CN113699506A - 一种碘化亚铜薄膜的制备方法 - Google Patents

一种碘化亚铜薄膜的制备方法 Download PDF

Info

Publication number
CN113699506A
CN113699506A CN202010432624.6A CN202010432624A CN113699506A CN 113699506 A CN113699506 A CN 113699506A CN 202010432624 A CN202010432624 A CN 202010432624A CN 113699506 A CN113699506 A CN 113699506A
Authority
CN
China
Prior art keywords
source
cuprous
reaction chamber
cuprous iodide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010432624.6A
Other languages
English (en)
Other versions
CN113699506B (zh
Inventor
明帅强
李楠
赵丽莉
何萌
卢维尔
夏洋
文庆涛
高雅增
冷兴龙
李培源
屈芙蓉
刘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202010432624.6A priority Critical patent/CN113699506B/zh
Priority to PCT/CN2020/103286 priority patent/WO2021232577A1/zh
Publication of CN113699506A publication Critical patent/CN113699506A/zh
Application granted granted Critical
Publication of CN113699506B publication Critical patent/CN113699506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请公开了一种碘化亚铜薄膜的制备方法,涉及半导体器件技术领域,所述方法包括:在原子层沉积反应腔室中放置衬底,将所述反应腔室抽真空并开始进行加热处理,其中,加热对象包括基底、反应腔室、管路、反应源;所述衬底包括硅、蓝宝石、玻璃中的一种;待所述加热对象稳定在特定温度时,往所述原子层沉积反应腔室内通入铜源0.001‑5s,吹扫1‑180s,通入碘源0.001‑5s,吹扫1‑180s,在所述反应腔室中进行原子层沉积,获得碘化亚铜薄膜;沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;得到均匀的碘化亚铜薄膜置于真空干燥箱中备用。

Description

一种碘化亚铜薄膜的制备方法
技术领域
本申请涉及半导体器件技术领域,尤其涉及一种碘化亚铜薄膜的制备方法。
背景技术
碘化亚铜(CuI)在常温下呈白色粉末状或者白色晶体状。熔点为606℃,沸点为1290℃。室温下就可以结晶析出,不易被可见光分解,溶于水和乙醇,本征为P型半导体材料,相较于其他P型半导体材料(如CuCl,Cu2O) 性能更加稳定。CuI禁带宽度的理论值和实验值为3.1eV到3.2eV,对可见光透明,作为本征为P型的材料,铜空位为主要的浅能级(大约0.5eV)受主缺陷。CuI的亲和能大约为2.1eV,费米能级约为5.1eV,对比于其他半导体材料(如Si,TiO2,ZnO,ZnS等)CuI是价带顶能级最小的材料。如此的特性使得CuI很容易与金属电极或者ITO等透明电极形成良好的欧姆接触。相反,如P型的ZnO的费米能级达到大约7.3eV,很难与金属形成欧姆接触。因此CuI既可以做透明电极又可以做PN结的P型材料,同时在透明电子器件应用中是一个不错的选择。
目前CuI薄膜的制备方式有铜膜碘化法、热蒸发法、激光脉冲沉积法(PLD)、反应磁控溅射法、化学沉积法等。目前测得的最高霍尔空穴迁移率来自水热法制备的CuI晶体,达到43.9cm2/Vs,空穴浓度为4.3×10-16cm-3。如此高的迁移率在宽禁带化合物中非常罕见,但是,目前的沉积方法制备的CuI 薄膜在迁移率上与水热法制备的CuI晶体相比差距很大,亟待新的沉积方案来提高CuI薄膜的沉积质量。
原子层沉积(ALD)是一种自我限制的表面生长方式,所以ALD可以实现薄膜厚度在单原子层量级的精确可控和在三维纳米结构上100%均匀保形的薄膜覆盖。ALD技术在微电子领域已经作为一种制备动态随机存取存储器 (DRAMs)沟槽电容器的高质量电介质层和CMOS晶体管的高介电常数的栅极氧化物层制备的关键技术。采用ALD技术沉积CuI薄膜,既能够与现有的半导体生产线兼容,又能够适合大规模生产。
但本申请发明人在实现本申请实施例中技术方案的过程中,发现上述现有技术至少存在如下技术问题:
现有技术中碘化亚铜薄膜沉积技术中,薄膜迁移率低,性能差的技术问题。
发明内容
本申请实施例通过提供一种碘化亚铜薄膜的制备方法,解决了现有技术中碘化亚铜薄膜沉积技术中,薄膜迁移率低,性能差的技术问题,达到了方法操作简单,有利于量产和与现有IC工艺兼容;所述方法制备的碘化亚铜薄膜具有很好的三维保形性,薄膜厚度在单原子层量级的精确可控的技术效果。
为了解决上述问题,本申请实施例提供了一种碘化亚铜薄膜的制备方法,所述方法包括:在原子层沉积反应腔室中放置衬底,将所述反应腔室抽真空并开始进行加热处理,其中,加热对象包括基底、反应腔室、管路、反应源;所述衬底包括硅、蓝宝石、玻璃中的一种;待所述加热对象稳定在特定温度时,往所述原子层沉积反应腔室内通入铜源0.001-5s,吹扫1-180s,通入碘源0.001-5s,吹扫1-180s,在所述反应腔室中进行原子层沉积,获得碘化亚铜薄膜;沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;得到均匀的碘化亚铜薄膜置于真空干燥箱中备用。
优选的,所述衬底的加热温度范围为室温-500℃。
优选的,所述管路的加热温度范围为室温-200℃。
优选的,所述腔室的加热温度范围为室温-200℃。
优选的,所述反应源的加热温度范围为室温-200℃。
优选的,所述铜源包括新癸酸铜、2,2,6,6-四甲基-3,5-庚二酮酸、三氟乙酰丙酮化铜、三甲基膦铜、乙酰丙酮亚铜中的一种。
优选的,所述碘源包括碘单质、碘化氢,氢碘酸中的一种。
优选的,所述铜源为乙酰丙酮亚铜蒸汽时,所述方法包括:通入所述乙酰丙酮亚铜蒸汽的时间范围为0.8-1.2s,用惰性气体进行吹扫的时间范围为 0-60s。
优选的,所述碘源为碘化氢时,所述方法包括:通入碘化氢蒸汽的时间范围为0.2-0.8s,用惰性气体进行吹扫的时间范围为20-60s。
优选的,所述乙酰丙酮亚铜蒸汽通过将固态乙酰丙酮亚铜在原子层沉积设备的固态源加热装置中加热至60-100℃获得。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
图1为本申请实施例一提供的一种碘化亚铜薄膜的制备方法的流程示意图;
图2为本申请实施例二提供的一种碘化亚铜薄膜的制备方法的流程示意图;
图3为本申请实施例中的沉积碘化亚铜薄膜工艺结果的截面示意图。
具体实施方式
本申请实施例提供了一种碘化亚铜薄膜的制备方法,解决了现有技术中碘化亚铜薄膜沉积技术中,薄膜迁移率低,性能差的技术问题。
为了解决上述技术问题,本申请提供的技术方案总体思路如下:通过在原子层沉积反应腔室中放置衬底,将所述反应腔室抽真空并开始进行加热处理,其中,加热对象包括基底、反应腔室、管路、反应源;所述衬底包括硅、蓝宝石、玻璃中的一种;待所述加热对象稳定在特定温度时,往所述原子层沉积反应腔室内通入铜源0.001-5s,吹扫1-180s,通入碘源0.001-5s,吹扫1-180s,在所述反应腔室中进行原子层沉积,获得碘化亚铜薄膜;沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;得到均匀的碘化亚铜薄膜置于真空干燥箱中备用,达到了方法操作简单,有利于量产和与现有IC工艺兼容;所述方法制备的碘化亚铜薄膜具有很好的三维保形性,薄膜厚度在单原子层量级的精确可控的技术效果。
下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
实施例一
图1为本发明实施例中一种碘化亚铜薄膜的制备方法的流程示意图,如图1所示,所述方法包括:
步骤110:在原子层沉积反应腔室中放置衬底,将所述反应腔室抽真空并开始进行加热处理,其中,加热对象包括基底、反应腔室、管路、反应源;所述衬底包括硅、蓝宝石、玻璃中的一种;
进一步的,所述衬底的加热温度范围为室温-500℃,所述管路的加热温度范围为室温-200℃,所述腔室的加热温度范围为室温-200℃,所述反应源的加热温度范围为室温-200℃。
步骤120:待所述加热对象稳定在特定温度时,往所述原子层沉积反应腔室内通入铜源0.001-5s,吹扫1-180s,通入碘源0.001-5s,吹扫1-180s,在所述反应腔室中进行原子层沉积,获得碘化亚铜薄膜;
进一步的,所述铜源包括新癸酸铜、2,2,6,6-四甲基-3,5-庚二酮酸、三氟乙酰丙酮化铜、三甲基膦铜、乙酰丙酮亚铜中的一种;所述碘源包括碘单质、碘化氢,氢碘酸中的一种。
进一步的,所述铜源为乙酰丙酮亚铜蒸汽时,所述方法包括:通入所述乙酰丙酮亚铜蒸汽的时间范围为0.8-1.2s,用惰性气体进行吹扫的时间范围为0-60s;所述乙酰丙酮亚铜蒸汽通过将固态乙酰丙酮亚铜在原子层沉积设备的固态源加热装置中加热至60-100℃获得。
进一步的,所述碘源为碘化氢时,所述方法包括:通入碘化氢蒸汽的时间范围为0.2-0.8s,用惰性气体进行吹扫的时间范围为20-60s。
步骤130:沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;
步骤140:得到均匀的碘化亚铜薄膜置于真空干燥箱中备用。
具体而言,原子层沉积技术是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。原子层沉积与普通的化学沉积有相似之处。但在原子层沉积过程中,新一层原子膜的化学反应是直接与之前一层相关联的,这种方式使每次反应只沉积一层原子。本申请实施例通过原子层沉积技术在原子层沉积设备中的反应腔室中放置硅、蓝宝石、玻璃等衬底,其中衬底还可以包括其他能够达到起到相同作用,达到同等效果的物质,所述反应腔室抽真空并开始对基底、腔室、管路、反应源等进行加热。等反应腔室基底、管路及反应源等加热并稳定在特定温度时,往反应腔室内通入铜源0.001-5s,吹扫1-180s,通入碘源0.001-5s,吹扫1-180s,在腔体中进行原子层沉积,获得碘化亚铜薄膜,碘化亚铜薄膜结构如图3所示,沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;得到均匀的碘化亚铜薄膜置于真空干燥箱中备用。解决了现有技术中碘化亚铜薄膜沉积技术中,薄膜迁移率低,性能差的技术问题,达到了方法操作简单,有利于量产和与现有IC工艺兼容;所述方法制备的碘化亚铜薄膜具有很好的三维保形性,薄膜厚度在单原子层量级的精确可控的技术效果。
实施例二
如图2所示,本申请实施例以乙酰丙酮亚铜作为铜源,以碘化氢作为碘源为例进行解释说明:
a、在原子层沉积反应腔室中放置硅衬底,将所述反应腔室抽真空并开始对基底、腔室加热;
b、在手套箱中将乙酰丙酮亚铜装入原子层沉积设备的固态源加热源瓶内,设定源瓶加热温度对源进行加热,直到每次脉冲的蒸汽压稳定为止,由于乙酰丙酮亚铜室温下为固态,饱和蒸气压较低,所以需要将其用原子层沉积设备自带的固态源加热装置将其加热到60-100℃;以保证乙酰丙酮亚铜有足够的蒸气压脉冲进入载气系统,最后由载气输运至反应腔室。由于碘化氢室温下是气态,直接由载气输运至反应腔室。
c、待基底温度达到预设值100-200℃,温度稳定后,执行设定好的原子层沉积程序,具体程序如下:
第一脉冲为乙酰丙酮亚铜脉冲,脉冲时间为1-4s;氮气清洗脉冲时间为 20-60s;碘化氢脉冲时间为0.2-0.8s;氮气清洗脉冲时间为20-60s。乙酰丙酮亚铜和碘化氢载气流量为45sccm,其他源管线的氮气的流量均设为 30sccm。生长厚度为执行200-800个上述原子层沉积循环。
综上所述,本发明方法首次以原子层沉积技术沉积碘化亚铜薄膜,方法操作简单,有利于量产和与现有IC工艺兼容;方法制备的碘化亚铜薄膜具有很好的三维保形性,薄膜厚度在单原子层量级的精确可控。本申请实施例所述的方法对于碘化亚铜薄膜在存储、光电、透明电子以及柔性器件等领域应用具有重要意义。
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
本申请实施例通过提供一种碘化亚铜薄膜的制备方法,通过在原子层沉积反应腔室中放置衬底,将所述反应腔室抽真空并开始进行加热处理,其中,加热对象包括基底、反应腔室、管路、反应源;所述衬底包括硅、蓝宝石、玻璃中的一种;待所述加热对象稳定在特定温度时,往所述原子层沉积反应腔室内通入铜源0.001-5s,吹扫1-180s,通入碘源0.001-5s,吹扫1-180 s,在所述反应腔室中进行原子层沉积,获得碘化亚铜薄膜;沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;得到均匀的碘化亚铜薄膜置于真空干燥箱中备用,解决了现有技术中碘化亚铜薄膜沉积技术中,薄膜迁移率低,性能差的技术问题,达到了方法操作简单,有利于量产和与现有IC工艺兼容;所述方法制备的碘化亚铜薄膜具有很好的三维保形性,薄膜厚度在单原子层量级的精确可控的技术效果。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种碘化亚铜薄膜的制备方法,其中,所述方法包括:
在原子层沉积反应腔室中放置衬底,将所述反应腔室抽真空并开始进行加热处理,其中,加热对象包括基底、反应腔室、管路、反应源;所述衬底包括硅、蓝宝石、玻璃中的一种;
待所述加热对象稳定在特定温度时,往所述原子层沉积反应腔室内通入铜源0.001-5s,吹扫1-180s,通入碘源0.001-5s,吹扫1-180s,在所述反应腔室中进行原子层沉积,获得碘化亚铜薄膜;
沉积完所述碘化亚铜薄膜后,让所述基底在真空中自然冷却到室温后取出;
得到均匀的碘化亚铜薄膜置于真空干燥箱中备用。
2.如权利要求1所述的方法,其中,所述衬底的加热温度范围为室温-500℃。
3.如权利要求1所述的方法,其中,所述管路的加热温度范围为室温-200℃。
4.如权利要求1所述的方法,其中,所述腔室的加热温度范围为室温-200℃。
5.如权利要求1所述的方法,其中,所述反应源的加热温度范围为室温-200℃。
6.如权利要求1所述的方法,其中,所述铜源包括新癸酸铜、2,2,6,6-四甲基-3,5-庚二酮酸、三氟乙酰丙酮化铜、三甲基膦铜、乙酰丙酮亚铜中的一种。
7.如权利要求1所述的方法,其中,所述碘源包括碘单质、碘化氢,氢碘酸中的一种。
8.如权利要求6所述的方法,其中,所述铜源为乙酰丙酮亚铜蒸汽时,所述方法包括:通入所述乙酰丙酮亚铜蒸汽的时间范围为0.8-1.2s,用惰性气体进行吹扫的时间范围为0-60s。
9.如权利要求7所述的方法,其中,所述碘源为碘化氢时,所述方法包括:通入碘化氢蒸汽的时间范围为0.2-0.8s,用惰性气体进行吹扫的时间范围为20-60s。
10.如权利要求8所述的方法,其中,所述乙酰丙酮亚铜蒸汽通过将固态乙酰丙酮亚铜在原子层沉积设备的固态源加热装置中加热至60-100℃获得。
CN202010432624.6A 2020-05-20 2020-05-20 一种碘化亚铜薄膜的制备方法 Active CN113699506B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010432624.6A CN113699506B (zh) 2020-05-20 2020-05-20 一种碘化亚铜薄膜的制备方法
PCT/CN2020/103286 WO2021232577A1 (zh) 2020-05-20 2020-07-21 一种碘化亚铜薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010432624.6A CN113699506B (zh) 2020-05-20 2020-05-20 一种碘化亚铜薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN113699506A true CN113699506A (zh) 2021-11-26
CN113699506B CN113699506B (zh) 2022-08-30

Family

ID=78645884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010432624.6A Active CN113699506B (zh) 2020-05-20 2020-05-20 一种碘化亚铜薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN113699506B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592180A (zh) * 2022-03-07 2022-06-07 嘉兴中科微电子仪器与设备工程中心 一种氟化镁薄膜的制备方法及相关设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505131A (en) * 1967-10-02 1970-04-07 Xerox Corp Process for the preparation of a cuprous iodide conductive film
JPS5434499A (en) * 1977-08-19 1979-03-13 Teijin Ltd Production of conductive fiber
WO2009132207A2 (en) * 2008-04-25 2009-10-29 Asm International N.V. Synthesis and use of precursors for ald of tellurium and selenium thin films
CN101871111A (zh) * 2010-06-01 2010-10-27 浙江大学 一种均匀致密碘化亚铜半导体薄膜的电化学制备方法
CN106848062A (zh) * 2016-12-29 2017-06-13 许昌学院 铜掺杂钙钛矿薄膜、原位制备方法及无空穴传输层太阳能电池器件
CN107083532A (zh) * 2016-09-19 2017-08-22 鲁东大学 一种 CuI 纳米结构的制备方法
CN108376712A (zh) * 2018-02-05 2018-08-07 浙江大学 一种基于碘化亚铜的透明薄膜晶体管及制备方法
CN108677155A (zh) * 2018-05-23 2018-10-19 哈尔滨工业大学 一种室温下制备碘化亚铜p型透明半导体薄膜材料的方法
CN109368685A (zh) * 2018-11-10 2019-02-22 曲阜师范大学 一种高度透明导电的p型碘化亚铜薄膜的制备方法
CN109979675A (zh) * 2019-03-12 2019-07-05 天津大学 一种高透过率p型碘化铜透明导电薄膜的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505131A (en) * 1967-10-02 1970-04-07 Xerox Corp Process for the preparation of a cuprous iodide conductive film
JPS5434499A (en) * 1977-08-19 1979-03-13 Teijin Ltd Production of conductive fiber
WO2009132207A2 (en) * 2008-04-25 2009-10-29 Asm International N.V. Synthesis and use of precursors for ald of tellurium and selenium thin films
CN102076882A (zh) * 2008-04-25 2011-05-25 Asm国际公司 用于碲和硒薄膜的ald的前体的合成和应用
CN101871111A (zh) * 2010-06-01 2010-10-27 浙江大学 一种均匀致密碘化亚铜半导体薄膜的电化学制备方法
CN107083532A (zh) * 2016-09-19 2017-08-22 鲁东大学 一种 CuI 纳米结构的制备方法
CN106848062A (zh) * 2016-12-29 2017-06-13 许昌学院 铜掺杂钙钛矿薄膜、原位制备方法及无空穴传输层太阳能电池器件
CN108376712A (zh) * 2018-02-05 2018-08-07 浙江大学 一种基于碘化亚铜的透明薄膜晶体管及制备方法
CN108677155A (zh) * 2018-05-23 2018-10-19 哈尔滨工业大学 一种室温下制备碘化亚铜p型透明半导体薄膜材料的方法
CN109368685A (zh) * 2018-11-10 2019-02-22 曲阜师范大学 一种高度透明导电的p型碘化亚铜薄膜的制备方法
CN109979675A (zh) * 2019-03-12 2019-07-05 天津大学 一种高透过率p型碘化铜透明导电薄膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592180A (zh) * 2022-03-07 2022-06-07 嘉兴中科微电子仪器与设备工程中心 一种氟化镁薄膜的制备方法及相关设备

Also Published As

Publication number Publication date
CN113699506B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US2804405A (en) Manufacture of silicon devices
US4629635A (en) Process for depositing a low resistivity tungsten silicon composite film on a substrate
Ristov et al. Chemical deposition of ZnO films
US10311992B2 (en) Transparent conducting films including complex oxides
US5672385A (en) Titanium nitride film-MOCVD method incorporating use of tetrakisdialkylaminotitanium as a source gas
US5387542A (en) Polycrystalline silicon thin film and low temperature fabrication method thereof
US20230243030A1 (en) Method of growing monolayer transition metal dichalcogenides via sulfurization and subsequent sublimation
CN113699506B (zh) 一种碘化亚铜薄膜的制备方法
Duffy et al. Chemical vapor deposition of aluminum oxide films from organo-aluminum compounds
CN108376712A (zh) 一种基于碘化亚铜的透明薄膜晶体管及制备方法
CN106252203B (zh) 金属氧化物半导体层的结晶方法及半导体结构
CN115110063B (zh) 一种p型锌钴复合氧化物半导体薄膜的原子层沉积方法
CN113699505B (zh) 一种掺杂的碘化亚铜薄膜的制备方法
CN111276402A (zh) 一种基于金属氧化物/石墨烯异质结晶体管及其制备方法
KR102602059B1 (ko) 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체
WO2021232577A1 (zh) 一种碘化亚铜薄膜的制备方法
JP3013418B2 (ja) 誘電体薄膜と薄膜デバイスとそれらの製造方法
CN112899654A (zh) 一种Ag2S薄膜的制备方法
CN112899646B (zh) 一种基于乙酰丙酮银制备Ag2S薄膜的方法
CN110729409B (zh) 一种有机光电器件封装薄膜及其制备方法
US3565704A (en) Aluminum nitride films and processes for producing the same
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
US3658582A (en) Composites, of iib-via binary film compounds on iia-viia binary compound substrate crystals and process therefor
Jeong Thin zinc oxide and cuprous oxide films for photovoltaic applications
JPH0360123A (ja) 表面処理方法および表面処理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant