矩阵。当策略πθ被分解为策略维度,πθ,d(·st)~N(μd2),假设at,d是at的第d个元素,则
在保持裁剪优点的同时,将PPO算法各个维度的重要性采样权重分别裁剪,更改为一个新的目标函数,如下所示:
此外,新增一个额外的损失以防止IS权重离/>太远。最后目标函数如下:
其中αIS是权重因子,它通过自适应方式改变其价值:
最终算法的伪代码如表2所示。
S5:在优化后的PPO算法中引入分布式奖励值信号;
现有的强化学习奖励函数设置比较简单:
其中是四旋翼的姿态角观测值,/>是角速度的观测值,(x,y,z)是位置观测值,r是单步奖励值。在初始化阶段,四旋翼可能会出现过大的角度偏差或位置偏转。本发明设置了一个结合多种奖励策略的奖励函数。
Fig.1.
Fig.2.r2=-γ*arctan(s)*(x2+y2+z2)
Fig.3.
Fig.4.
rnew=r1+r2+r3+r4+r5
其中α,β和γ是三个误差系数来控制姿态和位置相对于奖惩函数的权重,s是四旋翼当前位置与目标位置间的直线距离。当四旋翼越靠近目标点时,姿态角奖惩值的权值会增大,当四旋翼开始偏离目标点时,位置奖惩值得权值会增大。rt是四旋翼稳定状态下的奖励,一般取0.5,rp1和rp2分别代表姿态角和位置的边界惩罚,一般取-1,目标误差值一般取0.1。
S6:设计深度神经网络架构,强化学习算法的策略更新将作为神经网络的输入端;神经网络的结构图如图7所示,训练使用两种神经网络,一个是critic神经网络,另一个是actor神经网θ。四个策略子网络θi(i=1,2,3,4)组成了actor神经网络。它们的权重在训练后将得到优化。
由于神经网络良好的泛化能力,本发明使用了多层感知器MLP结构。在actor神经网络的结构中,每个策略子网络有两个隐藏层,每个隐藏层有64个tanh节点,状态向量是一个八维的向量。critic神经网络具有相同的结构,它的唯一输出是估计值函数,用于评估在给定状态下选择给定动作的优势。
神经网络参数如表3所示:
S7:使用基于维度裁剪的PPO算法在风场环境下训练策略,通过神经网络输出四旋翼的控制策略;
如图8所示,进入训练过程时,同一个状态向量进入两个神经网络作为网络输入。四个子网络的输出分别为μi和σi(i=1,2,3,4),分别对应高斯分布的四组均值和标准差。高斯分布随机采样一组动作,并将所选动作归一化为ui(i=1,2,3,4)。μi成为四旋翼飞行器的输入,它会变成一个新的状态。
当前actor网络收集到一批状态向量后,将四个策略子网络的网络参数复制到老actor网络中。进入老actor网络的参数保持不变。当进入当前批次的状态时,四个子网络继续训练和更新。对于critic神经网络,它产生的优势值将评估为实现这些状态而采取的措施的质量。在使用梯度下降法最小化其参数的更新后,critic神经网络将优势值和参数一起馈送到策略更新环节,从而完成actor神经网络的更新过程,控制器与环境交互流程图如图9所示。
在训练过程结束后,如图10所示,基于维度裁剪的PPO算法在学习速率上要优于PPO算法。面对高维度任务的训练环境,盲目探索的PPO算法容易出现零梯度问题,导致“学不会”的情况。如图11所示,基于维度裁剪的PPO算法不仅能有效地学习控制策略,在随机风场的干扰下抗干扰能力也更强,姿态的控制精度也相对更高,侧面说明在结合风场的环境下训练,基于维度裁剪的PPO算法样本采样率更高,学习到的控制策略精度也更高。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,包括以下步骤:
1)搭建四旋翼任务环境;根据无人机旋转特性和平移特性建立四旋翼模型,设计任务要求为无人机从起始点起飞,悬停至目标点;根据任务要求和四旋翼模型搭建任务环境;
2)对四旋翼无人机任务环境进行完善,加入风切变和离散突风两种类型的风场模型;
3)根据任务环境中不同的姿态、轨迹控制要求来设置相应的动作空间和状态空间,制定环境规则和状态边界值;
4)得到训练任务环境的控制策略,需要依据维度裁剪机制来优化PPO算法;更改算法中的目标函数并提出额外损失;
5)在优化后的PPO算法中引入分布式奖励值信号;根据状态边界值设定惩罚项,通过对分层的奖惩函数给予相应的权值;
6)设计深度神经网络架构,强化学习算法的策略更新将作为神经网络的输入端;使用多层感知器MLP结构;
7)使用基于维度裁剪的PPO算法在风场环境下训练策略,通过神经网络输出四旋翼的控制策略;训练完毕后观察无人机的控制效果,验证强化学习算法训练的控制策略的抗干扰能力。
2.根据权利要求1所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,步骤1)中,构建的四旋翼学模型为设定任务要求为控制四旋翼从[0,0,0]的起始点起飞至[5,5,5]的目标点并稳定的悬停在目标点,其中[x,y,z]T和/>分别为四旋翼在惯性坐标系的位置和姿态,m为四旋翼飞行器质量,/>τθψ是四旋翼绕x、y、z轴的控制力矩,/>dθ,dψ是三个轴的旋转阻力系数,Ip为转子的转动惯量,Ω是转子的扰动效应,Ix,Iy,Iz分别为四旋翼绕三个轴的转动惯量,Tz是转子产生的升力之和,S{·}和C{·}记为sin(·)和cos(·),dx,dy,dz为绕三个轴方向的阻力系数。
3.根据权利要求1所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,步骤2),在四旋翼任务环境中加入风切变和离散突风两种风场模型,其中风切变的模型为Vpw为产生的风切变风速值,Vw0为摩擦速度,由空气密度ρ和地面剪应力τ0决定,表达式为:/>k为Karman常数,H为四旋翼的飞行高度,一般取0.4,H0为粗糙度高度,一般取为0.05;离散突风的模型为/>其中Vwm为突风的峰值,dm为突风尺度范围,x为离突风中心的距离。
4.根据权利要求1所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,步骤3)中,偏航角不作限制,根据任务环境设置一个三维的动作空间和八维的状态空间;动作输入为四旋翼转子的转速,设置动作空间的大小为[0,500],位置的状态空间大小为[-10,10],姿态角速度的状态空间大小设置为[-4.5,4.5],滚转、俯仰角的状态空间大小设置为[-45°,45°]。
5.根据权利要求1所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,步骤4)中,将现有PPO算法中各个维度的重要性维度权重分别裁剪,更改为一个新的目标函数:
其中πθ(·|st)=N(μ,σ2I)为目标策略,μ=(μ01,...,μD-1)是均值向量,D是动作维度,σ是方差,I是单位矩阵;当策略πθ被分解为策略维度时,πθ,d(·|st)~N(μd2),设at,d是at的第d个元素,则
6.根据权利要求5所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,加入一个额外的损失最后的策略函数如下:
其中αIS是权重因子,它通过自适应方式改变其价值:
7.根据权利要求1所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,步骤5)中,设置了一个结合多种奖励策略的奖励函数来替代单一简单的奖励函数,奖励函数通过如下形式获得:
r2=-γ*arctan(s)*(x2+y2+z2)
rnew=r1+r2+r3+r4+r5
其中α,β和γ是三个误差系数来控制姿态和位置相对于奖惩函数的权重,s是四旋翼当前位置与目标位置间的直线距离;rt是四旋翼稳定状态下的奖励,取0.5,rp1和rp2分别代表姿态角和位置的边界惩罚,取-1,目标误差取0.1。
8.根据权利要求1所述的基于维度裁剪的PPO算法的四旋翼姿态轨迹控制方法,其特征在于,步骤6)中的神经网络包括价值神经网络和策略神经网络,每个策略神经网络有四个子网络组成,使用多层感知器即MLP结构;在策略神经网络的结构中,每个策略子网络有两个隐藏层,每个隐藏层有64个tanh节点;价值神经网络具有相同的结构,其唯一输出是估计值函数。
CN202111395210.1A 2021-11-23 2021-11-23 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法 Active CN113885549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111395210.1A CN113885549B (zh) 2021-11-23 2021-11-23 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111395210.1A CN113885549B (zh) 2021-11-23 2021-11-23 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法

Publications (2)

Publication Number Publication Date
CN113885549A CN113885549A (zh) 2022-01-04
CN113885549B true CN113885549B (zh) 2023-11-21

Family

ID=79015520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111395210.1A Active CN113885549B (zh) 2021-11-23 2021-11-23 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法

Country Status (1)

Country Link
CN (1) CN113885549B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117215197B (zh) * 2023-10-23 2024-03-29 南开大学 四旋翼飞行器在线轨迹规划方法、系统、电子设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343341A (zh) * 2018-11-21 2019-02-15 北京航天自动控制研究所 一种基于深度强化学习的运载火箭垂直回收智能控制方法
CN110488861A (zh) * 2019-07-30 2019-11-22 北京邮电大学 基于深度强化学习的无人机轨迹优化方法、装置和无人机
CN111580544A (zh) * 2020-03-25 2020-08-25 北京航空航天大学 一种基于强化学习ppo算法的无人机目标跟踪控制方法
CN111959819A (zh) * 2020-06-05 2020-11-20 江苏科技大学 一种多旋翼无人机算法验证与调参系统及其使用方法
JP2021034050A (ja) * 2019-08-21 2021-03-01 哈爾浜工程大学 強化学習に基づくauv行動計画及び動作制御方法
CN112650058A (zh) * 2020-12-23 2021-04-13 西北工业大学 一种基于强化学习的四旋翼无人机轨迹控制方法
CN113281999A (zh) * 2021-04-23 2021-08-20 南京大学 一种基于强化学习和迁移学习的无人机自主飞行训练方法
CN113671825A (zh) * 2021-07-07 2021-11-19 西北工业大学 一种基于强化学习的机动智能决策规避导弹方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343341A (zh) * 2018-11-21 2019-02-15 北京航天自动控制研究所 一种基于深度强化学习的运载火箭垂直回收智能控制方法
CN110488861A (zh) * 2019-07-30 2019-11-22 北京邮电大学 基于深度强化学习的无人机轨迹优化方法、装置和无人机
JP2021034050A (ja) * 2019-08-21 2021-03-01 哈爾浜工程大学 強化学習に基づくauv行動計画及び動作制御方法
CN111580544A (zh) * 2020-03-25 2020-08-25 北京航空航天大学 一种基于强化学习ppo算法的无人机目标跟踪控制方法
CN111959819A (zh) * 2020-06-05 2020-11-20 江苏科技大学 一种多旋翼无人机算法验证与调参系统及其使用方法
CN112650058A (zh) * 2020-12-23 2021-04-13 西北工业大学 一种基于强化学习的四旋翼无人机轨迹控制方法
CN113281999A (zh) * 2021-04-23 2021-08-20 南京大学 一种基于强化学习和迁移学习的无人机自主飞行训练方法
CN113671825A (zh) * 2021-07-07 2021-11-19 西北工业大学 一种基于强化学习的机动智能决策规避导弹方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于强化学习的飞行自动驾驶仪设计;南杨;李中健;叶文伟;;电子设计工程(第10期);51-53 *
基于组合滑模的升力受限四旋翼轨迹跟踪;陶少俊;薛文涛;杨晓飞;控制工程(第011期);1907-1914 *

Also Published As

Publication number Publication date
CN113885549A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN108388270B (zh) 面向安全域的集群无人机轨迹姿态协同控制方法
Nodland et al. Neural network-based optimal adaptive output feedback control of a helicopter UAV
Raffo et al. Robust nonlinear control for path tracking of a quad‐rotor helicopter
CN107491083B (zh) 一种基于饱和自适应滑模控制的四旋翼自主着船方法
CN111538255B (zh) 一种反蜂群无人机的飞行器控制方法及系统
Yildiz et al. Adaptive nonlinear hierarchical control of a quad tilt-wing UAV
Jiang et al. Enhanced LQR control for unmanned helicopter in hover
CN113885549B (zh) 基于维度裁剪的ppo算法的四旋翼姿态轨迹控制方法
Chen Research on AI application in the field of quadcopter UAVs
Kose et al. Simultaneous design of morphing hexarotor and autopilot system by using deep neural network and SPSA
Velagić et al. Design of LQR controller for 3D trajectory tracking of octocopter unmanned aerial vehicle
Shen et al. Adaptive Neural Network Extended State Observer-Based Finite-Time Convergent Sliding Mode Control for a Quad Tiltrotor UAV
Akbar et al. Adaptive modified super-twisting control for a quadrotor helicopter with a nonlinear sliding surface
Nemes Synopsis of soft computing techniques used in quadrotor UAV modelling and control
CN116301007A (zh) 基于强化学习的多四旋翼无人机集结型任务路径规划方法
CN116755328A (zh) 基于切换模糊模型的倾转旋翼无人机过渡段飞行控制方法
Housny et al. Robust sliding mode control for quadrotor UAV
CN114237268A (zh) 一种基于深度强化学习的无人机强鲁棒姿态控制方法
Kadmiry Fuzzy control for an unmanned helicopter
Lin et al. Modelling and attitude control of novel multi-ducted-fan aerial vehicle in forward flight
CN113741491A (zh) 一种基于故障诊断结果的x型四旋翼无人机控制方法
McIntosh et al. A Switching-Free Control Architecture for Transition Maneuvers of a Quadrotor Biplane Tailsitter
Tingting et al. Formation control of multiple UAVs via pigeon inspired optimisation
Zhang et al. Automatic patrol trajectory control of UAV in a forest surveillance and fires detection mission
CN113359805B (zh) 基于原鸽多行为智能的无人机抗干扰控制系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240302

Address after: Room A529, Building 2, No. 1999 Diamond Road, Weitang Town, Xiangcheng District, Suzhou City, Jiangsu Province, 215100

Patentee after: Suzhou Xiaobo Intelligent Technology Co.,Ltd.

Guo jiahuodiqu after: Zhong Guo

Address before: 212100 NO.666, Changhui Road, Dantu District, Zhenjiang City, Jiangsu Province

Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY

Guo jiahuodiqu before: Zhong Guo

TR01 Transfer of patent right