CN113694888B - 铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用 - Google Patents

铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用 Download PDF

Info

Publication number
CN113694888B
CN113694888B CN202110882164.1A CN202110882164A CN113694888B CN 113694888 B CN113694888 B CN 113694888B CN 202110882164 A CN202110882164 A CN 202110882164A CN 113694888 B CN113694888 B CN 113694888B
Authority
CN
China
Prior art keywords
stearate
adsorbent
ldh
layered double
nbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110882164.1A
Other languages
English (en)
Other versions
CN113694888A (zh
Inventor
叶青
吴凯
王兰洋
孟繁伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110882164.1A priority Critical patent/CN113694888B/zh
Publication of CN113694888A publication Critical patent/CN113694888A/zh
Application granted granted Critical
Publication of CN113694888B publication Critical patent/CN113694888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为CO2吸附剂的制备方法和应用。首先制备具有良好结构的插层长碳链有机阴离子硬脂酸盐的有机层状双氢氧化物,通过原位法与氧化石墨烯(GO)进行复合,得到有机层状双氢氧化物/氧化石墨烯纳米复合材料,然后通过浸渍法将草酸铌(C10H5NbO20)负载于上述复合材料上,最终通过煅烧活化得到铌改性有机层状双氧化物/氧化石墨烯复合材料作为高温CO2吸附剂。本发明在宽的温度(200℃~300℃)范围内,对CO2(浓度为5vol.%~25vol.%)和N2(浓度为75vol.%~95vol.%)的混合气体具有较高的吸附能力,本发明吸附剂具有较高的比表面积和较好的热稳定性。

Description

铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为CO2 吸附剂的制备方法和应用
技术领域
本发明涉及一种用于吸附二氧化碳的铌改性有机层状双氧化物/氧化石墨烯纳米复合吸附剂的制备方法及其在高温条件下吸附CO2的应用。
背景技术
众所周知,全球变暖的一个主要原因之一就是温室气体CO2的排放。近些年来,人们越来越多的关注CO2 capture,utilization,and storage(CCUS)技术。其中吸附增强水煤气变换(SEWGS)被认为是一种很有前景的燃烧前CO2捕集技术,该技术是WGS反应和CO2吸附的结合,反应过程如等式1所示。通过反应过程中吸附或者去除CO2,促使反应向右侧进行,从而使该反应更加完全并且获得更多的H2能源。在实际的工业应用中吸附剂扮演着重要的角色,所以需要寻找一个高性能与再生性能良好的吸附剂。SEWGS反应通常发生在200~400℃的环境下,常见的物理吸附剂(如:活性炭,沸石等)在高温下吸附性能非常差;而常见的化学吸附剂(如胺基固体吸附剂,金属氧化物等)有着动力学,再生性能差等的缺点。因此,需要我们致力于寻找一个合适的吸附剂。
Figure BDA0003192440810000011
水滑石,又称为层状双氢氧化物(LDH)。其通式为:
Figure BDA0003192440810000012
其在200-400℃下具有良好的吸附性能,并且具有良好的动力学和再生性能。此外,在H2O和SO2存在的情况下LDH依然保持着良好的吸附性能。近些年来LDH衍生的氧化物已经被众多学者证明其可以良好的应用与SEWGS反应中。已经有很多文献报道了关于LDH及其衍生物的CO2吸附性能。适当的高温煅烧可以使LDH形成表面具有更多碱性位点的层状双氧化物(LDO)纳米复合材料,从而可以提高其吸附容量。较大尺寸的阴离子An-可能会导致LDH前体中较大的层间距,从而使CO2分子更容易扩散到层间区域与活性中心相互作用。石墨烯是一种平面二维纳米材料,它被认为是当今世界上最薄的无带隙材料,这使它成为环境应用的绝佳候选材料。结合之前的研究,需要对LDH材料进一步的改性来改善其性能。在结构上,GO的2D片状形态与LDH非常的相容,GO的存在可以增强LDH的颗粒分散性。本专利,我们首次报道了通过沉淀法分别制备了硬脂酸插层的LDH(简称LDH-stearate)和GO/LDH-stearate复合材料,并通过浸渍法负载少量铌。通过一系列表征研究其结构和CO2吸附性能。本项目的实施得到:国家自然科学基金项目(编号:21277008;20777005);北京自然科学基金(编号:8082008);国家重点研发计划(No.2017YFC0209905)的资助,也是这些项目的研究内容。
发明内容
本发明的目的是提供一种有机层状双氧化物/氧化石墨烯纳米复合吸附剂的制备及其用于高温的CO2吸附。硬脂酸的插层使LDH产生更多的表面碱性位点,同时煅烧后所得的混合金属氧化物的结晶度较低,并且所形成的准非晶结构比LDH更稳定。带正电荷LDH沉淀到带负电荷GO上的过程中,相互之间的静电相互作用以逐层方式驱动异质结构的纳米复合材料进行自组装,GO的加入后复合材料分散性和稳定性均得到提高。复合材料的比表面积为:445m2/g。所提供的吸附剂可在较高的反应温度(200℃~300℃)下,对CO2具有较高的吸附量。其中,6GO/LDO-Stearate具有着最高的吸附容量(0.83mmol/g),比未改性的LDO(0.35mmol/g)高2倍以上。表征结果证明,复合材料吸附性能提高的关键因素是比表面积和碱性位点提高。此吸附剂制备工艺简单,原材料在自然界广泛存在。
本发明提供一种用于高温CO2吸附的有机层状双氧化物/氧化石墨烯纳米复合吸附剂的制备方法:
(1)将一定量的GO(10~100mg)分别溶解于100ml去离子水中,室温下搅拌0.5h,并将上述混合液于超声处理3~6h,得到分散均匀的GO。加入一定量的Mg(NO3)2·6H2O和Al(NO3)3·9H2O,保持[Mg2+]/[Al3+](摩尔比)=2~3,将0.2mol/L的硬脂酸混合于上述混合液中,保持硬脂酸阴离子C17H35COO-:Mg2++Al3+=1~3,将1.2~4mol/L的NaOH溶液,以1~10mL/min的速度滴加到上述溶液中调节pH,通过pH仪将溶液的pH维持在10±0.1,将上述溶液于60~80℃水浴搅拌6~12h。抽滤洗涤至pH=7,将所得固体于100~120℃干燥、研磨并过80目筛子,所得样品为xGO/LDH-Stearate,其中x为复合材料中GO含量的质量比。通过浸渍法将草酸铌(C10H5NbO20)负载于xGO-LDH-Stearate上。首先将一定量C10H5NbO20溶解于过量乙醇中,接着加入上述xGO-LDH-Stearate,其中C10H5NbO20:xGO-LDH-Stearate=0.01~0.2,将上述悬浮液搅拌2~10h,将其转移至60℃条件下真空烘干。获得的样品被称为yNb/xGO-LDH-Stearate,y是复合材料中C10H5NbO20负载量的质量百分比。在进行CO2吸附之前,将上述的吸附剂进行煅烧活化。取适量的样品于管式炉中,在300~500℃和50mL/min氮气气氛下煅烧2~6h。所得的样品被称为xGO-LDO-Stearate,yNb/xGO-LDO-Stearate。
(2)将一定量的吸附剂放置于热重仪器中,通入CO2(浓度为5vol.%~25vol.%)和N2(浓度为75vol.%~95vol.%)的混合气,反应温度为200℃~300℃,对混合气体进行吸附,通过质量变化检测吸附剂对CO2的附量。在上述条件下本吸附剂具有较高的吸附容量(0.35~0.83mmol/g)。
附图说明
图1为本发明制备的LDH、LDH-Stearate、6GO-LDH-Stearate、0.5Nb/6GO-LDH-Stearate、1Nb/6GO-LDH-Stearate、2Nb/6GO-LDH-Stearate吸附剂的XRD图。
图2为本发明制备的LDH、LDH-Stearate、6GO-LDH-Stearate、LDO、LDO-Stearate、6GO-LDO-Stearate吸附剂的透射电镜图。
图3为本发明制备的LDO、LDO-Stearate、6GO-LDO-Stearate、0.5Nb/6GO-LDO-Stearate、1Nb/6GO-LDO-Stearate、2Nb/6GO-LDO-Stearate吸附剂的N2-吸附/脱附图。
图4为本发明制备的LDO、LDO-Stearate、6GO/LDO-Stearate、0.5Nb/6GO-LDO-Stearate、1Nb/6GO-LDO-Stearate、2Nb/6GO-LDO-Stearate吸附剂在200℃吸附15%CO2混合气1小时的吸附图。
具体实施方式
吸附剂一般取5-30mg做实验。
实施例1
(1)将20mg的GO溶解于100ml去离子水中,室温下搅拌0.5h,并将上述混合液于超声处理3h,得到分散均匀的GO。加入一定量的Mg(NO3)2·6H2O和Al(NO3)3·9H2O,保持[Mg2+]/[Al3+](摩尔比)=2,将0.05mol的硬脂酸混合于上述120ml混合液中,[硬脂酸]/[Mg2+](摩尔比)=2,将1.2mol/L的NaOH溶液,以1mL/min的速度滴加到上述溶液中调节pH,通过pH仪将溶液的pH维持在10±0.1,将上述溶液于60℃水浴搅拌6h。抽滤洗涤至pH=7,将所得固体于100℃干燥、研磨并过80目筛子,所得样品为2GO-LDH-Stearate。通过浸渍法将草酸铌(C10H5NbO20)负载于2GO-LDH-Stearate上。首先将(0.01g)C10H5NbO20溶解于2ml乙醇中,接着加入2g上述2GO-LDH-Stearate,将上述悬浮液搅拌2h,将其转移至60℃条件下真空烘干。获得的样品被称为0.5Nb/2GO-LDH-Stearate,0.5是复合材料中C10H5NbO20负载量的质量百分比。在进行CO2吸附之前,将上述的吸附剂进行煅烧活化。取适量的样品于管式炉中,在300℃和50mL/min氮气气氛下煅烧2h。所得的样品被称为0.5Nb/2GO-LDO-Stearate。
(2)将吸附剂(10mg)放置于热重仪器中,通入CO2(浓度为15vol.%)和N2(浓度为85vol.%)的混合气,反应温度为200℃,对混合气体进行吸附,通过质量变化检测吸附剂对CO2的附量。在上述条件下本吸附剂具有较高的吸附容量。
实施例2
(1)将40mg的GO溶解于100ml去离子水中,室温下搅拌0.5h,并将上述混合液于超声处理4h,得到分散均匀的GO。加入一定量的Mg(NO3)2·6H2O和Al(NO3)3·9H2O,保持[Mg2+]/[Al3+](摩尔比)=2,将0.1mol的硬脂酸混合于上述120ml混合液中,[硬脂酸]/[Mg2+](摩尔比)=2,将2mol/L的NaOH溶液,以1mL/min的速度滴加到上述溶液中调节pH,通过pH仪将溶液的pH维持在10±0.1,将上述溶液于60℃水浴搅拌8h。抽滤洗涤至pH=7,将所得固体于100℃干燥、研磨并过80目筛子,所得样品为4GO-LDH-Stearate。通过浸渍法将草酸铌(C10H5NbO20)负载于4GO-LDH-Stearate上。首先将(0.02g)C10H5NbO20溶解于4ml乙醇中,接着加入2g上述4GO-LDH-Stearate,将上述悬浮液搅拌5h,将其转移至60℃条件下真空烘干。获得的样品被称为1Nb/4GO-LDH-Stearate,1是复合材料中C10H5NbO20负载量的质量百分比。在进行CO2吸附之前,将上述的吸附剂进行煅烧活化。取适量的样品于管式炉中,在300℃和50mL/min氮气气氛下煅烧6h。所得的样品被称为1Nb/4GO-LDO-Stearate。
(2)将一定量的吸附剂放置于热重仪器中,通入CO2(浓度为15vol.%)和N2(浓度为85vol.%)的混合气,反应温度为200℃,对混合气体进行吸附,通过质量变化检测吸附剂对CO2的附量。在上述条件下本吸附剂具有较高的吸附容量。
实施例3
(1)将60mg的GO溶解于100ml去离子水中,室温下搅拌0.5h,并将上述混合液于超声处理5h,得到分散均匀的GO。加入一定量的Mg(NO3)2·6H2O和Al(NO3)3·9H2O,保持[Mg2+]/[Al3+](摩尔比)=3,将0.15mol的硬脂酸混合于上述120ml混合液中,[硬脂酸]/[Mg2+](摩尔比)=2,将3mol/L的NaOH溶液,以1mL/min的速度滴加到上述溶液中调节pH,通过pH仪将溶液的pH维持在10±0.1,将上述溶液于80℃水浴搅拌10h。抽滤洗涤至pH=7,将所得固体于120℃干燥、研磨并过80目筛子,所得样品为6GO/LDH-Stearate。通过浸渍法将草酸铌(C10H5NbO20)负载于6GO-LDH-Stearate上。首先将(0.03g)C10H5NbO20溶解于5ml乙醇中,接着加入2g上述6GO-LDH-Stearate,将上述悬浮液搅拌5h,将其转移至60℃条件下真空烘干。获得的样品被称为1.5Nb/6GO-LDH-Stearate,1.5是复合材料中C10H5NbO20负载量的质量百分比。在进行CO2吸附之前,将上述的吸附剂进行煅烧活化。取适量的样品于管式炉中,在400℃和50mL/min氮气气氛下煅烧6h。所得的样品被称为1.5Nb/6GO-LDO-Stearate。
(2)将一定量的吸附剂放置于热重仪器中,通入CO2(浓度为15vol.%)和N2(浓度为85vol.%)的混合气,反应温度为200℃,对混合气体进行吸附,通过质量变化检测吸附剂对CO2的附量。在上述条件下本吸附剂具有较高的吸附容量。
实施例4
(1)将80mg的GO溶解于100ml去离子水中,室温下搅拌0.5h,并将上述混合液于超声处理6h,得到分散均匀的GO。加入一定量的Mg(NO3)2·6H2O和Al(NO3)3·9H2O,保持[Mg2+]/[Al3+](摩尔比)=3,将0.2mol的硬脂酸混合于上述120ml混合液中,[硬脂酸]/[Mg2+](摩尔比)=2,将4mol/L的NaOH溶液,以1mL/min的速度滴加到上述溶液中调节pH,通过pH仪将溶液的pH维持在10±0.1,将上述溶液于80℃水浴搅拌12h。抽滤洗涤至pH=7,将所得固体于120℃干燥、研磨并过80目筛子,所得样品为8GO-LDH-Stearate。通过浸渍法将草酸铌(C10H5NbO20)负载于8GO-LDH-Stearate上。首先将(0.04g)C10H5NbO20溶解于5ml乙醇中,接着加入2g上述8GO-LDH-Stearate,将上述悬浮液搅拌8h,将其转移至60℃条件下真空烘干。获得的样品被称为2Nb/8GO-LDH-Stearate,5是复合材料中C10H5NbO20负载量的质量百分比。在进行CO2吸附之前,将上述的吸附剂进行煅烧活化。取适量的样品于管式炉中,在400℃和50mL/min氮气气氛下煅烧6h。所得的样品被称为2Nb/8GO-LDO-Stearate。
(2)将一定量的吸附剂放置于热重仪器中,通入CO2(浓度为15vol.%)和N2(浓度为85vol.%)的混合气,反应温度为300℃,对混合气体进行吸附,通过质量变化检测吸附剂对CO2的附量。在上述条件下本吸附剂具有较高的吸附容量。

Claims (2)

1.铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为CO2吸附剂的制备方法,其特征在于,包括以下步骤:
将10~100 mg的GO分别溶解于100 ml去离子水中,室温下搅拌0.5 h,并将混合液于超声处理3~6 h,得到分散均匀的GO悬浮液;将Mg(NO3)2•6H2O和Al(NO3)3•9H2O固体加入50~200mL上述悬浮液中形成混合液,其中[Mg2+]/[Al3+]的摩尔比= 2~ 3;将0.05~0.2 mol的硬脂酸加入上述混合液中,其中[硬脂酸]/[Mg2+]的摩尔比=2~4;将1.2~4 mol/L的NaOH溶液,以1~10 mL/min的速度滴加到上述溶液中调节pH,通过pH仪将溶液的pH维持在10±0.1,将上述溶液于60~80℃水浴搅拌6~12 h;抽滤洗涤至pH = 7,将所得固体于100~120℃干燥、研磨并过80 目筛子,所得样品称为xGO-LDH-Stearate,其中x为复合材料中GO含量的质量比;通过浸渍法将草酸铌C10H5NbO20负载于xGO-LDH-Stearate上:首先将0.01~0.1 g C10H5NbO20溶解于2~10 ml乙醇中,再将上述1~5 g xGO-LDH-Stearate加入其中,形成悬浮液,其中[xGO-LDH-Stearate]/[C10H5NbO20]的质量比=50~200;将上述悬浮液搅拌2~10 h,转移至60℃条件下真空烘干;获得的样品被称为yNb/xGO-LDH-Stearate,y是复合材料中C10H5NbO20负载量的质量百分比;在进行CO2吸附之前,将yNb/xGO-LDH-Stearate进行煅烧活化;于管式炉中,在300~500℃和50 mL/min氮气气氛下煅烧2~6 h。
2.如权利要求1所述制备方法所制备的吸附剂在高温CO2吸附中的应用,其特征在于:将吸附剂放置于热重仪器中,通入浓度为5 vol.% ~ 25 vol.%的CO2和浓度为75 vol.% ~ 95vol.%的N2的混合气,对其进行吸附,通过质量变化检测吸附剂对CO2的吸附量,反应温度为200℃ ~ 300℃。
CN202110882164.1A 2021-08-02 2021-08-02 铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用 Active CN113694888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110882164.1A CN113694888B (zh) 2021-08-02 2021-08-02 铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110882164.1A CN113694888B (zh) 2021-08-02 2021-08-02 铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN113694888A CN113694888A (zh) 2021-11-26
CN113694888B true CN113694888B (zh) 2023-06-09

Family

ID=78651287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110882164.1A Active CN113694888B (zh) 2021-08-02 2021-08-02 铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN113694888B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874365A (zh) * 2015-05-27 2015-09-02 闫春燕 羧甲基纤维素离子插层类水滑石复合材料及其制备方法与应用
CN109482139A (zh) * 2018-12-22 2019-03-19 北京工业大学 铝柱撑蒙脱石负载K-Nb复合吸附剂的制备方法和应用
CN109775794A (zh) * 2019-01-29 2019-05-21 南昌大学 一种ldh处理有机废水后的废弃物的回收方法及其产品和用途
CN112791707A (zh) * 2021-04-01 2021-05-14 北京锦绣新技术发展有限公司 纳米二氧化碳捕捉剂的制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472502B (zh) * 2012-10-09 2015-02-11 Univ Nat Taiwan Science Tech 陶瓷材料、二氧化碳的吸附方法及二氧化碳的轉化方法
EP2912172B1 (en) * 2012-10-29 2018-12-05 CO2 Solutions Inc. Techniques for co2 capture using sulfurihydrogenibium sp. carbonic anhydrase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874365A (zh) * 2015-05-27 2015-09-02 闫春燕 羧甲基纤维素离子插层类水滑石复合材料及其制备方法与应用
CN109482139A (zh) * 2018-12-22 2019-03-19 北京工业大学 铝柱撑蒙脱石负载K-Nb复合吸附剂的制备方法和应用
CN109775794A (zh) * 2019-01-29 2019-05-21 南昌大学 一种ldh处理有机废水后的废弃物的回收方法及其产品和用途
CN112791707A (zh) * 2021-04-01 2021-05-14 北京锦绣新技术发展有限公司 纳米二氧化碳捕捉剂的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Stabilization of Layered Double Oxide in Hybrid Matrix of Graphene and Layered Metal Oxide Nanosheets: An Effective Way To Explore Efficient CO2 Adsorbent";Haslinda Binti Mohd Sidek et al.;《The Journal of Physical Chemistry C》;第120卷;第23421-23429页 *

Also Published As

Publication number Publication date
CN113694888A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
Szczęśniak et al. Mechanochemical synthesis of highly porous materials
CN109309212B (zh) 碳包覆钴纳米复合材料及其制备方法
CN108328706B (zh) 一种mof衍生多孔碳/石墨烯复合电极材料的制备及应用
Yang et al. Fine tuning of the dimensionality of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions
KR101770701B1 (ko) 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
WO2019042158A1 (zh) 氧化钙基高温co 2吸附剂及其制备方法
Gunathilake et al. Emerging investigator series: Synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO 2 sequestration at elevated temperatures
CN113740390B (zh) 一种镍掺杂氧化铟纳米颗粒及其制备方法与应用
CN114425340B (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
CN112342378A (zh) 一种锂离子吸附剂及其制备方法
CN112023887B (zh) 一种TNT@Cu-BTC复合吸附剂的制备方法及其在环己烷吸附中的应用
CN113667131A (zh) 一种功能化金属有机框架纳米材料、制备方法及其应用
Cendrowski et al. Graphene nanoflakes functionalized with cobalt/cobalt oxides formation during cobalt organic framework carbonization
CN113371730A (zh) 一种改性钙低硅沸石分子筛及其制备方法
CN113145062B (zh) 一种基于普鲁士蓝和水滑石的磁性吸附材料的制备方法
TWI589351B (zh) 碳吸收劑及其製造方法與使用方法
CN114196987A (zh) 一种二维NiFe-MOF纳米片的碳量子点复合材料的制备方法
CN113694888B (zh) 铌改性有机层状双氧化物/氧化石墨烯纳米复合材料作为co2吸附剂的制备方法和应用
CN1868876A (zh) 4a型沸石分子筛及其制备方法
CN1312330C (zh) α-MnO2单晶纳米棒的制备方法
KR102529639B1 (ko) 중금속 제거용 다공성 탄소를 기반으로 한 3차원 구조체를 이용한 고효율 전도성 흡착제
CN115888640A (zh) 一种氢取代石墨炔纳米粉体材料及其制备方法和应用
KR101683834B1 (ko) 수소저장용 니켈/활성 카본 에어로겔 복합체 및 제조 방법
Zhang et al. Efficient and selective removal of Congo red by a C@ Mo composite nanomaterial using a citrate-based coordination polymer as the precursor
CN114713213A (zh) 碱土金属掺杂层状二氧化锰VOCs催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant