CN113713774B - 一种高效可再生的纳米除锰剂及其制备方法与应用 - Google Patents
一种高效可再生的纳米除锰剂及其制备方法与应用 Download PDFInfo
- Publication number
- CN113713774B CN113713774B CN202111005486.4A CN202111005486A CN113713774B CN 113713774 B CN113713774 B CN 113713774B CN 202111005486 A CN202111005486 A CN 202111005486A CN 113713774 B CN113713774 B CN 113713774B
- Authority
- CN
- China
- Prior art keywords
- rgo
- manganese
- sio
- edta
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/288—Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
- B01J20/205—Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3248—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
- B01J20/3251—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3289—Coatings involving more than one layer of same or different nature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/62—Heavy metal compounds
- C02F1/64—Heavy metal compounds of iron or manganese
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
- C02F1/488—Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/206—Manganese or manganese compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/30—Nature of the water, waste water, sewage or sludge to be treated from the textile industry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/08—Nanoparticles or nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种高效可再生的纳米除锰剂及其制备方法与应用,属于废水治理与再生处理技术领域。本发明所述的除锰剂包括Fe3O4、RGO、SiO2和EDTA,其中,所述Fe3O4纳米粒子负载在RGO表面,SiO2包覆Fe3O4,EDTA接枝在SiO2上。首先制备得到Fe3O4‑RGO,然后滴加TEOS乙醇溶液反应得到Fe3O4@SiO2‑RGO复合粒子,之后滴加EDTA水溶液得到除锰剂。本发明制备所得除锰剂具有磁性,制备过程简便,易于工业化生产;该纳米除锰剂能够快速实现对含锰废水中锰的去除,且少量除锰剂可实现较大的吸附量,同时该纳米除锰剂还能够快速地从含锰废水中分离出来,避免对体系造成二次污染。
Description
技术领域
本发明涉及一种高效可再生的纳米除锰剂及其制备方法与应用,属于废水治理与再生处理技术领域。
背景技术
近年来,以采锰的矿场、金属冶炼厂等涉及锰元素的使用及加工的产业排放的含锰“三废”造成的污染问题不容忽视。大气中的锰可进入水体和土壤,在土壤中并不断累积,尤其是酸性土壤对大气中的锰极为敏感,土壤中的过量锰在微生物的作用下会被植物吸收,通过食物链进行生物累积,最终进入人体,损害大脑和呼吸系统,并且引发各种病症,造成人体危害。因此,如何除去含锰“三废”,尤其是废水中的锰具有重要意义。目前市面上商品除锰剂主要使用各类锰砂进行除锰操作,利用其接触氧化和吸附作用除锰,但锰砂过滤对废水含氧量有一定要求,对于特定工艺而言使用存在一定局限性,且投加量大,除锰后的物质收集转化操作较为复杂,易造成水体的二次污染,处理所需建筑面积较大,成本较高。
废水中锰的主要存在形式有Mn2+及MnO4 -,其中Mn2+主要存在于钢铁企业的外排废水及锰矿石矿井水废水中,由于高锰酸钾常用于各种工业废水、生活污水及微污染水的处理中,因而MnO4 -主要存在于这些处理后的废水以及纺织、印染等工业废水中。现有技术的除锰剂主要针对的是二价状态的锰(Mn2+),针对高锰酸根状态的锰的处理主要是利用高锰酸根的强氧化性与其他含有还原性污染物的废水进行作用,虽能处理一部分MnO4 -,但并不能达到深度处理的效果。
发明内容
[技术问题]
现有除锰剂主要针对含Mn2+的废水,对含MnO4 -的废水处理虽有涉猎,但现有技术无法深度除去高锰酸根。
[技术方案]
为了解决上述技术问题,本发明提供了一种高效可再生的纳米除锰剂及其制备方法与应用,本发明的纳米除锰剂能够快速实现对含锰废水中MnO4 -的去除,且少量除锰剂可实现较大的吸附量,同时该纳米除锰剂还能够快速地从含锰废水中分离出来,避免对体系造成二次污染。此外,本发明的纳米除锰剂能够实现再生和循环使用。
本发明是通过如下技术方案实现的:
一种高效可再生的纳米除锰剂,所述纳米除锰剂包括四氧化三铁(Fe3O4)纳米粒子、还原氧化石墨烯(RGO)、二氧化硅(SiO2)和乙二胺四乙酸二钠盐(EDTA);其中,所述Fe3O4纳米粒子负载在RGO表面,SiO2包覆Fe3O4,EDTA接枝在SiO2上。
进一步的,所述Fe3O4纳米粒子、RGO、SiO2和EDTA的质量占比分别为5.3%~16.3%、0.37%~5.7%、7.4%~76%和17.5%~86.9%。
本发明还提供了上述高效可再生的纳米除锰剂的制备方法,所述方法包括如下步骤:
(1)制备得到Fe3O4-RGO;
(2)将步骤(1)制备的Fe3O4-RGO分散于乙醇水溶液中,滴加氨水调节pH值为8~13,超声分散一段时间后转入反应器中,搅拌下滴加TEOS的乙醇溶液,滴加完成后继续反应一段时间,反应结束后经磁铁收集,水洗、干燥得到Fe3O4@SiO2-RGO复合粒子;
(3)将步骤(2)制备得到的Fe3O4@SiO2-RGO复合粒子分散于水中并转入反应器中,在一定温度下,搅拌下滴加EDTA水溶液,即可得到最终产物磁性纳米除锰剂Fe3O4@SiO2@EDTA-RGO。
进一步的,步骤(1)所述的Fe3O4-RGO通过以下方法制备:采用一步溶剂热法,将FeCl3·6H2O、RGO及NaAC分散于乙二醇和一缩二乙二醇的混合液中,在一定温度下反应一段时间,冷却后使用磁铁将制得的Fe3O4-RGO收集,洗涤,干燥即可。
进一步的,所述RGO、FeCl3·6H2O和NaAc之间的质量比为(0.02~0.1):1:(12~22);所述乙二醇和一缩二乙二醇的体积比为1:0.5~2;所述的一定温度为180~220℃,所述一段时间为6~18h。
进一步的,步骤(2)中,所述乙醇水溶液中乙醇与水的体积比为1:1~8,所述水优选超纯水。
进一步的,步骤(2)中,所述氨水的浓度为10~28wt%。
进一步的,步骤(2)中,TEOS的乙醇溶液中TEOS的体积含量为1.5~5%,反应一段时间为8~12h。
进一步的,步骤(3)中,所述温度为50~80℃,所述EDTA水溶液的浓度为0.050~0.175mol/L,反应时间为0.5~4h。
本发明还提供了一种除去含锰废水中高锰酸根离子的方法,所述方法利用上述高效可再生的纳米除锰剂或上述方法制备得到的高效可再生的纳米除锰剂来除去高锰酸根离子。
进一步的,所述含锰废水包括纺织、印染废水以及经高锰酸钾处理过后的冶金含锰废水、焚烧飞灰浸出液等工业废水,尤其是指包含高锰酸根离子的废水。
进一步的,采用少量本发明的磁性纳米除锰剂可以实现锰的较高去除率,能够在短时间内快速实现锰的去除,同时该纳米除锰剂在除锰后够快速地从废水体系中分离出来,避免对体系造成二次污染。
进一步的,吸附锰离子的过程为:将磁性纳米除锰剂加入含锰废水中并振荡,反应后利用外磁场进行固液分离,完成对锰的去除。
进一步的,所述纳米除锰剂的用量为0.01-100mg/mL;所述含锰废水中高锰酸根的初始浓度为0.1-2mg/L。
本发明还提供了包含上述高效可再生的纳米除锰剂或上述方法制备得到的高效可再生的纳米除锰剂的除锰药品。
本发明还提供了上述高效可再生的纳米除锰剂或上述方法制备得到的高效可再生的纳米除锰剂在废水处理领域的应用。
本发明的有益效果:
(1)本发明中RGO上尚存的氧化基团为磁性纳米材料Fe3O4的固定提供了位点,在利用片状RGO增大材料的表面积的同时,复合材料在水中的分散性能也得到了提升。引入Fe3O4纳米粒子能够赋予纳米除锰剂磁响应性能,使得合成的磁性纳米除锰剂可以在外界磁场的作用下有效地从含锰体系中分离出来,避免对体系造成二次污染;
(2)本发明的磁性纳米除锰剂添加了SiO2,能够对Fe3O4-RGO进行修饰改性,一方面,使其具有良好的分散性、吸附性以及良好的抗氧化性等特点,另一方面SiO2表面含有丰富的硅羟基,可以接枝大量EDTA,进而提高锰的去除率。
(3)本发明的高效可再生的除锰剂(Fe3O4@SiO2@EDTA-RGO)具有制备成本低,原料来源广,便于工业化生产,且具有优异的回收及除锰效果,在含锰废水治理领域内具有很大的应用潜能,且除锰过程对含氧量无需求,且少量的除锰剂的添加能够实现高效的除锰效果。
(4)本发明的高效可再生的除锰剂能够多次循环使用,经济环保。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明应用例4中所制备的Fe3O4@SiO2@EDTA-RGO的透射电镜图。
图2为高锰酸根离子溶液的浓度与吸光度的标准曲线。
图3为本发明应用例4中所制备的Fe3O4@SiO2@EDTA-RGO投加量对高锰酸根去除率的影响结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:一种高效可再生纳米除锰剂的制备
量取37.5mL乙二醇、37.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入10mg RGO、0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入25wt%的氨水调节pH为8,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(1.5%,V/V)室温下搅拌12h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.125mol/L的EDTA溶液,80℃下反应2h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米除锰剂。
实施例2:一种高效可再生纳米除锰剂的制备
量取37.5mL乙二醇、37.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入5mg RGO、0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于50mL超纯水和50mL无水乙醇混合液中,加入28wt%的氨水调节pH为9,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(5%,V/V)室温下搅拌12h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.175mol/L的EDTA溶液,50℃下反应2h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米除锰剂。
实施例3:一种高效可再生纳米除锰剂的制备
量取37.5mL乙二醇、37.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入10mg RGO、0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于180℃反应10h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于60mL超纯水和40mL无水乙醇混合液中,加入25wt%的氨水调节pH为13,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(5%,V/V)室温下搅拌8h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.050mol/L的EDTA溶液,60℃下反应1h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米除锰剂。
实施例4:一种高效可再生纳米除锰剂的制备
量取37.5mL乙二醇、37.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入10mg RGO、0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入28wt%的氨水调节pH为13,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(1.5%,V/V)室温下搅拌12h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.125mol/L的EDTA溶液,70℃下反应2h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米除锰剂。
实施例5:一种高效可再生纳米除锰剂的制备
量取37.5mL乙二醇、18.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入6mg RGO、0.15g FeCl3·6H2O及2.55g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入10wt%的氨水调节pH为8,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(2%,V/V)室温下搅拌12h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.050mol/L的EDTA溶液,80℃下反应1h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米除锰剂。
实施例6:一种高效可再生纳米除锰剂的制备
量取25mL乙二醇、37.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入6mg RGO、0.15g FeCl3·6H2O及2.55g NaAc,形成均匀溶液后转入高压反应釜中,于220℃反应6h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入25wt%的氨水调节pH为10,将溶液转入三颈烧瓶中搅拌,逐滴加入20mLTEOS的乙醇溶液(1.5%,V/V)室温下搅拌10h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.125mol/L的EDTA溶液,60℃下反应4h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米除锰剂。
测试例1
将上述实施例4制备的磁性纳米除锰剂(Fe3O4@SiO2@EDTA-RGO)通过透射电镜(TEM)进行表征,如图1所示,图中大面积的褶皱状物质为RGO,可以明显观察到黑色纳米颗粒为Fe3O4纳米粒子,周围均匀地包裹的浅色部分为SiO2,Fe3O4@SiO2粒径约为100nm,大小均一,均匀地负载在RGO表面,无明显团聚现象,即Fe3O4纳米粒子负载在RGO表面,SiO2包覆Fe3O4,EDTA接枝在SiO2上。
应用例1去除高锰酸根离子
选用上述实施例4制备的Fe3O4@SiO2@EDTA-RGO进行锰吸附试验,包括如下步骤:
(1)绘制标准曲线:配置浓度为1.6mg/L,0.8mg/L,0.4mg/L,0.2mg/L,0.1mg/L的高锰酸钾溶液。经紫外分光光度计测得对应溶液在波长λ=525nm处的吸光度(A),以高锰酸根离子的浓度为横坐标、吸光度为纵坐标,绘制标准曲线,经线性拟合后得到高锰酸根离子的标准曲线方程为:y=0.0709x-0.0022,R2=0.9996,如图2所示,其线性关系良好;
(2)模拟含锰废水:配制初始浓度为2mg/L的高锰酸根离子溶液来模拟含锰废水;然后从该高锰酸根离子溶液中移取6等份20mL的溶液作为含锰废水加入玻璃瓶中,然后分别向这6份溶液中分别加入0.2mg、0.3mg、0.4mg、0.5mg、1mg、2mg的实施例4制备的磁性纳米除锰剂(Fe3O4@SiO2@EDTA-RGO),超声分散后置于25℃、160r/min的气浴恒温振荡器中振荡90分钟,振荡结束后经磁倾析将Fe3O4@SiO2@EDTA-RGO富集在玻璃瓶底部,经紫外分光光度计测得经过Fe3O4@SiO2@EDTA-RGO除锰后对应的6份高锰酸根离子溶液在波长λ=525nm处的吸光度;然后将吸光度对照图2即可获得经Fe3O4@SiO2@EDTA-RGO除锰后对应的各组份高锰酸根离子溶液的浓度(为剩余高锰酸根浓度),根据公式:计算出Fe3O4@SiO2@EDTA-RGO对高锰酸根离子的去除率,式中:C0(mg/L)和Ce(mg/L)分别为高锰酸根离子溶液的初始浓度和经Fe3O4@SiO2@EDTA-RGO除锰后的剩余高锰酸根浓度;将上述剩余高锰酸根浓度和去除率绘制成图3。
从图3中可以看出,随着磁性Fe3O4@SiO2@EDTA-RGO投加量的加大,溶液中高锰酸根离子的浓度急剧减少,高锰酸根离子的去除率随之增大,在投加量为0.5mg时,高锰酸根离子的去除率已经高达95.47%,之后继续加大投加量,高锰酸根离子的去除率虽然在增加,但是增幅不太明显,加入1mg的Fe3O4@SiO2@EDTA-RGO后,高锰酸根离子的去除率为97.76%,增幅并不明显。可见,本发明所制备的纳米除锰剂在水体除锰时,仅需少量的投加量就能达到较好的除锰效果,有望成为一种高效废水除锰剂。
当将其他实施例制备得到的纳米除锰剂Fe3O4@SiO2@EDTA-RGO按照上述方法测试时,其投加量为0.5~1mg时,高锰酸根的去除率也可高达90%以上。
本发明除锰剂的优势:对于低浓度锰离子的去除效率高,使用量小,不造成水体的二次污染,且能进行回收再用,多次循环吸附后依然具有良好的去除率。
再生实验:利用磁铁将实施例4吸附高锰酸钾的Fe3O4@SiO2@EDTA-RGO富集后经稀HCl溶液处理释放出吸附的高锰酸根,再经外磁场富集、洗涤后再生,将再生后的Fe3O4@SiO2@EDTA-RGO继续用于上述的除锰过程,投加量为0.5mg,循环5次,除锰效果如表1所示,可见,所设计制备的Fe3O4@SiO2@EDTA-RGO是稳定的、可回收再用,且循环多次后依然具有良好的吸附效果。
表1循环5次时Fe3O4@SiO2@EDTA-RGO对高锰酸根的去除率
循环次数/次 | 0 | 1 | 2 | 3 | 4 | 5 |
去除率/% | 95.47 | 93.86 | 90.98 | 89.33 | 86.71 | 85.23 |
对比例1
量取50mL乙二醇于100mL烧杯中,在超声搅拌作用下加入0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入28wt%的氨水调节pH为13,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(1.5%,V/V)室温下搅拌12h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2复合粒子,随后将其加入到80mL超纯水中,超声分散下加入10mg RGO,分散均匀后转入高压反应釜中,于120℃反应6h,反应结束冷却至室温,经磁分离洗涤后分散于20mL超纯水中,滴加12mL的浓度为0.125mol/L的EDTA溶液,70℃下反应2h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA-RGO磁性纳米复合材料。
按照应用例1的实施方法进行高锰酸根的吸附性能研究,投加0.5mg时,高锰酸根的去除率为70.34%。
对比例2
量取37.5mL乙二醇、37.5mL一缩二乙二醇于100mL烧杯中,在超声搅拌作用下加入10mg RGO、0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4-RGO纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入28wt%的氨水调节pH为13,将溶液转入三颈烧瓶中搅拌,加入0.3mL TEOS,室温下搅拌12h,反应完成后,进行磁分离后洗涤干燥得Fe3O4@SiO2-RGO复合粒子,随后将其加入到20mL超纯水中,超声分散后,转移至三颈烧瓶中,滴加12mL的浓度为0.125mol/L的EDTA溶液,70℃下反应2h后经磁铁分离,洗涤并干燥得复合产物。经透射电子显微镜(TEM)表征发现,SiO2不能有效均匀包覆Fe3O4纳米粒子,而是大比例地形成了SiO2类球型单体,无法有效构筑磁性纳米复合材料。
对比例3
EDTA二钠不能单独吸附高锰酸根,因为其稳定性极高:没有还原性基团;与高锰酸根离子一样,都是负离子,同号离子相斥,而当EDTA负载到Fe3O4@SiO2-RGO时,由于SiO2界面陷阱电荷表现为正电荷性质,经电荷传导能够进行高锰酸根的吸附。
对比例4
量取50mL乙二醇于100mL烧杯中,在超声搅拌作用下加入0.21g FeCl3·6H2O及3.75g NaAc,形成均匀溶液后转入高压反应釜中,于200℃反应8h,冷却至室温后,洗涤干燥,接着将所得Fe3O4纳米粒子经超声分散于80mL超纯水和20mL无水乙醇混合液中,加入28wt%的氨水调节pH为13,将溶液转入三颈烧瓶中搅拌,逐滴加入20mL TEOS的乙醇溶液(1.5%,V/V)室温下搅拌12h,反应完成后,进行磁分离、洗涤得Fe3O4@SiO2复合粒子,接着再次分散于20mL超纯水中,滴加12mL的浓度为0.125mol/L的EDTA溶液,70℃下反应2h后经磁铁分离,洗涤并干燥得Fe3O4@SiO2@EDTA磁性纳米复合材料。
按照应用例1的实施方法进行高锰酸根的吸附性能研究,投加0.5mg时,高锰酸根的去除率为57.31%。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
Claims (3)
1.一种除去含锰废水中高锰酸根离子的方法,其特征在于,所述方法利用纳米除锰剂来除去含锰废水中高锰酸根离子;所述纳米除锰剂包括四氧化三铁Fe3O4纳米粒子、还原氧化石墨烯RGO、二氧化硅SiO2和乙二胺四乙酸二钠盐EDTA;其中,所述Fe3O4纳米粒子负载在RGO表面,SiO2包覆Fe3O4,EDTA接枝在SiO2上;所述Fe3O4纳米粒子、RGO、SiO2和EDTA的质量占比分别为5.3%~16.3%、0.37%~5.7%、7.4%~76%和17.5%~86.9%;
所述纳米除锰剂的制备包括如下步骤:
(1)采用一步溶剂热法,将FeCl3•6H2O、RGO及NaAc分散于乙二醇和一缩二乙二醇的混合液中,在180~220 ℃下反应6~18 h,冷却后使用磁铁将制得的产物收集,洗涤,干燥,即制备得到Fe3O4-RGO;所述RGO、FeCl3•6H2O和NaAc之间的质量比为(0.02~0.1):1:(12~22);所述乙二醇和一缩二乙二醇的体积比为1:(0.5~2);
(2)将步骤(1)制备的Fe3O4-RGO分散于乙醇水溶液中,滴加氨水调节pH值为8~13,超声分散一段时间后转入反应器中,搅拌下滴加TEOS的乙醇溶液,滴加完成后继续反应8~12 h,反应结束后经磁铁收集,水洗、干燥得到Fe3O4@SiO2-RGO复合粒子;所述TEOS的乙醇溶液中TEOS的体积含量为1.5~5%;
(3)将步骤(2)制备得到的Fe3O4@SiO2-RGO复合粒子分散于水中并转入反应器中,在50~80 ℃下,搅拌下滴加EDTA水溶液反应0.5~4 h,即得到最终产物磁性纳米除锰剂Fe3O4@SiO2@EDTA-RGO;所述EDTA水溶液的浓度为0.050~0.175 mol/L。
2.根据权利要求1所述的一种除去含锰废水中高锰酸根离子的方法,其特征在于,所述含锰废水包括纺织废水、印染废水或者经高锰酸钾处理过后的冶金含锰废水。
3.根据权利要求1所述的一种除去含锰废水中高锰酸根离子的方法,其特征在于,所述纳米除锰剂的用量为0.01-100 mg/mL;所述含锰废水中高锰酸根的初始浓度为0.1-2 mg/L。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111005486.4A CN113713774B (zh) | 2021-08-30 | 2021-08-30 | 一种高效可再生的纳米除锰剂及其制备方法与应用 |
US17/841,756 US20220306492A1 (en) | 2021-08-30 | 2022-06-16 | Efficient and Regenerable Nano Manganese Remover, and Preparation Method and Application Thereof |
PCT/CN2022/114162 WO2023030086A1 (zh) | 2021-08-30 | 2022-08-23 | 一种高效可再生的纳米除锰剂及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111005486.4A CN113713774B (zh) | 2021-08-30 | 2021-08-30 | 一种高效可再生的纳米除锰剂及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113713774A CN113713774A (zh) | 2021-11-30 |
CN113713774B true CN113713774B (zh) | 2022-09-27 |
Family
ID=78679145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111005486.4A Active CN113713774B (zh) | 2021-08-30 | 2021-08-30 | 一种高效可再生的纳米除锰剂及其制备方法与应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220306492A1 (zh) |
CN (1) | CN113713774B (zh) |
WO (1) | WO2023030086A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113713774B (zh) * | 2021-08-30 | 2022-09-27 | 常州厚德再生资源科技有限公司 | 一种高效可再生的纳米除锰剂及其制备方法与应用 |
CN114280021B (zh) * | 2021-12-23 | 2023-04-07 | 江苏理工学院 | 一种智能磁性铅离子传感器及其制备方法与废水治理中的应用 |
CN114772676A (zh) * | 2022-04-07 | 2022-07-22 | 张胜枚 | 一种应用于环境治理的磁性纳米颗粒技术 |
CN116272847A (zh) * | 2023-03-28 | 2023-06-23 | 江苏理工学院 | 一种高效可再生的纳米铜离子吸附剂及其制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105597658A (zh) * | 2015-10-13 | 2016-05-25 | 浙江师范大学 | 一种磁性纳米二氧化硅石墨烯复合材料及其制备方法和应用 |
CN106669677A (zh) * | 2017-01-05 | 2017-05-17 | 中国科学院新疆理化技术研究所 | 以石墨烯为载体的磁性铁基非均相类芬顿催化剂的制备方法及应用 |
CN110339358A (zh) * | 2019-06-26 | 2019-10-18 | 江苏理工学院 | 一种酸响应型Fe3O4-RGO-MTX纳米药物及其制备方法和应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014153570A2 (en) * | 2013-03-15 | 2014-09-25 | Transtar Group, Ltd | New and improved system for processing various chemicals and materials |
WO2016191802A1 (en) * | 2015-05-29 | 2016-12-08 | Adelaide Research & Innovation Pty Ltd | Composite graphene-based material |
CN104910864A (zh) * | 2015-07-16 | 2015-09-16 | 北京新怡源环保科技有限公司 | 一种四氧化三铁复合二氧化硅与石墨烯的柔性纳米吸波材料及其制备方法 |
EP3403994A1 (en) * | 2017-05-18 | 2018-11-21 | Centre National De La Recherche Scientifique | Graphene-supported metal and/or metal oxide nanoparticle composites, method for making same and uses thereof |
CN107502128A (zh) * | 2017-10-19 | 2017-12-22 | 开平市格莱美卫浴配件有限公司 | 一种密封隔热涂层材料 |
CN110577818B (zh) * | 2018-06-07 | 2022-07-05 | 山东欧铂新材料有限公司 | 一种氧化石墨烯/四氧化三铁/二氧化硅吸波材料的制备方法 |
CN113713774B (zh) * | 2021-08-30 | 2022-09-27 | 常州厚德再生资源科技有限公司 | 一种高效可再生的纳米除锰剂及其制备方法与应用 |
-
2021
- 2021-08-30 CN CN202111005486.4A patent/CN113713774B/zh active Active
-
2022
- 2022-06-16 US US17/841,756 patent/US20220306492A1/en active Pending
- 2022-08-23 WO PCT/CN2022/114162 patent/WO2023030086A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105597658A (zh) * | 2015-10-13 | 2016-05-25 | 浙江师范大学 | 一种磁性纳米二氧化硅石墨烯复合材料及其制备方法和应用 |
CN106669677A (zh) * | 2017-01-05 | 2017-05-17 | 中国科学院新疆理化技术研究所 | 以石墨烯为载体的磁性铁基非均相类芬顿催化剂的制备方法及应用 |
CN110339358A (zh) * | 2019-06-26 | 2019-10-18 | 江苏理工学院 | 一种酸响应型Fe3O4-RGO-MTX纳米药物及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
Fe3O4@SiO2@EDTA磁性复合微球的制备及吸附性能研究;张春晓等;《化工新型材料》;20200930;第48卷(第9期);第196-201页 * |
Also Published As
Publication number | Publication date |
---|---|
WO2023030086A1 (zh) | 2023-03-09 |
US20220306492A1 (en) | 2022-09-29 |
CN113713774A (zh) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113713774B (zh) | 一种高效可再生的纳米除锰剂及其制备方法与应用 | |
CN110813251B (zh) | 一种改性纳米材料及其在含锑废水处理中的应用 | |
Li et al. | Removal of Cr (VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads− Extension from water treatment to soil remediation | |
Tan et al. | High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles | |
CN107088398B (zh) | 埃洛石负载针形四氧化三铁纳米复合材料的制备方法 | |
Du et al. | Facile one-pot fabrication of nano-Fe3O4/carboxyl-functionalized baker’s yeast composites and their application in methylene blue dye adsorption | |
Abd El-Lateef et al. | Adsorption and removal of cationic and anionic surfactants using zero-valent iron nanoparticles | |
Zhu et al. | Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate | |
Farooq et al. | A recyclable polydopamine-functionalized reduced graphene oxide/Fe nanocomposite (PDA@ Fe/rGO) for the enhanced degradation of 1, 1, 1-trichloroethane | |
CN103191699B (zh) | 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法 | |
Xi et al. | Carboxymethyl cellulose stabilized ferrous sulfide@ extracellular polymeric substance for Cr (VI) removal: Characterization, performance, and mechanism | |
CN108456530B (zh) | 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用 | |
Zhang et al. | Polyacrylic acid-functionalized graphene oxide for high-performance adsorption of gallium from aqueous solution | |
CN103599751A (zh) | 巯基功能化磁性二氧化硅纳米材料的制备方法 | |
CN105344325B (zh) | 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法 | |
CN102417214A (zh) | 利用石墨烯片与趋磁细菌三维复合物吸附重金属的方法 | |
CN111203187A (zh) | 用于去除地下水中污染物的修复材料、其制备方法及应用 | |
CN114425305B (zh) | 一种汞吸附材料及其制备方法和在烟气或溶液脱汞方面的应用 | |
CN114515567B (zh) | 一种生物磁性纳米复合材料、及其制备方法和应用 | |
CN104289200B (zh) | 一种磁性hacc/氧化多壁碳纳米管吸附剂的制备方法及应用 | |
CN107442085A (zh) | 一种巯基改性二氧化硅钴铁氧体核壳结构磁性纳米复合材料及其制备方法和应用 | |
CN110862137A (zh) | 一种硫化改性纳米零价铁的制备及在处理抗生素抗性基因中的应用 | |
CN104475040A (zh) | 改性磁性纳米吸附材料及其制备方法和应用 | |
CN106512952A (zh) | 一种使用改性氧化石墨烯处理抗生素和重金属复合污染水体的方法 | |
CN110240249B (zh) | 一种基于弱磁场下去除水体中重金属Cr6+的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220823 Address after: No. 18, Wangcai Road, Luoxi Town, Xinbei District, Changzhou City, Jiangsu Province, 213002 Applicant after: CHANGZHOU HOUDE RENEWABLE RESOURCES TECHNOLOGY Co.,Ltd. Address before: 213000, No. 1801, Wu Cheng Road, bell tower, Changzhou, Jiangsu Applicant before: JIANGSU University OF TECHNOLOGY |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |