CN113685398B - 一种集成式液压制动系统伺服位移控制方法 - Google Patents

一种集成式液压制动系统伺服位移控制方法 Download PDF

Info

Publication number
CN113685398B
CN113685398B CN202111001447.7A CN202111001447A CN113685398B CN 113685398 B CN113685398 B CN 113685398B CN 202111001447 A CN202111001447 A CN 202111001447A CN 113685398 B CN113685398 B CN 113685398B
Authority
CN
China
Prior art keywords
representing
neural network
screw shaft
formula
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111001447.7A
Other languages
English (en)
Other versions
CN113685398A (zh
Inventor
赵健
陈志成
朱冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202111001447.7A priority Critical patent/CN113685398B/zh
Publication of CN113685398A publication Critical patent/CN113685398A/zh
Application granted granted Critical
Publication of CN113685398B publication Critical patent/CN113685398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor

Abstract

本发明属于汽车技术领域,具体的说是一种集成式液压制动系统伺服位移控制方法。包括以下步骤:步骤一、建立面向控制器设计的集成式液压制动系统模型,生成丝杠轴处的完整动力学平衡方程;步骤二、利用反步法理论和滑模变结构理论设计高精度的集成式液压制动系统伺服位移控制器;步骤三、采用自适应径向基神经网络补偿集成式液压制动系统面临的不确定扰动。本发明能有效地帮助了集成式液压线控制动系统克服机构摩擦阻碍、液压时变特性等非线性等问题,实现了高精度的伺服位移控制,为集成式线控制动系统主动制动功能奠定基础,匹配汽车智能化、电动化需求。

Description

一种集成式液压制动系统伺服位移控制方法
技术领域
本发明属于汽车技术领域,具体的说是一种集成式液压制动系统伺服位移控制方法。
背景技术
汽车智能化、电动化的不断发展,对汽车底盘制动系统提出了主动制动、解耦再生制动等新的功能需求。由于电动汽车取消了发动机,传统真空助力器形式的制动系统失去了赖以工作的真空源。而且真空助器形式的制动系统通常难以集成高精度的主动制动、高回收率的再生制动功能,因此现在市场上出现了很多新的线控制动解决方案,例如集成式液压制动系统,电子机械线控制动系统、电子液压线控制动系统等,以适应汽车智能化、电动化带来的挑战。
与电子机械线控制动系统和电子液压线控制动系统不同,集成式液压制动系统保留了传统汽车制动系统使用的关键电磁阀模块,以高性能的伺服电机作为高压生成源,能在在液压制动系统中集成高性能的主动制动、能量回收功能,同时对液压回路进行合理布置可以实现安全可靠的冗余备份制动功能。然而,机-电-液耦合的集成式液压制动系统存在传动机构摩擦、液压系统时变特性等非线性问题,严重阻碍了其高精度的伺服位移控制策略。集成式液压制动系统伺服位移控制策略是实现高精度主动制动压力控制的核心环节,因此有必要对其展开详细研究。
发明内容
本发明提供了一种基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法,该控制方法能有效地帮助了集成式液压线控制动系统克服机构摩擦阻碍、液压时变特性等非线性等问题,实现了高精度的伺服位移控制,为集成式线控制动系统主动制动功能奠定基础,匹配汽车智能化、电动化需求。
本发明技术方案结合附图说明如下:
一种集成式液压制动系统伺服位移控制方法,包括以下步骤:
步骤一、建立面向控制器设计的集成式液压制动系统模型,生成丝杠轴处的完整动力学平衡方程;
步骤二、利用反步法理论和滑模变结构理论设计高精度的集成式液压制动系统伺服位移控制器;
步骤三、采用自适应径向基神经网络补偿集成式液压制动系统面临的不确定扰动。
所述集成式液压制动系统模型包括电机模型、传动机构模型和液压模型;所述步骤一的具体方法如下:
11)面贴式永磁同步电机的转矩平衡方程为:
Figure BDA0003235506120000021
式中,Tm表示电机的输出轴转矩;Te表示电机的输入电磁转矩;Tmf表示电机的摩擦转矩;J1表示电机的转动惯量;
Figure BDA0003235506120000022
表示电机的机械角加速度;
面贴式永磁同步电机的输入电磁转矩表示为:
Figure BDA0003235506120000023
式中,Te表示电机的输入电磁转矩;Pn表示电机的磁极对数;φf表示电机转子的永磁体磁链;iq表示电机的转矩轴电流;
12)两级传动机构将电机的输出轴转矩Tm传递至丝杠上形成丝杠轴的水平伺服动力,表示为:
Figure BDA0003235506120000024
式中,Fm表示丝杠轴的水平伺服动力;s表示滚珠丝杆导程;η表示行星齿轮减速比;Tm表示电机的输出轴转矩;
13)根据电机的旋转运动和传动系统关系,可以得到丝杠轴的水平位移为:
Figure BDA0003235506120000031
式中,θm表示电机的机械角;s表示滚珠丝杆导程,η表示行星齿轮减速比,y表示丝杠的水平位移;
14)将参与制动过程的零部件均换算至丝杠轴水平位移处的等效质量,即:
Figure BDA0003235506120000032
ω2=η·ω3=η·ω4 (6)
Figure BDA0003235506120000033
式中,mE表示丝杠轴处除了电机转动惯量外的等效质量;J2表示太阳齿轮的转动惯量;J3表示行星齿轮的转动惯量;J4表示滚珠丝杠螺母的转动惯量; m5表示丝杠轴的质量;ω2表示太阳齿轮的角速度;ω3表示行星齿轮的角速度;ω4表示滚珠丝杠螺母的角速度;v5表示丝杠轴的水平速度;
15)根据丝杠轴处的动力学平衡关系,得到:
Figure BDA0003235506120000034
Fh=Ph·Am (9)
式中,mE表示丝杠处电机转动惯量外的等效质量;
Figure BDA0003235506120000035
表示丝杠轴的水平加速度;Fm表示丝杠轴的水平伺服动力;Fh表示丝杠轴受到的液压负载力;Ff表示丝杠轴受到的摩擦阻力;Ph表示液压系统压力;Am表示制动主缸截面积;
16)将30mm/s丝杠轴输入水平速度下的液压系统丝杠轴输入位移与制动液压力之间的关系曲线作为液压制动系统模型,那么液压制动系统模型表示为:
Figure BDA0003235506120000036
式中,Ph表示液压系统压力;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;a和b表示液压系统模型拟合基本参数;△a和△b表示液压系统模型拟合不确定参数的理想值;
17)将公式(3)(4)(5)(9)(10)代入(8)中,得到丝杠轴处的完整动力学平衡方程:
Figure BDA0003235506120000041
式中,
Figure BDA0003235506120000042
表示丝杠轴处完整的等效质量;
Figure BDA0003235506120000043
表示丝杠轴的水平加速度;s表示滚珠丝杆导程;η表示行星齿轮减速比;Te表示电机的输入电磁转矩;A和B 表示液压系统模型拟合参数;y表示丝杠轴的水平位移;Am表示制动主缸截面积;Ff表示丝杠轴受到的摩擦阻力;Tmf表示电机的摩擦转矩;mE表示丝杠轴处除了电机转动惯量外的等效质量;J1表示电机的转动惯量。
所述步骤二的具体方法如下:
21)选择丝杠轴的水平位移y和水平速度
Figure BDA0003235506120000044
为系统状态变量,即 x1=y,
Figure BDA0003235506120000045
电机的输入电磁转矩Te为系统输入,即u=Te,那么根据丝杠轴处的完整动力学平衡方程,得到系统的状态空间方程表示为:
Figure BDA0003235506120000046
Figure BDA0003235506120000047
Figure BDA0003235506120000048
式中,
Figure BDA0003235506120000049
表示系统的第一个状态变量的微分;x2表示系统的第二个状态变量;
Figure BDA00032355061200000410
表示系统的第二个状态变量的微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;Am表示制动主缸截面积;
Figure BDA00032355061200000411
表示丝杠轴处完整的等效质量;Ff表示丝杠轴受到的摩擦阻力;Tmf表示电机的摩擦转矩;s表示滚珠丝杆导程;η表示行星齿轮减速比;
22)设定目标丝杠轴的水平位移为xd,得到系统的误差方程为:
e1=x1-xd, (15)
Figure BDA0003235506120000051
式中,e1表示系统误差;
Figure BDA0003235506120000052
表示系统误差的微分;x1表示系统的第一个状态变量;
Figure BDA0003235506120000053
表示系统的第一个状态变量的微分;xd表示目标丝杠轴的水平位移;
Figure BDA0003235506120000054
表示目标丝杠轴的水平位移的微分;x2表示系统的第二个状态变量;
23)为了使得系统误差e1随着时间趋近于零,设定第一个李雅普诺夫函数为:
Figure BDA0003235506120000055
式中,V1表示第一个李雅普诺夫函数;e1表示系统误差。
那么,第一个李雅普诺夫函数的微分为:
Figure BDA0003235506120000056
式中,
Figure BDA0003235506120000057
表示第一个李雅普诺夫函数的微分;e1表示系统误差;
Figure BDA0003235506120000058
表示系统误差的微分;
24)根据滑模变结构理论,设定滑模面为:
Figure BDA0003235506120000059
式中,Sp表示滑模面;c1表示滑模变结构参数,且c1>0;e1表示系统误差;
Figure BDA00032355061200000510
表示系统误差的微分;x1表示系统的第一个状态变量;x2表示系统的第二个状态变量;xd表示目标丝杠轴的水平位移;
Figure BDA00032355061200000511
表示目标丝杠轴的水平位移的微分;
25)把滑模面(19)代入第一个李雅普诺夫函数的微分(18)中,可以得到:
Figure BDA0003235506120000061
式中,
Figure BDA0003235506120000062
表示第一个李雅普诺夫函数的微分;e1表示系统误差;Sp表示滑模面,c1表示滑模变结构参数;
26)如果能够保证Sp趋近于0,那么
Figure BDA0003235506120000063
和e1→0成立;同时集成式液压制动系统能够有效地克服系统未建模扰动ξe(·),实现高精度的伺服位移控制;因此,定义了第二个李雅普诺夫函数:
Figure BDA0003235506120000064
式中,V1表示第一个李雅普诺夫函数;V2表示第二个李雅普诺夫函数;Sp表示滑模面;
27)第二个李雅普诺夫函数的微分为:
Figure BDA0003235506120000065
式中,
Figure BDA0003235506120000066
表示第一个李雅普诺夫函数的微分;
Figure BDA0003235506120000067
表示第二个李雅普诺夫函数的微分;Sp表示滑模面;
Figure BDA0003235506120000068
表示滑模面的微分;c1表示滑模变结构参数;e1表示系统误差;
Figure BDA0003235506120000069
表示系统误差的微分;
Figure BDA00032355061200000610
表示系统误差的二次微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;
Figure BDA00032355061200000611
表示目标丝杠轴的水平位移的二次微分;
28)根据李雅普诺夫直接法,选用系统的输入为:
Figure BDA00032355061200000612
式中,θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;
Figure BDA00032355061200000613
表示目标丝杠轴的水平位移的二次微分;c1和c2表示滑模变结构参数且均大于0;e1表示系统误差;
Figure BDA00032355061200000614
表示系统误差的微分;Sp表示滑模面;Ψ表示抗扰动增益系数;
29)系统未建模扰动ξe(·)有界,在设计系统的输入u时保证抗扰动增益系数Ψ远大于该边界的绝对值,那么需要保证:
Figure BDA0003235506120000071
式中,
Figure BDA0003235506120000072
表示第二个李雅普诺夫函数的微分;c1和c2表示滑模变结构参数; e1表示系统误差;Sp表示滑模面;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
因此,随着时间t→∞,Sp和e1均趋近于0。
所述步骤三的具体方法如下:
31)将估计的液压系统模型定义为:
Figure BDA0003235506120000073
式中,
Figure BDA0003235506120000074
Figure BDA0003235506120000075
表示液压系统模型拟合参数的估计值;a和b表示液压系统模型拟合基本参数;
Figure BDA0003235506120000076
Figure BDA0003235506120000077
表示液压系统模型拟合不确定参数的估计值;
32)使用径向基神经网络近似逼近液压系统模型拟合不确定参数的理想值表示为:
Figure BDA0003235506120000078
式中,△a和△b表示液压系统模型拟合不确定参数的理想值;W*和V*表示径向基神经网络的理想权重;εa和εb表示神经网络逼近误差;ha(xN)和hb(xN)表示神经网络训练函数;
Figure BDA0003235506120000079
为神经网络输入;y表示丝杠轴的水平位移;
Figure BDA00032355061200000710
表示丝杠轴的水平位移的微分;
33)使用径向基神经网络近似逼近液压系统模型拟合不确定参数的估计值,即:
Figure BDA00032355061200000711
式中,
Figure BDA00032355061200000712
Figure BDA00032355061200000713
表示液压系统模型拟合不确定参数的估计值;
Figure BDA00032355061200000714
Figure BDA00032355061200000715
表示径向基神经网络的估计权重;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;
34)将液压系统模型拟合不确定参数的估计值代入到推到得到的系统的输入(23)后整理如下:
Figure BDA0003235506120000081
式中,u表示系统的输入;
Figure BDA0003235506120000082
Figure BDA0003235506120000083
表示液压系统模型拟合参数的估计值;θ2表示摩擦参数;θ3表示控制参数;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure BDA0003235506120000084
表示系统误差的微分;Sp表示滑模面;Ψ表示抗扰动增益系数;
Figure BDA0003235506120000085
表示目标丝杠轴的水平位移的二次微分;y表示丝杠轴的水平位移;Am表示制动主缸截面积;
Figure BDA0003235506120000086
表示丝杠轴处完整的等效质量;p11和p12为不确定参数的增益;
35)将整理后的系统控制输入(28)代入滑模面的微分中得:
Figure BDA0003235506120000087
式中,
Figure BDA0003235506120000088
表示滑模面的微分;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure BDA0003235506120000089
表示系统误差的微分;
Figure BDA00032355061200000810
表示系统误差的二次微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
Figure BDA00032355061200000811
表示目标丝杠轴的水平位移的二次微分;
Figure BDA00032355061200000812
Figure BDA00032355061200000813
表示液压系统模型拟合参数的估计值;p11和p12为不确定参数的增益;A和B表示液压系统模型拟合参数;Sp表示滑模面;
36)定义径向基神经网络的理想权重和估计权重的差值为:
Figure BDA00032355061200000814
式中,
Figure BDA00032355061200000815
Figure BDA00032355061200000816
表示径向基神经网络的理想权重和估计权重的差值;W*和V*表示径向基神经网络的理想权重;
Figure BDA00032355061200000817
Figure BDA00032355061200000818
表示径向基神经网络的估计权重;
37)液压系统模型拟合不确定参数的理想值和估计值的差值进一步化简为:
Figure BDA0003235506120000091
式中,
Figure BDA0003235506120000092
Figure BDA0003235506120000093
表示液压系统模型拟合不确定参数的理想值和估计值的差值;△a和△b表示液压系统模型拟合不确定参数的理想值;
Figure BDA0003235506120000094
Figure BDA0003235506120000095
表示液压系统模型拟合不确定参数的估计值;
Figure BDA0003235506120000096
Figure BDA0003235506120000097
表示径向基神经网络的理想权重和估计权重的差值;W*和V*表示径向基神经网络的理想权重;
Figure BDA0003235506120000098
Figure BDA0003235506120000099
表示径向基神经网络的估计权重;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;εa和εb表示神经网络逼近误差;
38)为了获得径向基神经网络的估计权重,设计第三个李雅普诺夫函数为:
Figure BDA00032355061200000910
式中,V2表示第二个李雅普诺夫函数;V3表示第三个李雅普诺夫函数,
Figure BDA00032355061200000911
Figure BDA00032355061200000912
表示径向基神经网络的理想权重和估计权重的差值;k1和k2表示径向基神经网络的权重参数;
对第三个李雅普诺夫函数进行微分得到:
Figure BDA00032355061200000913
式中,
Figure BDA00032355061200000914
表示第二个李雅普诺夫函数的微分;
Figure BDA00032355061200000915
表示第三个李雅普诺夫函数的微分;
Figure BDA0003235506120000101
Figure BDA0003235506120000102
表示径向基神经网络的理想权重和估计权重的差值;
Figure BDA0003235506120000103
Figure BDA0003235506120000104
表示径向基神经网络的理想权重和估计权重的微分差值;k1和k2表示径向基神经网络的权重参数;Sp表示滑模面;
Figure BDA0003235506120000105
表示滑模面的微分;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure BDA0003235506120000106
Figure BDA0003235506120000107
表示液压系统模型拟合参数的估计值;p11和 p12为不确定参数的增益;A和B表示液压系统模型拟合参数;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
Figure BDA0003235506120000108
Figure BDA0003235506120000109
表示液压系统模型拟合不确定参数的理想值和估计值的差值;
Figure BDA00032355061200001010
Figure BDA00032355061200001011
表示径向基神经网络的估计权重的自适应律,εa和εb表示神经网络逼近误差;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;
39)设计径向基神经网络的估计权重的自适应律为:
Figure BDA00032355061200001012
式中,
Figure BDA00032355061200001013
Figure BDA00032355061200001014
表示径向基神经网络的估计权重的自适应律;k1和k2表示径向基神经网络的权重参数;p11和p12表示不确定参数的增益;Sp表示滑模面; ha(xN)和hb(xN)表示神经网络训练函数;xN表示神经网络输入;
将设计的径向基神经网络的估计权重的自适应律(34)代入到第三个李雅普诺夫函数微分(33)中得:
Figure BDA00032355061200001015
式中,
Figure BDA00032355061200001016
表示第三个李雅普诺夫函数的微分;Sp表示滑模面;c1和c2表示滑模变结构参数;e1表示系统误差;Ψ表示抗扰动增益系数;p11和p12表示不确定参数的增益;εa和εb表示神经网络逼近误差;ξe(·)表示系统未建模扰动;
只需要选用抗扰动增益系数为:
Ψ>>|(p11a+p12εbe(·)|(36)
式中,Ψ表示抗扰动增益系数;p11和p12为不确定参数的增益;εa和εb表示神经网络逼近误差,ξe(·)表示系统未建模扰动。
此时,保证了第三个李雅普诺夫函数的微分
Figure BDA0003235506120000111
小于等于0,一种基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法能够保证整个闭环系统稳定。
本发明的有益效果为:
1)本发明搭建的集成式液压制动系统模型考虑了制动系统伺服控制时面临的液压系统时变非线性特性、传动机构摩阻碍等非线性问题;
2)本发明基于反步法理论和滑模变结构理论,设计的高精度的集成式液压制动系统伺服位移控制器,有效地克服了传动机构非线性摩擦阻碍问题;
3)本发明基于自适应径向基神经网络原理,有效地补偿了集成式液压制动系统面临的液压系统时变不确定扰动;
4)本发明基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法有效地保证了闭环伺服位移控制器的鲁棒性和精确性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明的结构框图;
图2为集成式液压制动系统结构简图;
图3为液压系统丝杠轴输入位移与制动液压力关系曲线示意图;
图4为目标丝杠的水平速度为5mm/s的控制性能曲线图;
图5为目标丝杠的水平速度为30mm/s的控制性能曲线图;
图6为目标丝杠的水平速度为70mm/s的控制性能曲线图;
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
参阅图1,一种集成式液压制动系统伺服位移控制方法,包括以下步骤:
步骤一、建立面向控制器设计的集成式液压制动系统模型,生成丝杠轴处的完整动力学平衡方程;
参阅图2,图2为集成式液压制动系统结构简图。在主动制动模式下,常开隔离阀通电打开,常闭吸入阀通电打开,常闭模拟器阀通电打开,常开进液阀和常闭出液阀保持初始状态。接收到主动制动指令后,电机开始转动,电机输出端通过行星齿轮减速机构减速后带动螺母转动。通过滚珠,螺母将转动变化为丝杠轴的平动,推动动力缸活塞挤压动力缸内制动液。制动液流经吸入阀和出液阀进入制动轮缸中形成制动压力。
所述集成式液压制动系统模型包括电机模型、传动机构模型和液压模型;所述步骤一的具体方法如下:
11)面贴式永磁同步电机的转矩平衡方程为:
Figure BDA0003235506120000121
式中,Tm表示电机的输出轴转矩;Te表示电机的输入电磁转矩;Tmf表示电机的摩擦转矩;J1表示电机的转动惯量;
Figure BDA0003235506120000122
表示电机的机械角加速度;
面贴式永磁同步电机的输入电磁转矩表示为:
Figure BDA0003235506120000123
式中,Te表示电机的输入电磁转矩;Pn表示电机的磁极对数;φf表示电机转子的永磁体磁链;iq表示电机的转矩轴电流;
12)两级传动机构将电机的输出轴转矩Tm传递至丝杠上形成丝杠轴的水平伺服动力,表示为:
Figure BDA0003235506120000131
式中,Fm表示丝杠轴的水平伺服动力;s表示滚珠丝杆导程;η表示行星齿轮减速比;Tm表示电机的输出轴转矩;
13)根据电机的旋转运动和传动系统关系,可以得到丝杠轴的水平位移为:
Figure BDA0003235506120000132
式中,θm表示电机的机械角;s表示滚珠丝杆导程,η表示行星齿轮减速比,y表示丝杠的水平位移;
14)将参与制动过程的零部件均换算至丝杠轴水平位移处的等效质量,即:
Figure BDA0003235506120000133
ω2=η·ω3=η·ω4 (6)
Figure BDA0003235506120000134
式中,mE表示丝杠轴处除了电机转动惯量外的等效质量;J2表示太阳齿轮的转动惯量;J3表示行星齿轮的转动惯量;J4表示滚珠丝杠螺母的转动惯量; m5表示丝杠轴的质量;ω2表示太阳齿轮的角速度;ω3表示行星齿轮的角速度;ω4表示滚珠丝杠螺母的角速度;v5表示丝杠轴的水平速度;
15)根据丝杠轴处的动力学平衡关系,得到:
Figure BDA0003235506120000135
Fh=Ph·Am (9)
式中,mE表示丝杠处电机转动惯量外的等效质量;
Figure BDA0003235506120000136
表示丝杠轴的水平加速度;Fm表示丝杠轴的水平伺服动力;Fh表示丝杠轴受到的液压负载力;Ff表示丝杠轴受到的摩擦阻力;Ph表示液压系统压力;Am表示制动主缸截面积;
16)将30mm/s丝杠轴输入水平速度下的液压系统丝杠轴输入位移与制动液压力之间的关系曲线作为液压制动系统模型,那么液压制动系统模型表示为:
Figure BDA0003235506120000141
式中,Ph表示液压系统压力;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;a和b表示液压系统模型拟合基本参数;△a和△b表示液压系统模型拟合不确定参数的理想值;
17)将公式(3)(4)(5)(9)(10)代入(8)中,得到丝杠轴处的完整动力学平衡方程:
Figure BDA0003235506120000142
式中,
Figure BDA0003235506120000143
表示丝杠轴处完整的等效质量;
Figure BDA0003235506120000144
表示丝杠轴的水平加速度;s表示滚珠丝杆导程;η表示行星齿轮减速比;Te表示电机的输入电磁转矩;A和B 表示液压系统模型拟合参数;y表示丝杠轴的水平位移;Am表示制动主缸截面积;Ff表示丝杠轴受到的摩擦阻力;Tmf表示电机的摩擦转矩;mE表示丝杠轴处除了电机转动惯量外的等效质量;J1表示电机的转动惯量。
步骤二、利用反步法理论和滑模变结构理论设计高精度的集成式液压制动系统伺服位移控制器;
所述步骤二的具体方法如下:
21)选择丝杠轴的水平位移y和水平速度
Figure BDA0003235506120000145
为系统状态变量,即 x1=y,
Figure BDA0003235506120000146
电机的输入电磁转矩T为系统输入,即u=T,那么根据丝杠轴处的完整动力学平衡方程,得到系统的状态空间方程表示为:
Figure BDA0003235506120000147
Figure BDA0003235506120000148
Figure BDA0003235506120000151
式中,
Figure BDA0003235506120000152
表示系统的第一个状态变量的微分;x2表示系统的第二个状态变量;
Figure BDA0003235506120000153
表示系统的第二个状态变量的微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;Am表示制动主缸截面积;
Figure BDA0003235506120000154
表示丝杠轴处完整的等效质量;Ff表示丝杠轴受到的摩擦阻力;Tmf表示电机的摩擦转矩;s表示滚珠丝杆导程;η表示行星齿轮减速比;
22)本申请基于滑膜变理论和返步法理论,为集成式液压制动系统设计了一种鲁棒伺服位移控制器。设定目标丝杠轴的水平位移为xd,得到系统的误差方程为:
e1=x1-xd, (15)
Figure BDA0003235506120000155
式中,e1表示系统误差;
Figure BDA0003235506120000156
表示系统误差的微分;x1表示系统的第一个状态变量;
Figure BDA0003235506120000157
表示系统的第一个状态变量的微分;xd表示目标丝杠轴的水平位移;
Figure BDA0003235506120000158
表示目标丝杠轴的水平位移的微分;x2表示系统的第二个状态变量;
23)为了使得系统误差e1随着时间趋近于零,设定第一个李雅普诺夫函数为:
Figure BDA0003235506120000159
式中,V1表示第一个李雅普诺夫函数;e1表示系统误差。
那么,第一个李雅普诺夫函数的微分为:
Figure BDA00032355061200001510
式中,
Figure BDA00032355061200001511
表示第一个李雅普诺夫函数的微分;e1表示系统误差;
Figure BDA00032355061200001512
表示系统误差的微分;
24)根据滑模变结构理论,设定滑模面为:
Figure BDA0003235506120000161
式中,Sp表示滑模面;c1表示滑模变结构参数,且c1>0;e1表示系统误差;
Figure BDA0003235506120000162
表示系统误差的微分;x1表示系统的第一个状态变量;x2表示系统的第二个状态变量;xd表示目标丝杠轴的水平位移;
Figure BDA0003235506120000163
表示目标丝杠轴的水平位移的微分;
25)把滑模面(19)代入第一个李雅普诺夫函数的微分(18)中,可以得到:
Figure BDA0003235506120000164
式中,
Figure BDA0003235506120000165
表示第一个李雅普诺夫函数的微分;e1表示系统误差;Sp表示滑模面,c1表示滑模变结构参数;
26)如果能够保证Sp趋近于0,那么
Figure BDA0003235506120000166
和e1→0成立;同时集成式液压制动系统能够有效地克服系统未建模扰动ξe(·),实现高精度的伺服位移控制;因此,定义了第二个李雅普诺夫函数:
Figure BDA0003235506120000167
式中,V1表示第一个李雅普诺夫函数;V2表示第二个李雅普诺夫函数;Sp表示滑模面;
27)第二个李雅普诺夫函数的微分为:
Figure BDA0003235506120000168
式中,
Figure BDA0003235506120000169
表示第一个李雅普诺夫函数的微分;
Figure BDA00032355061200001610
表示第二个李雅普诺夫函数的微分;Sp表示滑模面;
Figure BDA00032355061200001611
表示滑模面的微分;c1表示滑模变结构参数;e1表示系统误差;
Figure BDA00032355061200001612
表示系统误差的微分;
Figure BDA00032355061200001613
表示系统误差的二次微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;
Figure BDA00032355061200001614
表示目标丝杠轴的水平位移的二次微分;
28)根据李雅普诺夫直接法,选用系统的输入为:
Figure BDA0003235506120000171
式中,θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;
Figure BDA0003235506120000172
表示目标丝杠轴的水平位移的二次微分;c1和c2表示滑模变结构参数且均大于0;e1表示系统误差;
Figure BDA0003235506120000173
表示系统误差的微分;Sp表示滑模面;Ψ表示抗扰动增益系数;
29)在实际工程应用中,系统未建模扰动ξe(·)通常有界,在设计系统的输入u时保证抗扰动增益系数Ψ远大于该边界的绝对值,那么需要保证:
Figure BDA0003235506120000174
式中,
Figure BDA0003235506120000175
表示第二个李雅普诺夫函数的微分;c1和c2表示滑模变结构参数; e1表示系统误差;Sp表示滑模面;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
因此,随着时间t→∞,Sp和e1均趋近于0。
由于制动液泄露、制动液与制动管路之间的相互作用,制动温度等原因,制动系统通常被看做是一个高度时变非线性系统,很难准确获得液压系统模型中的拟合不确定参数的实际值。因此,我们采用自适应径向基神经网络补偿了伺服位移控制面临的液压系统的不确定性扰动非线性问题。
步骤三、采用自适应径向基神经网络补偿集成式液压制动系统面临的不确定扰动。
具体方法如下:
31)将估计的液压系统模型定义为:
Figure BDA0003235506120000176
式中,
Figure BDA0003235506120000177
Figure BDA0003235506120000178
表示液压系统模型拟合参数的估计值;a和b表示液压系统模型拟合基本参数;
Figure BDA0003235506120000179
Figure BDA00032355061200001710
表示液压系统模型拟合不确定参数的估计值;
32)使用径向基神经网络近似逼近液压系统模型拟合不确定参数的理想值表示为:
Figure BDA0003235506120000181
式中,△a和△b表示液压系统模型拟合不确定参数的理想值;W*和V*表示径向基神经网络的理想权重;εa和εb表示神经网络逼近误差;ha(xN)和hb(xN)表示神经网络训练函数;
Figure BDA0003235506120000182
为神经网络输入;y表示丝杠轴的水平位移;
Figure BDA0003235506120000183
表示丝杠轴的水平位移的微分;
33)使用径向基神经网络近似逼近液压系统模型拟合不确定参数的估计值,即:
Figure BDA0003235506120000184
式中,
Figure BDA0003235506120000185
Figure BDA0003235506120000186
表示液压系统模型拟合不确定参数的估计值;
Figure BDA0003235506120000187
Figure BDA0003235506120000188
表示径向基神经网络的估计权重;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;
34)将液压系统模型拟合不确定参数的估计值代入到推到得到的系统的输入(23)后整理如下:
Figure BDA0003235506120000189
式中,u表示系统的输入;
Figure BDA00032355061200001810
Figure BDA00032355061200001811
表示液压系统模型拟合参数的估计值;θ2表示摩擦参数;θ3表示控制参数;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure BDA00032355061200001812
表示系统误差的微分;Sp表示滑模面;Ψ表示抗扰动增益系数;
Figure BDA00032355061200001813
表示目标丝杠轴的水平位移的二次微分;y表示丝杠轴的水平位移;Am表示制动主缸截面积;
Figure BDA00032355061200001814
表示丝杠轴处完整的等效质量;p11和p12为不确定参数的增益;
35)将整理后的系统控制输入(28)代入滑模面的微分中得:
Figure BDA0003235506120000191
式中,
Figure BDA0003235506120000192
表示滑模面的微分;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure BDA0003235506120000193
表示系统误差的微分;
Figure BDA0003235506120000194
表示系统误差的二次微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
Figure BDA0003235506120000195
表示目标丝杠轴的水平位移的二次微分;
Figure BDA0003235506120000196
Figure BDA0003235506120000197
表示液压系统模型拟合参数的估计值;p11和p12为不确定参数的增益;A和B表示液压系统模型拟合参数;Sp表示滑模面;
36)定义径向基神经网络的理想权重和估计权重的差值为:
Figure BDA0003235506120000198
式中,
Figure BDA0003235506120000199
Figure BDA00032355061200001910
表示径向基神经网络的理想权重和估计权重的差值;W*和V*表示径向基神经网络的理想权重;
Figure BDA00032355061200001911
Figure BDA00032355061200001912
表示径向基神经网络的估计权重;
37)液压系统模型拟合不确定参数的理想值和估计值的差值进一步化简为:
Figure BDA00032355061200001913
式中,
Figure BDA00032355061200001914
Figure BDA00032355061200001915
表示液压系统模型拟合不确定参数的理想值和估计值的差值;△a和△b表示液压系统模型拟合不确定参数的理想值;
Figure BDA00032355061200001916
Figure BDA00032355061200001917
表示液压系统模型拟合不确定参数的估计值;
Figure BDA00032355061200001918
Figure BDA00032355061200001919
表示径向基神经网络的理想权重和估计权重的差值;W*和V*表示径向基神经网络的理想权重;
Figure BDA00032355061200001920
Figure BDA00032355061200001921
表示径向基神经网络的估计权重;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;εa和εb表示神经网络逼近误差;
38)为了获得径向基神经网络的估计权重,设计第三个李雅普诺夫函数为:
Figure BDA0003235506120000201
式中,V2表示第二个李雅普诺夫函数;V3表示第三个李雅普诺夫函数,
Figure BDA0003235506120000202
Figure BDA0003235506120000203
表示径向基神经网络的理想权重和估计权重的差值;k1和k2表示径向基神经网络的权重参数;
对第三个李雅普诺夫函数进行微分得到:
Figure BDA0003235506120000204
式中,
Figure BDA0003235506120000205
表示第二个李雅普诺夫函数的微分;
Figure BDA0003235506120000206
表示第三个李雅普诺夫函数的微分;
Figure BDA0003235506120000207
Figure BDA0003235506120000208
表示径向基神经网络的理想权重和估计权重的差值;
Figure BDA0003235506120000209
Figure BDA00032355061200002010
表示径向基神经网络的理想权重和估计权重的微分差值;k1和k2表示径向基神经网络的权重参数;Sp表示滑模面;
Figure BDA00032355061200002017
表示滑模面的微分;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure BDA00032355061200002011
Figure BDA00032355061200002012
表示液压系统模型拟合参数的估计值;p11和 p12为不确定参数的增益;A和B表示液压系统模型拟合参数;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
Figure BDA00032355061200002013
Figure BDA00032355061200002014
表示液压系统模型拟合不确定参数的理想值和估计值的差值;
Figure BDA00032355061200002015
Figure BDA00032355061200002016
表示径向基神经网络的估计权重的自适应律,εa和εb表示神经网络逼近误差;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;
39)设计径向基神经网络的估计权重的自适应律为:
Figure BDA0003235506120000211
式中,
Figure BDA0003235506120000212
Figure BDA0003235506120000213
表示径向基神经网络的估计权重的自适应律;k1和k2表示径向基神经网络的权重参数;p11和p12表示不确定参数的增益;Sp表示滑模面; ha(xN)和hb(xN)表示神经网络训练函数;xN表示神经网络输入;
将设计的径向基神经网络的估计权重的自适应律(34)代入到第三个李雅普诺夫函数微分(33)中得:
Figure BDA0003235506120000214
式中,
Figure BDA0003235506120000215
表示第三个李雅普诺夫函数的微分;Sp表示滑模面;c1和c2表示滑模变结构参数;e1表示系统误差;Ψ表示抗扰动增益系数;p11和p12表示不确定参数的增益;εa和εb表示神经网络逼近误差;ξe(·)表示系统未建模扰动;
只需要选用抗扰动增益系数为:
Ψ>>|(p11a+p12εbe(·)|(36)
式中,Ψ表示抗扰动增益系数;p11和p12为不确定参数的增益;εa和εb表示神经网络逼近误差,ξe(·)表示系统未建模扰动。
此时,保证了第三个李雅普诺夫函数的微分
Figure BDA0003235506120000216
小于等于0,一种基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法能够保证整个闭环系统稳定。
实施例
我们在MATLAB/Simulink搭建的仿真平台中对本专利设计的基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法进行了测试。
图4、图5和图6分别为目标丝杠的水平速度为5mm/s、30mm/s、70mm/s 的控制性能曲线。从三组实验性能测试结果可以明显看出,丝杠的水平位移跟随表现良好。5mm/s速度下,丝杠的水平位移跟踪误差几乎为零;30mm/s速度下,丝杠的水平位移跟踪误差始终在0.5mm以内,满足实际压力控制精度要求;70mm/s速度下,集成式液压制动系统机构的非线性度增加,因此其控制难度大幅度增加。
但是采用本申请所述的易总基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法能够始终维持丝杠的水平位移跟踪误差始终在1mm 以内,能够有效地满足机构紧急制动时的响应需求。

Claims (3)

1.一种集成式液压制动系统伺服位移控制方法,其特征在于,包括以下步骤:
步骤一、建立面向控制器设计的集成式液压制动系统模型,生成丝杠轴处的完整动力学平衡方程;
步骤二、利用反步法理论和滑模变结构理论设计高精度的集成式液压制动系统伺服位移控制器;
步骤三、采用自适应径向基神经网络补偿集成式液压制动系统面临的不确定扰动;
所述集成式液压制动系统模型包括电机模型、传动机构模型和液压模型;所述步骤一的具体方法如下:
11)面贴式永磁同步电机的转矩平衡方程为:
Figure FDA0003549748020000011
式中,Tm表示电机的输出轴转矩;Te表示电机的输入电磁转矩;Tmf表示电机的摩擦转矩;J1表示电机的转动惯量;
Figure FDA0003549748020000012
表示电机的机械角加速度;
面贴式永磁同步电机的输入电磁转矩表示为:
Figure FDA0003549748020000013
式中,Te表示电机的输入电磁转矩;Pn表示电机的磁极对数;φf表示电机转子的永磁体磁链;iq表示电机的转矩轴电流;
12)两级传动机构将电机的输出轴转矩Tm传递至丝杠上形成丝杠轴的水平伺服动力,表示为:
Figure FDA0003549748020000014
式中,Fm表示丝杠轴的水平伺服动力;s表示滚珠丝杆导程;η表示行星齿轮减速比;Tm表示电机的输出轴转矩;
13)根据电机的旋转运动和传动系统关系,可以得到丝杠轴的水平位移为:
Figure FDA0003549748020000021
式中,θm表示电机的机械角;s表示滚珠丝杆导程,η表示行星齿轮减速比,y表示丝杠的水平位移;
14)将参与制动过程的零部件均换算至丝杠轴水平位移处的等效质量,即:
Figure FDA0003549748020000022
ω2=η·ω3=η·ω4 (6)
Figure FDA0003549748020000023
式中,mE表示丝杠轴处除了电机转动惯量外的等效质量;J2表示太阳齿轮的转动惯量;J3表示行星齿轮的转动惯量;J4表示滚珠丝杠螺母的转动惯量;m5表示丝杠轴的质量;ω2表示太阳齿轮的角速度;ω3表示行星齿轮的角速度;ω4表示滚珠丝杠螺母的角速度;v5表示丝杠轴的水平速度;
15)根据丝杠轴处的动力学平衡关系,得到:
Figure FDA0003549748020000024
Fh=Ph·Am (9)
式中,mE表示丝杠处电机转动惯量外的等效质量;
Figure FDA0003549748020000025
表示丝杠轴的水平加速度;Fm表示丝杠轴的水平伺服动力;Fh表示丝杠轴受到的液压负载力;Ff表示丝杠轴受到的摩擦阻力;Ph表示液压系统压力;Am表示制动主缸截面积;
16)将30mm/s丝杠轴输入水平速度下的液压系统丝杠轴输入位移与制动液压力之间的关系曲线作为液压制动系统模型,那么液压制动系统模型表示为:
Figure FDA0003549748020000026
式中,Ph表示液压系统压力;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;a和b表示液压系统模型拟合基本参数;△a和△b表示液压系统模型拟合不确定参数的理想值;
17)将公式(3)(4)(5)(9)(10)代入(8)中,得到丝杠轴处的完整动力学平衡方程:
Figure FDA0003549748020000031
式中,
Figure FDA0003549748020000032
表示丝杠轴处完整的等效质量;
Figure FDA0003549748020000033
表示丝杠轴的水平加速度;s表示滚珠丝杆导程;η表示行星齿轮减速比;Te表示电机的输入电磁转矩;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;Am表示制动主缸截面积;Ff表示丝杠轴受到的摩擦阻力;Tmf表示电机的摩擦转矩;mE表示丝杠轴处除了电机转动惯量外的等效质量;J1表示电机的转动惯量。
2.根据权利要求1所述的一种集成式液压制动系统伺服位移控制方法,其特征在于,所述步骤二的具体方法如下:
21)选择丝杠轴的水平位移y和水平速度
Figure FDA0003549748020000034
为系统状态变量,即x1=y,
Figure FDA0003549748020000035
Figure FDA0003549748020000036
电机的输入电磁转矩Te为系统输入,即u=Te,那么根据丝杠轴处的完整动力学平衡方程,得到系统的状态空间方程表示为:
Figure FDA0003549748020000037
Figure FDA0003549748020000038
Figure FDA0003549748020000039
式中,
Figure FDA00035497480200000310
表示系统的第一个状态变量的微分;x2表示系统的第二个状态变量;
Figure FDA00035497480200000311
表示系统的第二个状态变量的微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;A和B表示液压系统模型拟合参数;y表示丝杠轴的水平位移;Am表示制动主缸截面积;
Figure FDA00035497480200000312
表示丝杠轴处完整的等效质量;Ff表示丝杠轴受到的摩擦阻力;Tmf表示电机的摩擦转矩;s表示滚珠丝杆导程;η表示行星齿轮减速比;
22)设定目标丝杠轴的水平位移为xd,得到系统的误差方程为:
e1=x1-xd, (15)
Figure FDA0003549748020000041
式中,e1表示系统误差;
Figure FDA0003549748020000042
表示系统误差的微分;x1表示系统的第一个状态变量;
Figure FDA0003549748020000043
表示系统的第一个状态变量的微分;xd表示目标丝杠轴的水平位移;
Figure FDA0003549748020000044
表示目标丝杠轴的水平位移的微分;x2表示系统的第二个状态变量;
23)为了使得系统误差e1随着时间趋近于零,设定第一个李雅普诺夫函数为:
Figure FDA0003549748020000045
式中,V1表示第一个李雅普诺夫函数;e1表示系统误差。
那么,第一个李雅普诺夫函数的微分为:
Figure FDA0003549748020000046
式中,
Figure FDA0003549748020000047
表示第一个李雅普诺夫函数的微分;e1表示系统误差;
Figure FDA0003549748020000048
表示系统误差的微分;
24)根据滑模变结构理论,设定滑模面为:
Figure FDA0003549748020000049
式中,Sp表示滑模面;c1表示滑模变结构参数,且c1>0;e1表示系统误差;
Figure FDA00035497480200000410
表示系统误差的微分;x1表示系统的第一个状态变量;x2表示系统的第二个状态变量;xd表示目标丝杠轴的水平位移;
Figure FDA00035497480200000411
表示目标丝杠轴的水平位移的微分;
25)把滑模面(19)代入第一个李雅普诺夫函数的微分(18)中,得到:
Figure FDA00035497480200000412
式中,
Figure FDA0003549748020000051
表示第一个李雅普诺夫函数的微分;e1表示系统误差;Sp表示滑模面;c1表示滑模变结构参数;
26)如果能够保证Sp趋近于0,那么
Figure FDA0003549748020000052
和e1→0成立;同时集成式液压制动系统能够有效地克服系统未建模扰动ξe(·),实现高精度的伺服位移控制;因此,定义了第二个李雅普诺夫函数:
Figure FDA0003549748020000053
式中,V1表示第一个李雅普诺夫函数;V2表示第二个李雅普诺夫函数;Sp表示滑模面;
27)第二个李雅普诺夫函数的微分为:
Figure FDA0003549748020000054
式中,
Figure FDA0003549748020000055
表示第一个李雅普诺夫函数的微分;
Figure FDA0003549748020000056
表示第二个李雅普诺夫函数的微分;Sp表示滑模面;
Figure FDA0003549748020000057
表示滑模面的微分;c1表示滑模变结构参数;e1表示系统误差;
Figure FDA0003549748020000058
表示系统误差的微分;
Figure FDA0003549748020000059
表示系统误差的二次微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;
Figure FDA00035497480200000510
表示目标丝杠轴的水平位移的二次微分;
28)根据李雅普诺夫直接法,选用系统的输入为:
Figure FDA00035497480200000511
式中,θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;
Figure FDA00035497480200000512
表示目标丝杠轴的水平位移的二次微分;c1和c2表示滑模变结构参数且均大于0;e1表示系统误差;
Figure FDA00035497480200000513
表示系统误差的微分;Sp表示滑模面;Ψ表示抗扰动增益系数;
29)系统未建模扰动ξe(·)有界,在设计系统的输入u时保证抗扰动增益系数Ψ远大于该边界的绝对值,那么能够保证:
Figure FDA0003549748020000061
式中,
Figure FDA0003549748020000062
表示第二个李雅普诺夫函数的微分;c1和c2表示滑模变结构参数;e1表示系统误差;Sp表示滑模面;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
因此,随着时间t→∞,Sp和e1均趋近于0。
3.根据权利要求1所述的一种集成式液压制动系统伺服位移控制方法,其特征在于,所述步骤三的具体方法如下:
31)将估计的液压系统模型定义为:
Figure FDA0003549748020000063
式中,
Figure FDA0003549748020000064
Figure FDA0003549748020000065
表示液压系统模型拟合参数的估计值;a和b表示液压系统模型拟合基本参数;
Figure FDA0003549748020000066
Figure FDA0003549748020000067
表示液压系统模型拟合不确定参数的估计值;
32)使用径向基神经网络近似逼近液压系统模型拟合不确定参数的理想值表示为:
Figure FDA0003549748020000068
式中,△a和△b表示液压系统模型拟合不确定参数的理想值;W*和V*表示径向基神经网络的理想权重;εa和εb表示神经网络逼近误差;ha(xN)和hb(xN)表示神经网络训练函数;
Figure FDA0003549748020000069
为神经网络输入;y表示丝杠轴的水平位移;
Figure FDA00035497480200000610
表示丝杠轴的水平位移的微分;
33)使用径向基神经网络近似逼近液压系统模型拟合不确定参数的估计值,即:
Figure FDA00035497480200000611
式中,
Figure FDA00035497480200000612
Figure FDA00035497480200000613
表示液压系统模型拟合不确定参数的估计值;
Figure FDA00035497480200000614
Figure FDA00035497480200000615
表示径向基神经网络的估计权重;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;
34)将液压系统模型拟合不确定参数的估计值代入到推到得到的系统的输入(23)后整理如下:
Figure FDA0003549748020000071
式中,u表示系统的输入;
Figure FDA0003549748020000072
Figure FDA0003549748020000073
表示液压系统模型拟合参数的估计值;θ2表示摩擦参数;θ3表示控制参数;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure FDA0003549748020000074
表示系统误差的微分;Sp表示滑模面;Ψ表示抗扰动增益系数;
Figure FDA0003549748020000075
表示目标丝杠轴的水平位移的二次微分;y表示丝杠轴的水平位移;Am表示制动主缸截面积;
Figure FDA00035497480200000718
表示丝杠轴处完整的等效质量;p11和p12为不确定参数的增益;
35)将整理后的系统控制输入(28)代入滑模面的微分中得:
Figure FDA0003549748020000076
式中,
Figure FDA0003549748020000077
表示滑模面的微分;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure FDA0003549748020000078
表示系统误差的微分;
Figure FDA0003549748020000079
表示系统误差的二次微分;θ1表示液压参数;θ2表示摩擦参数;θ3表示控制参数;u表示系统的输入;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
Figure FDA00035497480200000710
表示目标丝杠轴的水平位移的二次微分;
Figure FDA00035497480200000711
Figure FDA00035497480200000712
表示液压系统模型拟合参数的估计值;p11和p12为不确定参数的增益;A和B表示液压系统模型拟合参数;Sp表示滑模面;
36)定义径向基神经网络的理想权重和估计权重的差值为:
Figure FDA00035497480200000713
式中,
Figure FDA00035497480200000714
Figure FDA00035497480200000715
表示径向基神经网络的理想权重和估计权重的差值;W*和V*表示径向基神经网络的理想权重;
Figure FDA00035497480200000716
Figure FDA00035497480200000717
表示径向基神经网络的估计权重;
37)液压系统模型拟合不确定参数的理想值和估计值的差值进一步化简为:
Figure FDA0003549748020000081
式中,
Figure FDA0003549748020000082
Figure FDA0003549748020000083
表示液压系统模型拟合不确定参数的理想值和估计值的差值;△a和△b表示液压系统模型拟合不确定参数的理想值;
Figure FDA0003549748020000084
Figure FDA0003549748020000085
表示液压系统模型拟合不确定参数的估计值;
Figure FDA0003549748020000086
Figure FDA0003549748020000087
表示径向基神经网络的理想权重和估计权重的差值;W*和V*表示径向基神经网络的理想权重;
Figure FDA0003549748020000088
Figure FDA0003549748020000089
表示径向基神经网络的估计权重;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;εa和εb表示神经网络逼近误差;
38)为了获得径向基神经网络的估计权重,设计第三个李雅普诺夫函数为:
Figure FDA00035497480200000810
式中,V2表示第二个李雅普诺夫函数;V3表示第三个李雅普诺夫函数,
Figure FDA00035497480200000811
Figure FDA00035497480200000812
表示径向基神经网络的理想权重和估计权重的差值;k1和k2表示径向基神经网络的权重参数;
对第三个李雅普诺夫函数进行微分得到:
Figure FDA00035497480200000813
式中,
Figure FDA00035497480200000814
表示第二个李雅普诺夫函数的微分,
Figure FDA00035497480200000815
表示第三个李雅普诺夫函数的微分;
Figure FDA00035497480200000816
Figure FDA00035497480200000817
表示径向基神经网络的理想权重和估计权重的差值;
Figure FDA00035497480200000818
Figure FDA00035497480200000819
表示径向基神经网络的理想权重和估计权重的微分差值;k1和k2表示径向基神经网络的权重参数;Sp表示滑模面;
Figure FDA0003549748020000091
表示滑模面的微分;c1和c2表示滑模变结构参数;e1表示系统误差;
Figure FDA0003549748020000092
Figure FDA0003549748020000093
表示液压系统模型拟合参数的估计值;p11和p12表示不确定参数的增益;A和B表示液压系统模型拟合参数;ξe(·)表示系统未建模扰动;Ψ表示抗扰动增益系数;
Figure FDA0003549748020000094
Figure FDA0003549748020000095
表示液压系统模型拟合不确定参数的理想值和估计值的差值;
Figure FDA0003549748020000096
Figure FDA0003549748020000097
表示径向基神经网络的估计权重的自适应律;εa和εb表示神经网络逼近误差;ha(xN)和hb(xN)表示神经网络训练函数;xN为神经网络输入;
39)设计径向基神经网络的估计权重的自适应律为:
Figure FDA0003549748020000098
式中,
Figure FDA0003549748020000099
Figure FDA00035497480200000910
表示径向基神经网络的估计权重的自适应律;k1和k2表示径向基神经网络的权重参数;p11和p12表示不确定参数的增益;Sp表示滑模面;ha(xN)和hb(xN)表示神经网络训练函数;xN表示神经网络输入;
将设计的径向基神经网络的估计权重的自适应律(34)代入到第三个李雅普诺夫函数微分(33)中得:
Figure FDA00035497480200000911
式中,
Figure FDA00035497480200000912
表示第三个李雅普诺夫函数的微分;Sp表示滑模面;c1和c2表示滑模变结构参数;e1表示系统误差;Ψ表示抗扰动增益系数;p11和p12表示不确定参数的增益;εa和εb表示神经网络逼近误差;ξe(·)表示系统未建模扰动;
只需要选用抗扰动增益系数为:
Ψ>>|(p11a+p12εbe(·)| (36)
式中,Ψ表示抗扰动增益系数;p11和p12为不确定参数的增益;εa和εb表示神经网络逼近误差,ξe(·)表示系统未建模扰动。
此时,保证了第三个李雅普诺夫函数的微分
Figure FDA00035497480200000913
小于等于0,一种基于自适应径向基神经网络的集成式液压制动系统伺服位移控制方法能够保证整个闭环系统稳定。
CN202111001447.7A 2021-08-30 2021-08-30 一种集成式液压制动系统伺服位移控制方法 Active CN113685398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111001447.7A CN113685398B (zh) 2021-08-30 2021-08-30 一种集成式液压制动系统伺服位移控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111001447.7A CN113685398B (zh) 2021-08-30 2021-08-30 一种集成式液压制动系统伺服位移控制方法

Publications (2)

Publication Number Publication Date
CN113685398A CN113685398A (zh) 2021-11-23
CN113685398B true CN113685398B (zh) 2022-05-31

Family

ID=78583795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111001447.7A Active CN113685398B (zh) 2021-08-30 2021-08-30 一种集成式液压制动系统伺服位移控制方法

Country Status (1)

Country Link
CN (1) CN113685398B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326401B (zh) * 2021-12-28 2023-10-20 浙大宁波理工学院 基于径向基神经网络的阀控液压缸滑模控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154831A (zh) * 2016-07-25 2016-11-23 厦门大学 一种基于学习法的智能汽车纵向神经滑模控制方法
CN106828005A (zh) * 2017-01-22 2017-06-13 昆明理工大学 一种预规定瞬态性能的汽车主动悬架自适应控制方法
CN109624957A (zh) * 2019-02-26 2019-04-16 吉林大学 一种具有新型耦合方式的集成式电动助力制动系统
CN110850716A (zh) * 2019-11-13 2020-02-28 兰州交通大学 基于接触网先验信息的受电弓神经网络滑模变结构主动控制方法
CN110949366A (zh) * 2019-11-08 2020-04-03 江苏大学 应用智能车辆纵向速度控制的rbf神经网络的终端滑模控制方法
CN112666833A (zh) * 2020-12-25 2021-04-16 吉林大学 一种用于电动自动驾驶车辆的车速跟随自适应鲁棒控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154831A (zh) * 2016-07-25 2016-11-23 厦门大学 一种基于学习法的智能汽车纵向神经滑模控制方法
CN106828005A (zh) * 2017-01-22 2017-06-13 昆明理工大学 一种预规定瞬态性能的汽车主动悬架自适应控制方法
CN109624957A (zh) * 2019-02-26 2019-04-16 吉林大学 一种具有新型耦合方式的集成式电动助力制动系统
CN110949366A (zh) * 2019-11-08 2020-04-03 江苏大学 应用智能车辆纵向速度控制的rbf神经网络的终端滑模控制方法
CN110850716A (zh) * 2019-11-13 2020-02-28 兰州交通大学 基于接触网先验信息的受电弓神经网络滑模变结构主动控制方法
CN112666833A (zh) * 2020-12-25 2021-04-16 吉林大学 一种用于电动自动驾驶车辆的车速跟随自适应鲁棒控制方法

Also Published As

Publication number Publication date
CN113685398A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Li et al. Counterbalancing speed control for hydrostatic drive heavy vehicle under long down-slope
CN113602274B (zh) 一种基于电控助力制动的智能车辆纵向运动控制方法
Lin et al. Decoupled torque control of series elastic actuator with adaptive robust compensation of time-varying load-side dynamics
CN113685398B (zh) 一种集成式液压制动系统伺服位移控制方法
CN109194222B (zh) 一种磁悬浮开关磁阻电机二阶滑模控制方法
CN104265708B (zh) 一种基于运动状态同步的自适应解耦控制方法
CN111650952B (zh) 一种基于双干扰观测器四旋翼无人机分层抗干扰方法
CN102436187A (zh) 一种基于电动静液作动系统的多学科建模方法
CN110398895A (zh) 一种基于位置的主动柔顺控制方法及系统
CN108536185A (zh) 一种基于降阶级联扩张状态观测器的双框架磁悬浮cmg框架系统参数优化方法
CN110077419A (zh) 一种轮毂液压马达辅助驱动系统的模型预测控制方法
CN106066603B (zh) 具有精确跟踪性能的电液伺服系统自适应鲁棒位置控制器的实现方法
CN116638544A (zh) 一种基于超局部模型的关节模组协同控制方法
Wang et al. Research on model-free adaptive control of electro-hydraulic servo system of continuous rotary motor
CN103248292B (zh) 一种用于机械储能系统的控制方法
Qi et al. Research on new intelligent pump control based on sliding mode variable structure control
Zhang et al. Torque-tracking control combining polynomial feedforward with sliding mode feedback for magnetorheological actuators
CN109656150B (zh) 基于matlab的复合轴控制系统偏差高精度控制方法
Haifeng et al. Modeling and simulation of EHA system based on fuzzy adaptive PID control
CN112622857B (zh) 一种车用线控制动系统电动主缸液压力预设性能控制方法
Li et al. HEV mode transition strategy based on fuzzy sliding mode control
Hamzehlouia et al. Adaptive speed regulation of gearless wind energy transfer systems
Qin et al. Torque equilibrium position closed-loop control of dual electric motors swing system for large mining excavator
CN112460095B (zh) 一种电液复合缸的主被动负载复合控制方法
CN116494996A (zh) 一种智能汽车制动主缸压力控制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant