CN113713573B - 一种高透气性有机-无机复合纤维气体分离膜的制备方法 - Google Patents

一种高透气性有机-无机复合纤维气体分离膜的制备方法 Download PDF

Info

Publication number
CN113713573B
CN113713573B CN202111030820.1A CN202111030820A CN113713573B CN 113713573 B CN113713573 B CN 113713573B CN 202111030820 A CN202111030820 A CN 202111030820A CN 113713573 B CN113713573 B CN 113713573B
Authority
CN
China
Prior art keywords
mofs
ptmsp
composite fiber
permeability
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111030820.1A
Other languages
English (en)
Other versions
CN113713573A (zh
Inventor
郑文姬
刘震
贺高红
代岩
阮雪华
焉晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202111030820.1A priority Critical patent/CN113713573B/zh
Publication of CN113713573A publication Critical patent/CN113713573A/zh
Application granted granted Critical
Publication of CN113713573B publication Critical patent/CN113713573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于气体膜分离技术领域,提供了一种高透气性有机‑无机复合纤维气体分离膜的制备方法。将具有高孔隙率的金属有机骨架添加至高透气聚合物聚三甲基硅‑1‑丙炔中,通过静电纺丝工艺制备高透气性的MOFs@PTMSP复合电纺纤维,将低分子量的聚乙二醇原位聚合到PTMSP电纺纤维的内腔中,以构建致密的高透气性MOFs@PTMSP有机‑无机复合纤维气体分离膜。基于MOFs@PTMSP的新型有机‑无机复合纤维气体分离膜具有近似于双连续的结构,可以实现对CO2渗透性和选择性的独立调节,与在铸膜液中直接混合填料制备的杂化膜相比显示出明显的优越性。

Description

一种高透气性有机-无机复合纤维气体分离膜的制备方法
技术领域
本发明属于气体膜分离技术领域,更具体地,设计一种具有高透气性有机-无机复合纤维作为骨架的气体分离膜的制备方法。
背景技术
随着人类社会的发展,对能源密度的需求量越来大。但由于可控核聚变等先进能源技术的发展仍处于初级阶段,我们生活中需要的能量仍依赖于化石能源。而化石能源的使用通常会伴随一些问题,如温室效应,全球变暖。所以对温室气体的分离补集逐渐成为一项重要课题。膜分离技术由于其操作简便、低能耗、易耦合等诸多优势,满足绿色化工的理念,具有良好的发展前景。
静电纺丝可加工性强,纤维制品具有高比表面积和高孔隙率。且纺丝具有连续的三维骨架,表面易改性。这使得静电纺丝技术具有应用于气体分离的潜力。但由于纺丝纤维间存在空隙,因此需要制备致密的纤维膜用于气体分离。并且目前静电纺丝采用的多为聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)、聚偏氟乙烯(PVDF)等透气性很差的聚合物。采用热压处理会使纤维膜变得致密,但由于聚合物本身的渗透性较差,所以只能将气体的渗透率维持在较低的水平。因此需要开发一种更加有效的方法构建高透气性的致密的静电纺丝气体分离膜。
发明内容
鉴于以上所述现有技术缺点,本发明的目的在于提供一种高透气性有机-无机复合纤维气体分离膜的制备方法,制备的膜具有高的气体渗透性,同时掺杂的无机MOFs可以保证气体的选择性。
本发明设计了一种高透气性有机-无机复合纤维气体分离膜,首先将合成的金属有机骨架(MOFs)颗粒添加至聚三甲基硅-1-丙炔(PTMSP)纺丝液中进行静电纺丝,得到MOFs@PTMSP的复合纤维材料。PTMSP作为目前已知的透气性最好的聚合物之一,可以为气体传输提供低阻力高速通道。MOFs作为多孔纳米材料具有高孔隙率和比表面积,同样可以为气体传输提供低阻路径。所以制备的MOFs@PTMSP复合材料具有优异的透气性,相比于传统聚合物膜渗透速率高出2~3个数量级。之后我们采用低分子量的聚乙二醇(PEG)原位聚合到MOFs@PTMSP电纺纤维的纤维间隙中,以构建致密的MOFs@PTMSP复合纤维气体分离膜。在这种复合纤维气体分离膜中,MOFs的超多微孔结构和PTMSP的高自由体积共同为气体分子提供低阻力的传输路径,赋予膜高的透气性;MOFs,如ZIF-8的微孔尺寸(3.4nm)可以有效筛分CO2/N2,提高膜的气体选择性;MOFs@PTMSP复合纤维还可以作为骨架为气体分离膜提供优良的机械性能。因此,基于MOFs@PTMSP的新型有机-无机复合纤维气体分离膜可以实现对CO2渗透性和选择性的独立调节,与在铸膜液中直接混合填料制备的杂化膜相比显示出明显的优越性。
本发明的技术方案:
一种高透气性有机-无机复合纤维气体分离膜的制备方法,步骤如下:
(1)制备MOFs@PTMSP复合纤维垫
MOFs@PTMSP复合纤维垫由静电纺丝技术制备,将活化完成的MOFs颗粒添加至体积比为1:2的四氢呋喃和1,1,2,2-四氯乙烷的混合溶剂中,水浴超声使MOFs颗粒完全分散在混合溶剂中;向上述反应体系中添加同一摩尔质量(Mw=730,000)的聚三甲基硅-1-丙炔PTMSP,控制聚三甲基硅-1-丙炔与上述反应体系的质量体积比g/ml为2.5%,剧烈搅拌至完全溶解得到纺丝溶液;其中MOFs颗粒的添加量为MOFs颗粒和PTMSP总质量的10~70%;之后采用静电纺丝工艺得到MOFs@PTMSP复合纤维垫;
(2)制备填充聚合物膜液
向聚乙二醇二缩水甘油醚中按1:1的摩尔比加入乙二醇-嵌段-聚丙二醇或O,O’-二(2-氨基丙基)聚丙二醇-嵌段-聚乙二醇-嵌段-聚丙二醇,水浴90℃搅拌3h以上得到的预交联PEG膜液;将搅拌均匀的预交联PEG膜液超声脱泡后冷却至室温,得到聚合物膜液,备用;
(3)制备有机-无机复合纤维气体分离膜
先将MOFs@PTMSP复合纤维垫置于聚合物膜液中,使用超滤装置将聚合物膜液渗入纤维缝隙中;调整气压为0.1~0.15mPa,注入N2使聚合物膜液通过MOFs@PTMSP复合纤维垫,得到湿润MOFs@PTMSP复合纤维垫;然后,将湿润MOFs@PTMSP复合纤维垫置于滤纸上吸干残余液体;最后,将渗入PEG的MOFs@PTMSP纤维垫放入真空烘箱中,在120℃下加热12h,得到完全交联固化的有机-无机复合纤维气体分离膜。
2.根据权利要求1所述的制备方法,其特征在于,所述的MOFs颗粒为UiO-66、UiO-66-NH2、ZIF-8、ZIF-67、MIL-101(Fe)、MIL-101(Cr)或HKUST-1。
本发明的有益效果:本发明制备的高透气性有机-无机复合纤维气体分离膜,与传统的低透气性纺丝聚合物不同。采用高透气的MOFs@PTMSP复合纤维作为骨架制备气体分离膜。MOFs@PTMSP纤维的三维网络结构横穿整个膜,为气体传输提供高速的传输通道,提高的膜的渗透性。其中加入的MOFs纳米颗粒由于其高孔隙率和理想的孔径,可以实现对CO2和N2的筛分从而提升选择性。并且纤维作为支撑膜的骨架,大幅增强了膜的机械性能。填充聚合物的原位聚合增强了膜中有机与无机材料之间的相容性。所制备的气体分离膜同时具有高CO2渗透性,高CO2/N2选择性以及高机械强度的特点使得该膜更具实用价值。
附图说明
图1为实施例中50%ZIF-8@PTMSP复合电纺纤维SEM图。
图2为实施例中50%ZIF-8@PTMSP有机-无机复合纤维气体分离膜表面SEM图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
制备ZIF-8@PTMSP复合电纺纤维材料:将0.75g活化完成的ZIF-8粉末加入体积比为2:1的1,1,2,2-四氯乙烷和四氢呋喃的混合溶剂中,水浴超声30min使ZIF-8完全分散在溶剂中。之后向其中加入0.75g的PTMSP粉末,并在室温下剧烈搅拌24h使其完全溶解。将得到的纺丝溶液转移到50mL注射器中,置于静电纺丝仪上插上18号针头。控制推注速度为2mL/h,针头与接收器距离为20cm,接收器转速为80r/h,操作温度为25℃湿度为40%,正极电压为13kV负极电压为1.5kV。在接收器上包裹铝箔纸接收ZIF-8@PTMSP复合纤维。将得到的复合纤维在50℃下真空干燥12h。制备好的50%ZIF-8@PTMSP复合纤维电镜图如图1,可以看到纤维粗细均匀,直径约为1.1~1.5μm,纤维之间存在空隙,并且ZIF-8颗粒包裹在纤维中。
制备填充聚合物膜液:向聚合物聚乙二醇二缩水甘油醚中按摩尔比1:1加入乙二醇-嵌段-聚丙二醇或O,O’-二(2-氨基丙基)聚丙二醇-嵌段-聚乙二醇-嵌段-聚丙二醇,水浴90℃搅拌3h得到的预交联的PEG膜液;将搅拌均匀的膜液超声脱泡后冷却至室温备用;
制备气体分离膜:将ZIF-8@PTMSP复合纤维丛铝箔纸上小心剥离,通过超滤操作将膜液渗入纤维空隙中。操作压力为0.1mPa,将超滤得到的ZIF-8@PTMSP复合纤维用干净的滤纸吸干两面多余的聚合物溶液。将渗入PEG的MOFs@PTMSP纤维垫放入真空烘箱中,在120℃下加热12h。聚合物溶液在高温下发生自由基聚合,由液体转化为固态得到完全交联固化的有机-无机复合纤维气体分离膜。通过图2膜的表面SEM电镜图可以看到,多孔的ZIF-8@PMTSP纤维垫经过PEG原位聚合后制备的气体分离膜表面致密无缺陷,纤维在膜中均匀分布,且可以看到纤维结构,并且纤维上可以观察到ZIF-8纳米颗粒的存在。
将制备的有机-无机复合纤维气体分离膜采用恒体积变压渗透装置测定CO2和N2组分的纯气气体分离性能。ZIF-8@PTMSP纺丝纤维的存在为气体传输提供了快速的传输路径,所有比例的ZIF-8@PTMSP复合纤维膜的CO2的渗透性得到了明显的提升。但由于存在“tradeoff”效应,渗透性的增加导致了选择性的降低。其中性能最佳的50%ZIF-8@PTMSP复合纤维膜在CO2/N2选择性保持在45.03的同时,将CO2渗透性提升42.34%至536.64Barrer。
将制备的有机-无机复合纤维气体分离膜进行机械性能测试,相比于PEG系列纯膜,ZIF-8@PTMSP复合纤维作为骨架制备气体分离膜的最大应力和最大应变值都得到明显增大,说明ZIF-8@PTMSP的三维骨架结构可以为膜提供支撑来提升机械强度,这也增加了膜的实际应用价值。

Claims (2)

1.一种高透气性有机-无机复合纤维气体分离膜的制备方法,其特征在于,步骤如下:
(1)制备MOFs@PTMSP复合纤维垫
MOFs@PTMSP复合纤维垫由静电纺丝技术制备,将活化完成的MOFs颗粒添加至体积比为1:2的四氢呋喃和1,1,2,2-四氯乙烷的混合溶剂中,水浴超声使MOFs颗粒完全分散在混合溶剂中;向上述混合溶剂中添加同一摩尔质量的聚三甲基硅-1-丙炔PTMSP,控制聚三甲基硅-1-丙炔与上述混合溶剂的质量体积比g/ml为2.5%,剧烈搅拌至完全溶解得到纺丝溶液;其中MOFs颗粒的添加量为MOFs颗粒和PTMSP总质量的10~70%;之后采用静电纺丝工艺得到MOFs@PTMSP复合纤维垫;
(2)制备填充聚合物膜液
向聚乙二醇二缩水甘油醚中按1:1的摩尔比加入乙二醇-嵌段-聚丙二醇或O,O’-二(2-氨基丙基)聚丙二醇-嵌段-聚乙二醇-嵌段-聚丙二醇,水浴90℃搅拌3h以上得到的预交联PEG膜液;将搅拌均匀的预交联PEG膜液超声脱泡后冷却至室温,得到聚合物膜液,备用;
(3)制备有机-无机复合纤维气体分离膜
先将MOFs@PTMSP复合纤维垫置于聚合物膜液中,使用超滤装置将聚合物膜液渗入纤维缝隙中;调整气压为0.1~0.15mPa,注入N2使聚合物膜液通过MOFs@PTMSP复合纤维垫,得到湿润MOFs@PTMSP复合纤维垫;然后,将湿润MOFs@PTMSP复合纤维垫置于滤纸上吸干残余液体;最后,将渗入预交联PEG的MOFs@PTMSP纤维垫放入真空烘箱中,在120℃下加热12h,得到完全交联固化的有机-无机复合纤维气体分离膜。
2.根据权利要求1所述的制备方法,其特征在于,所述的MOFs颗粒为UiO-66、UiO-66-NH2、ZIF-8、ZIF-67、MIL-101或HKUST-1。
CN202111030820.1A 2021-09-03 2021-09-03 一种高透气性有机-无机复合纤维气体分离膜的制备方法 Active CN113713573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111030820.1A CN113713573B (zh) 2021-09-03 2021-09-03 一种高透气性有机-无机复合纤维气体分离膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111030820.1A CN113713573B (zh) 2021-09-03 2021-09-03 一种高透气性有机-无机复合纤维气体分离膜的制备方法

Publications (2)

Publication Number Publication Date
CN113713573A CN113713573A (zh) 2021-11-30
CN113713573B true CN113713573B (zh) 2022-05-27

Family

ID=78681468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111030820.1A Active CN113713573B (zh) 2021-09-03 2021-09-03 一种高透气性有机-无机复合纤维气体分离膜的制备方法

Country Status (1)

Country Link
CN (1) CN113713573B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318117B (zh) * 2022-08-09 2023-07-25 大连理工大学 一种具有MOFs有序直通通道混合基质膜的制备方法
CN116059839A (zh) * 2023-03-20 2023-05-05 大连理工大学 一种柔性电纺纤维支撑金属有机框架膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854574A (zh) * 2018-07-25 2018-11-23 佛山皖阳生物科技有限公司 一种混合导体透氧膜的制备方法
CN111821952A (zh) * 2020-07-15 2020-10-27 广东石油化工学院 一种聚偏氟乙烯/氧化石墨烯/金属有机骨架三相复合材料的制备方法
CN112354380A (zh) * 2020-11-09 2021-02-12 大连理工大学 一种静电纺丝纳米纤维气体分离膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854574A (zh) * 2018-07-25 2018-11-23 佛山皖阳生物科技有限公司 一种混合导体透氧膜的制备方法
CN111821952A (zh) * 2020-07-15 2020-10-27 广东石油化工学院 一种聚偏氟乙烯/氧化石墨烯/金属有机骨架三相复合材料的制备方法
CN112354380A (zh) * 2020-11-09 2021-02-12 大连理工大学 一种静电纺丝纳米纤维气体分离膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
增强复合静电纺纳米纤维膜;刘延波等;《高分子通报》;20141115(第11期);全文 *
静电纺丝复合反渗透膜的改性制备与脱盐性能分析;徐进等;《化工管理》;20170101(第01期);全文 *

Also Published As

Publication number Publication date
CN113713573A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN113713573B (zh) 一种高透气性有机-无机复合纤维气体分离膜的制备方法
He et al. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design
Momeni et al. Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane
CN112531285A (zh) 一种耐高温对位芳纶涂覆锂离子电池隔膜及其制备方法
Zhang et al. Synthesis and gas transport properties of poly (ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation
Kim et al. Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for CO2 capture
Li et al. Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture
Akbarian et al. Gas‐separation behavior of poly (ether sulfone)–poly (ethylene glycol) blend membranes
Zheng et al. PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture
Liu et al. A new method to prepare organic–inorganic hybrid membranes
CN114307693B (zh) 一种MOFs与聚合物双连续的混合基质膜的制备方法
CN113413777B (zh) Vzif-67/zif-67-聚酰亚胺混合基质膜、制备方法及其应用
Miao et al. Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process
Wang et al. A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation
Sun et al. Nanofibers interpenetrating network mimicking “reinforced-concrete” to construct mechanically robust composite membrane for enhanced CO2 separation
CN108744991B (zh) 一种掺杂沸石咪唑酯骨架多孔碳纳米材料的有机-无机混合基质膜的制备方法及应用
CN108479431B (zh) 一种通孔过滤膜及其制备方法
CN114425243B (zh) 一种金属-有机框架材料分离膜及其制备方法与应用
CN114032670A (zh) 一种耐高温复合聚酰亚胺锂离子电池隔膜的制备方法
AU2021104438A4 (en) A Preparation Method For Gas Separation Membranes By Utilizing Nanofibers Subjected To Electrostatic Spinning
CN112354380B (zh) 一种静电纺丝纳米纤维气体分离膜的制备方法
CN111545080A (zh) 一种永久亲水纳米石墨烯聚四氟乙烯中空纤维纳滤膜的制备方法
CN110614040A (zh) 一种石墨烯杂化全氟聚合物中空纤维膜的制备方法
CN108285541B (zh) 纳米纤维增强的含氟离子交换膜及其制备方法
Wang et al. Relationship between wet coating thickness and nanoparticle loadings based on the performance of mixed matrix composite membranes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant