CN113736120B - 一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法 - Google Patents

一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法 Download PDF

Info

Publication number
CN113736120B
CN113736120B CN202111047416.5A CN202111047416A CN113736120B CN 113736120 B CN113736120 B CN 113736120B CN 202111047416 A CN202111047416 A CN 202111047416A CN 113736120 B CN113736120 B CN 113736120B
Authority
CN
China
Prior art keywords
quaternary ammonium
ammonium salt
spiro
polyaryletherketone
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111047416.5A
Other languages
English (en)
Other versions
CN113736120A (zh
Inventor
王哲
王凇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202111047416.5A priority Critical patent/CN113736120B/zh
Publication of CN113736120A publication Critical patent/CN113736120A/zh
Application granted granted Critical
Publication of CN113736120B publication Critical patent/CN113736120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明提供了一种燃料电池用N‑螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法,该阴离子交换膜由含有不同比例烯丙基侧链的聚芳醚酮为高分子基体,高耐碱的8‑(烯丙氧基)‑5‑氮杂‑螺[4.5]癸烷(AL‑ASD)离子液体为活性集团,制备而成的一种聚芳醚酮阴离子交换膜材料。结果表明,该阴离子交换膜是一种具有高耐碱稳定性、良好的力学强度、柔韧性能和较高的尺寸稳定性的材料。其中ASD‑PAEK‑0.7在30℃‑80℃,氢氧根离子电导率是0.029‑0.065 S/cm‑1。在80℃的1 M KOH溶液中浸泡720小时后,ASD‑PAEK‑0.7阴离子交换膜的剩余电导率保持在其初始值的84%以上。另外,ASD‑PAEK‑0.7阴离子交换膜在80℃的溶胀率仅有6.3%。且其拉伸强度在43‑51MPa,柔韧性良好,有望应用于燃料电池领域。

Description

一种燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜 的制备方法
技术领域
本发明提供了一种燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜及其制备方法,属于高分子化学和阴离子交换膜燃料电池领域。
背景技术
燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置,被认为是最有前景的环保电源和常规化石燃料的替代品。其转化效率高,产物清洁无污染,其排放物大部分是水。碱性燃料电池主要应用在航空航天领域,为航天飞机提供动力和饮用水。碱性阴离子交换膜燃料电池因其成本低,碱性条件下反应动力学过程较快,近年来发展较为迅速。
碱性阴离子交换膜作为碱性阴离子交换膜燃料电池的关键组成部分,起到分离燃料和氧化剂的作用,同时传递OH-离子。实际应用中,要求碱性阴离子交换膜具有良好的热稳定性、化学稳定性,足够的机械强度,一定的离子电导率。为提高碱性条件下的稳定性,近年来,联苯结构主链或无醚键结构主链研究较为火热,以及变氨基结构。或者是提高阳离子集团的稳定性,增加季铵盐周边的位阻等,如N-螺环结构季铵盐。聚芳醚酮的化学稳定性较好,耐酸碱腐蚀性好。N-螺环季铵盐增大了季铵盐的空间位阻,降低了碱性条件下OH-对季铵盐集团的亲核攻击,提高了耐碱稳定性。
发明内容
本发明合成了一种双侧带有烯丙基支链的聚芳醚酮,以其改性聚芳醚酮为基质,合成了高耐碱的N-螺环季铵盐离子液体作为阳离子团,制备了一种燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜。
本发明提供一种料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜制备方法,步骤和条件如下:
(1)含有不同比例不饱和双键结构的聚芳醚酮的制备
将有机单体双酚AF、4,4'-二氟二苯甲酮和2,2'-二烯丙基双酚A按照摩尔比(分别是0.4:1:0.6,0.3:1:0.7,0.2:1:0.8和0.1:1:0.9)溶于环丁砜溶剂中,加入1-2倍摩尔量的无水碳酸钾,在机械搅拌和氮气保护下,通过芳香族亲核取代反应合成聚芳醚酮主链;
(2) N-螺环季铵盐离子液体的制备
a、8-羟基-5-氮杂-螺[4.5]癸烷(OH-ASD)的制备
将1,4-二溴丁烷和4-羟基哌啶在碳酸钾的催化下以摩尔比1:1反应,将1,4-二溴丁烷乙醇溶液和无水碳酸钾加热至回流,搅拌下滴加4-羟基哌啶的乙醇溶液,保持回流24小时,将产物在过量甲基叔丁基醚中沉淀。放置在真空烘箱中40℃烘干24小时;
b、8-(烯丙氧基)-5-氮杂-螺[4.5]癸烷(AL-ASD)离子液体的制备
将8-羟基-5-氮杂-螺[4.5]癸烷和氢化钠以摩尔比1:1.5溶解在无水二甲基亚砜(DMSO)中,反应彻底后,加入3-溴丙烯2h-4h,即可获得N-螺环离子液体支链,在甲苯中沉淀;
(3) N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备
将聚芳醚酮和N-螺环季铵盐离子液体溶解N-甲基吡咯烷酮中搅拌12个小时,加入一定量的过氧化苯甲酰在35℃反应12小时。将产物在乙醇中沉淀、干燥,并在N-甲基吡咯烷酮中溶解,采用流延法成膜。
本发明的有益效果
本发明制备的一种燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜,该阴离子交换膜的显著特点在于合成了具有高耐碱的具有双侧不饱和双键结构的聚芳醚酮为高分子基体,制备了高耐碱的N-螺环季铵盐离子液体为活性集团,复合而成一种具有高耐碱稳定性、良好的力学强度、柔韧性能和较高的尺寸稳定性的阴离子交换膜材料。合成的具有双侧烯丙基侧链的聚芳醚酮,拓展了聚芳醚酮的应用条件。N-螺环季铵盐具有较高的耐碱稳定性,通过接入3-溴丙烯,跟主链接枝后形成N-螺环季铵盐与主链之间形成5碳间隔的柔性烷基链,有利于亲水相和疏水相形成微相分离结构,促进OH-离子传递。同时未接枝的烯丙基侧链,增加膜材料的疏水性,阻碍了水分子的渗入,提高膜材料的尺寸稳定性。同时对OH-对离子集团的进攻有一定的抑制作用,提高了耐碱稳定性。相对有其他以聚芳醚酮为基质的阴离子交换膜有显著的优势。
附图说明
图1 膜材料制备过程实物展示
图2a、图2b分别是N-螺环季铵盐离子液体和聚芳醚酮的核磁氢谱谱图;
图3为膜样品在不同温度下的吸水率图和溶胀率图;
图4为膜样品的电导率随温度变化曲线图;
图5为膜样品的拉伸图;
图6为膜样品的测试耐碱稳定性。
具体实施方式
首先,1,4-二溴丁烷和4-羟基哌啶合成8-羟基-5-氮杂-螺[4.5]癸烷(OH-ASD)。然后和3-溴丙烯合成离子液体(如式Ⅰ(a)所示)。4,4'-二氟二苯甲酮、2,2'-二烯丙基双酚A和双酚AF通过芳香族亲核取代反应合成带有不饱和键的聚芳醚酮(PAEK-X)(如式Ⅰ(b)所示)。在这项工作中,其中 x (x = 0.6、0.7、0.8 和 0.9) 表示含烯丙基双酚单体的摩尔百分比占双酚单体总摩尔数。
在此,该发明以ASD-PAEK-0.7 的合成为例,描述一种燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜制备的具体实施步骤:
(1)含有双侧烯丙基支链结构的聚芳醚酮的制备
首先,将4,4'-二氟二苯甲酮、双酚AF、2,2'-二烯丙基双酚A和K2CO3以摩尔比1:0.3:0.7:1.5加入到带有机械搅拌器的100 mL三口烧瓶中。在氮气气氛下,加入环丁砜和甲苯溶解并搅拌均匀。将混合物在120℃-130℃保持回流4小时,然后缓慢升温至180℃,直到混合物溶液变得粘稠。将产物倒入去离子水中并快速搅拌得到白色固体沉淀,命名为PAEK-0.7。最后,将产物切碎并在蒸馏水中煮沸3-5次,然后在60℃下真空干燥12小时;
(2)N-螺环季铵盐离子液体的制备
a、8-羟基-5-氮杂-螺[4.5]癸烷(OH-ASD)的制备:
将6.16 mL的1,4-二溴丁烷和等摩尔碳酸钾加入到50 mL的乙醇溶液中加热至回流,在搅拌下,缓慢滴加5.17g 4-羟基哌啶的20 mL乙醇溶液,保持回流24小时,将产物在过量甲基叔丁基醚中沉淀。放置在40℃真空烘箱中干燥24小时;
b、8-(烯丙氧基)-5-氮杂-螺[4.5]癸烷(AL-ASD)离子液体的制备:
将8-羟基-5-氮杂-螺[4.5]癸烷和氢化钠以摩尔比1:1.5溶解在20 mL无水二甲基亚砜(DMSO)中,反应6小时后,加入等摩尔3-溴丙烯反应2-4个小时,并在过量甲苯中沉淀;
(3)N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备
将0.3 g PAEK-0.7和0.235 g AL-ASD 在35℃搅拌下溶解在 12 mL N-甲基吡咯烷酮溶剂中过夜。然后将过氧化苯甲酰(BPO,0.412g)加入到溶液中并保持搅拌。反应12小时后,混合物用乙醇沉淀并洗涤,在40°C真空干燥。最后,将聚合物0.3 g溶解在8 mL N-甲基吡咯烷酮溶剂中,然后将溶液倒入干净的玻璃板上并在80 °C下干燥。所得膜在1M KOH水溶液中浸泡48小时,使用前用去离子水冲洗数次。
下面对制得的膜样品ASD-PAEK-0.6、ASD-PAEK-0.7、ASD-PAEK-0.8、ASD-PAEK-0.9,进行结构表征和性能表征。
(1)核磁谱图
烯丙基 N-螺环阳离子 (AL-ASD) 是由威廉姆森合成设计的。 如图 2(a) 所示,AL-ASD 的化学结构由 1H NMR 确认,显示了 OH-ASD 的特征信号(即 3.60 ppm (H2',H4'), 3.45 ppm (H5'), 2.13–1.73 ppm (H6', H3')) 和烯丙基(即 5.94–5.81 (Hb)、5.09-5.33 (Ha) 和 4.00 ppm (Hc))。 在 PAEK-x 的光谱(图 2(b))中,6.63-6.15 ppm(Hc,Hb)的信号对应于 CH=CH 质子。 此外,在 2.87 ppm(H2、H3、H5)和 2.05 ppm(H1、H4)处出现的信号属于 N-螺环的质子。
(2)吸水率、溶胀率和阴离子电导率
图3为膜样品在80℃下的吸水率和溶胀率图,具有双侧烯丙基支链的 PAEK 增加了其自身的疏水性。 随着接枝的增加,ASD-PAEK-0.7的吸水率和疏水性达到了较好的平衡。如图 3所示,ASD-PAEK-X 膜具有更好的尺寸稳定性。 ASD-PAEK-0.7的吸水率仅为3.2%,溶胀率仅为6.35%,在有文献报道的具有5-/6-元的N-螺环AEMs中也是最好的;图4为膜样品的离子传导率随温度变化曲线图,由图可知, ASD-PAEK-0.7在 80°C 时表现出最高的 OH- 电导率为 64.6 mS cm-1。 然而,随着未接枝的疏水性烯丙基侧链增加,抑制了吸水率的进一步提高,不利于OH- 传输。 因此,需要进一步提高吸水率和接枝率,同时保持尺寸稳定性。
(3)机械性能
图5为膜样品的拉伸强度(TS)和断裂伸长率(EB),该膜材料具有较好的柔韧性,其拉伸强度为43-51 MPa,断裂伸长率在3.63%-5.35%的范围。随着接枝率的增加,膜材料的拉伸强度略有下降。由于接枝的柔性侧链增加链缠结,增加了其断裂伸长率。
(4)耐碱稳定性
图6为膜的耐碱稳定性测试图,为了测试该阴离子交换膜的长期化学稳定性,将膜置于80 oC的1M KOH溶液中保持720个小时,测试其在30 oC的传导率变化。可以看出该阴离子交换膜具有较好的耐碱稳定性,720个小时后电导率依旧保持在84%以上,此外,ASD-PAEK-0.7的拉伸强度下降了28.8 %。
综上所述,本发明提供的一种燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜及其制备方法。该阴离子交换膜由含有不同比例的烯丙基侧链的聚芳醚酮为高分子基体,制备了高耐碱的8-(烯丙氧基)-5-氮杂-螺[4.5]癸烷(AL-ASD)离子液体为活性集团,制备而成的一种聚芳醚酮阴离子交换膜材料。该阴离子交换膜是一种具有高耐碱稳定性、良好的力学强度、柔韧性能和较高的尺寸稳定性的材料。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (5)

1.燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜,其特征在于,包括步骤:
A、首先制备不同比例含有不饱和双键结构的聚芳醚酮(PAEK);所述含有不同比例不饱和双键结构的聚芳醚酮的制备方法为:分别将有机单体双酚AF、4,4'-二氟二苯甲酮和2,2'-二烯丙基双酚A分别以摩尔比0.4:1:0.6,0.3:1:0.7,0.2:1:0.8和0.1:1:0.9的比例溶于环丁砜溶剂中,加入1-2倍摩尔比例的无水碳酸钾,在机械搅拌和氮气保护下,通过芳香族亲核取代反应合成聚芳醚酮主链;
B、然后制备N-螺环季铵盐离子液体;所述N-螺环季铵盐离子液体的制备方法为:将1,4-二溴丁烷和无水碳酸钾的乙醇溶液加热至回流,搅拌并滴加等摩尔4-羟基哌啶的乙醇溶液,保持回流24小时;将获得的8-羟基-5-氮杂-螺[4.5]癸烷(OH-ASD)在过量甲基叔丁基醚中沉淀;烘干后,将8-羟基-5-氮杂-螺[4.5]癸烷溶解在无水二甲基亚砜(DMSO)中,加入1.5倍摩尔氢化钠反应6h-8h后,加入等摩尔3-溴丙烯反应2h-4h,即可获得N-螺环季铵盐离子液体,在过量甲苯中沉淀;
C、N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备;所述N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法为:将上述步骤获得的聚芳醚酮和N-螺环季铵盐溶解在N-甲基吡咯烷酮中搅拌12h,加入过氧化苯甲酰;将产物在乙醇中析出、干燥;并在N-甲基吡咯烷酮溶剂中溶解,采用流延法成膜。
2.根据权利要求1所述的燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法,其特征在于,包括如下:
步骤一:分别将有机单体双酚AF、4,4'-二氟二苯甲酮和2,2'-二烯丙基双酚A分别以摩尔比0.4:1:0.6,0.3:1:0.7,0.2:1:0.8和0.1:1:0.9的比例溶于环丁砜溶剂中,加入1-2倍摩尔比例的无水碳酸钾,在机械搅拌和氮气保护下,通过芳香族亲核取代反应合成聚芳醚酮主链;
步骤二:将1,4-二溴丁烷和无水碳酸钾的乙醇溶液加热至回流,搅拌并滴加等摩尔4-羟基哌啶的乙醇溶液,保持回流24小时;将获得的8-羟基-5-氮杂-螺[4.5]癸烷(OH-ASD)在过量甲基叔丁基醚中沉淀;烘干后,将8-羟基-5-氮杂-螺[4.5]癸烷溶解在无水二甲基亚砜(DMSO)中,加入1.5倍摩尔氢化钠反应6h-8h后,加入等摩尔3-溴丙烯反应2h-4h,即可获得N-螺环季铵盐离子液体,在过量甲苯中沉淀;
步骤三:将上述步骤获得的聚芳醚酮和N-螺环季铵盐溶解在N-甲基吡咯烷酮中搅拌12h,加入过氧化苯甲酰;将产物在乙醇中析出、干燥;并在N-甲基吡咯烷酮溶剂中溶解,采用流延法成膜。
3.根据权利要求2所述的燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法,其特征在于,所述的聚芳醚酮的制备方法为:
a、4,4'-二氟二苯甲酮、双酚AF和2,2'-二烯丙基双酚A的摩尔比为1:0.3:0.7:首先,将3.4542g2,2'-二烯丙基双酚A、1.6139g双酚AF、3.170g碳酸钾、3.4912g4,4'-二氟二苯甲酮加入到带有机械搅拌器的100mL三口烧瓶中,在氮气保护下加入18mL环丁砜和20mL甲苯溶解均匀;
b、将混合物在120℃-130℃下保持回流4个小时,然后缓慢升温至180℃,直到混合物溶液变得粘稠;
c、然后将产物倒入去离子水中并快速搅拌得到白色固体沉淀;
d、最后,将产物切碎并在蒸馏水中煮沸3-5次,在60℃下真空干燥24小时,产率87%。
4.根据权利要求2所述的燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法,其特征在于,所述的N-螺环季铵盐的制备方法为:
a、将6.16mL1,4-二溴丁烷和等摩尔无水碳酸钾溶于50mL乙醇中加热至回流,缓慢滴加5.17g4-羟基哌啶的20mL乙醇溶液,保持回流24小时;
b、将获得的8-羟基-5-氮杂-螺[4.5]癸烷(OH-ASD)在过量甲基叔丁基醚中沉淀,并在40℃真空烘箱中干燥24小时;
c、将8-羟基-5-氮杂-螺[4.5]癸烷和氢化钠以摩尔比1:1.5在无水二甲基亚砜中溶解,并在40℃、氮气保护下搅拌6h;
d、然后将等摩尔3-溴丙烯加入上述体系中,继续反应2-4h;
e、最后将混合物倒入过量的甲苯中,析出白色产物,在40℃真空烘箱中干燥24h。
5.根据权利要求2所述的燃料电池用N-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法,其特征在于N-螺环季铵盐官能化聚芳醚酮的制备方法为:将聚芳醚酮中的双键数量和N-螺环季铵盐以摩尔比1:1溶解在N-甲基
吡咯烷酮溶剂中搅拌12h,35℃加入N-螺环季铵盐1.2倍摩尔的过氧化苯甲酰,
12h后在过量乙醇中沉淀。
CN202111047416.5A 2021-09-08 2021-09-08 一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法 Active CN113736120B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111047416.5A CN113736120B (zh) 2021-09-08 2021-09-08 一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111047416.5A CN113736120B (zh) 2021-09-08 2021-09-08 一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN113736120A CN113736120A (zh) 2021-12-03
CN113736120B true CN113736120B (zh) 2023-11-10

Family

ID=78736877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111047416.5A Active CN113736120B (zh) 2021-09-08 2021-09-08 一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN113736120B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524919B (zh) * 2022-03-15 2023-08-29 北京化工大学 一种聚芳基型阴离子交换膜及制备方法
CN117024924B (zh) * 2023-10-08 2024-01-26 佛山科学技术学院 一种超低溶胀抗自由基聚芳基阴离子交换膜及其制备方法
CN117567729B (zh) * 2024-01-19 2024-05-28 固碳新能源科技(苏州)有限公司 离子传导聚合物及其制备方法、离子传导交联物及其制备方法、阴离子交换膜及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762190A (zh) * 2018-12-28 2019-05-17 吉林大学 侧链含n-螺环季铵盐基团的聚芳醚类阴离子交换膜材料及其制备方法
CN110975653A (zh) * 2019-11-22 2020-04-10 河北科技大学 一种含二氮螺环季铵盐交联型阴离子交换膜材料、其制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3019209A1 (en) * 2016-03-28 2017-10-05 University Of Delaware Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762190A (zh) * 2018-12-28 2019-05-17 吉林大学 侧链含n-螺环季铵盐基团的聚芳醚类阴离子交换膜材料及其制备方法
CN110975653A (zh) * 2019-11-22 2020-04-10 河北科技大学 一种含二氮螺环季铵盐交联型阴离子交换膜材料、其制备方法及其应用

Also Published As

Publication number Publication date
CN113736120A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN113736120B (zh) 一种燃料电池用n-螺环季铵盐官能化聚芳醚酮阴离子交换膜的制备方法
US11949137B2 (en) Comb-shaped structure polybenzimidazole anion exchange membrane with high conductivity and preparation method thereof
Pham et al. Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations
CN110862516B (zh) 一种含Cardo结构靛红芳烃共聚物、制备方法及应用
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
JP2020536165A (ja) アニオン交換膜およびアイオノマーとして使用するための安定なカチオン性ペンダント基を有するものを含むポリ(アリールピペリジニウム)ポリマー
US20200238272A1 (en) Ionic functionalization of aromatic polymers for ion exchange membranes
CN110690486A (zh) 一种基于柔性长侧链多阳离子结构的交联型碱性阴离子膜的制备方法
CN109096473B (zh) 不含芳基醚键的聚芳哌啶类两性离子交换膜及其制备方法
Ye et al. Synthesis and characterization of novel cross-linked quaternized poly (vinyl alcohol) membranes based on morpholine for anion exchange membranes
JP6653434B2 (ja) 陰イオン交換樹脂の製造方法、燃料電池用電解質膜の製造方法、電極触媒層形成用バインダーの製造方法、電池電極触媒層の製造方法および燃料電池の製造方法
CN114133555B (zh) 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN107266688A (zh) 一种磺化聚芳硫醚砜/聚酰亚胺嵌段型质子交换膜材料的制备方法
CN113621131A (zh) 一种聚电解质材料、其制备方法与聚电解质膜
CN112920441A (zh) 一种交联型聚芴哌啶阴离子交换膜的制备方法
Shen et al. High temperature proton exchange membranes based on poly (arylene ether) s with benzimidazole side groups for fuel cells
CN112898539A (zh) 一种燃料电池用长侧链型聚芳烃靛红碱性膜及制备方法
CN109119662B (zh) 一种长支链双梳状聚芳基吲哚阴离子交换膜及其制备方法
CN111933982A (zh) 一种含梳形侧链的芴基阴离子交换膜及其制备方法
CN114824396A (zh) 含梳形侧链的嵌段型芴基阴离子交换膜及其制备方法
CN115536885B (zh) 一种亚微相分离阴离子交换膜的制备方法
KR20240018105A (ko) 수전해용 바이폴라 고분자 전해질막 및 이의 제조방법
CN113307966B (zh) 含四甲基哌啶氧化物季铵盐的共聚物及其制备方法和应用
CN114672147A (zh) 含金刚烷无规阴离子交换膜及其制备方法
WO2009038268A1 (en) Sulfonated poly(arylene ether), method of manufacturing the same, and crosslinked polymer electrolyte membrane using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant