CN113681570A - 一种六轴机械臂过奇异点的控制方法 - Google Patents

一种六轴机械臂过奇异点的控制方法 Download PDF

Info

Publication number
CN113681570A
CN113681570A CN202111244075.0A CN202111244075A CN113681570A CN 113681570 A CN113681570 A CN 113681570A CN 202111244075 A CN202111244075 A CN 202111244075A CN 113681570 A CN113681570 A CN 113681570A
Authority
CN
China
Prior art keywords
mechanical arm
axis mechanical
axis
singular point
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111244075.0A
Other languages
English (en)
Other versions
CN113681570B (zh
Inventor
雷成林
刘家骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ji Hua Laboratory
Original Assignee
Ji Hua Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ji Hua Laboratory filed Critical Ji Hua Laboratory
Priority to CN202111244075.0A priority Critical patent/CN113681570B/zh
Publication of CN113681570A publication Critical patent/CN113681570A/zh
Application granted granted Critical
Publication of CN113681570B publication Critical patent/CN113681570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

本发明属于一种机械臂控制技术领域,具体公开一种六轴机械臂过奇异点的控制方法,包括以下步骤:(1)在六轴机械臂的最后一个轴臂上增加一个辅助轴;常态下,所述辅助轴与六轴机械臂的最后一个轴臂形成一个整体进行运动;(2)六轴机械臂收到运动指令后,进行末端路径规划,并根据末端位姿进行逆解计算;(3)判断是否经过奇异点;(4)若不存在奇异点,则基于六轴机械臂直接进行逆解计算,按照计算结果完成运动指令;若存在奇异点,则所述辅助轴生效,此时的六轴机械臂转换成七轴机械臂,并通过形成的七轴机械臂完成运动指令。本发明计算简单且计算量小,适用范围广,有利于机械臂快速有效地经过奇异点。

Description

一种六轴机械臂过奇异点的控制方法
技术领域
本发明涉及一种机械臂控制技术领域,具体涉及一种六轴机械臂过奇异点的控制方法。
背景技术
六轴机械臂具有速度快,移动灵活以及精度高等优点,无论在工业领域还是服务行业中,均起到尤为重要的作用。但是,不管在哪种场合,哪种类型的机械臂,六轴机械臂都面临着过奇异点问题;在奇异点附近,机械臂的逆解有无数个,并且还存在速度无限大、承载能力弱问题。
现有技术中,六轴机械臂过奇异点的控制方法很多,其中包括采用纯数学的计算处理,例如求出机械臂位置和速度雅可比矩阵的伪逆,或者利用其它算法求解出逆解;另外,还包括采用直接避开奇异点的方法,在进行机械臂运动轨迹和路径规划时,直接避开可能产生奇异点的位姿。
关于以上六轴机械臂过奇异点的控制方法,存在以下问题:无法求出较好的逆解以便于六轴机械臂平稳地通过奇异点,若通过避开奇异点的方式则导致机械臂无法以最优的路径完成作业,并且增加规划计算量,适用范围窄。
发明内容
本发明目的在于克服现有技术的不足,提供一种六轴机械臂过奇异点的控制方法,该方法计算简单且计算量小,适用范围广,有利于机械臂快速有效地经过奇异点。
本发明的目的通过以下技术方案实现:
一种六轴机械臂过奇异点的控制方法,包括以下步骤:
(1)在六轴机械臂的最后一个轴臂上增加一个辅助轴;常态下,所述辅助轴与六轴机械臂的最后一个轴臂形成一个整体进行运动;
(2)六轴机械臂收到运动指令后,进行末端路径规划,并根据末端位姿进行逆解计算;
(3)判断是否经过奇异点;
(4)若不存在奇异点,则基于六轴机械臂直接进行逆解计算,按照计算结果完成运动指令;若存在奇异点,则所述辅助轴生效,此时的六轴机械臂转换成七轴机械臂,并通过形成的七轴机械臂完成运动指令。
本发明的一个优选方案,在步骤(2)和步骤(3)中,逆解计算和奇异点的判断如下:
由正运动学可以得出六轴机械臂末端位姿向量x和关节空间的位置向量q的关系:
Figure DEST_PATH_IMAGE001
式中,J为雅可比矩阵,δ为微分符号;
则根据公式(1),可以求出六轴机械臂的关节空间向量:
Figure DEST_PATH_IMAGE002
由于雅可比矩阵具有对称性,则有:
Figure DEST_PATH_IMAGE003
要使得上述公式(3)有解,即六轴机械臂的逆解有解,则需要满足J T 满秩,即:
Figure DEST_PATH_IMAGE004
,此时表明不存在奇异点,通过计算直接获得逆解即可;若
Figure DEST_PATH_IMAGE005
,且
Figure DEST_PATH_IMAGE006
,则表明六轴机械臂即将经过的位姿是奇异点;其中的
Figure 100002_DEST_PATH_IMAGE007
表示矩阵J T 的秩,其中的w为六轴机械臂的工作范围。
优选地,当存在奇异点,转换为七轴机械臂时,通过能量最优算法求解七轴机械臂逆解的最优解:
Figure DEST_PATH_IMAGE008
其中,Energy为七轴机械臂本次运动所需要的能量,m n 为机械臂上第n个轴臂的质量,n 表示第n个轴臂,∆q i 表示七轴机械臂第i个关节在下一时刻与当前时刻的角度差值,min(Energy)为七轴机械臂本次运动所需要的最小能量,q i 为七轴机械臂第i个关节的角度,q imin为七轴机械臂第i个关节所能运动到的最小角度,q imax为七轴机械臂第i个关节所能运动到的最大角度;
通过公式(2)、(4)和(5),即可求解出七轴机械臂最优的逆解,即获得七轴机械臂即将运动的角度数据;此时七轴机械臂执行求解出最优的逆解,按照所述角度数据进行运动,从而使得机械臂平稳顺滑通过奇异点。
优选地,当七轴机械臂经过奇异点后,结合辅助轴的复位,继续完成执行后续的运动,从而实现机械臂的运动过程保持平稳连续。
本发明与现有技术相比具有以下有益效果:
1、本发明通过在六轴机械臂的最后一个轴臂上增加一个辅助轴,以便在遇到奇异点时转换为七轴机械臂,从而快速高效地解决奇异点的问题,能够平稳柔顺地经过奇异点并完成规划路径运动,同时计算量小,建模简单,适用范围广。
2、常态下,六轴机械臂的最后一个轴臂与辅助轴形成一个整体,有效地提高作业运动的效率和精度,并且控制方便,降低计算量;当遇到奇异点时,辅助轴才启动,形成七轴机械臂解决奇异点问题,完成奇异点的经过后,又重新转换为六轴机械臂,继续保持常态作业。
附图说明
图1为本发明的六轴机械臂过奇异点的控制方法的控制流程框图。
图2为六轴机械臂常用的三种构型。
图3为针对图2中的六轴机械臂增加辅助轴后的构型图,其中三种构型中的虚线框内容表示增加的辅助轴。
具体实施方式
下面结合实施例和附图对本发明作进一步描述,但本发明的实施方式不仅限于此。
参见图1-图3,本实施例的六轴机械臂过奇异点的控制方法,包括以下步骤:
(1)在六轴机械臂的最后一个轴臂上增加一个辅助轴;常态下,所述辅助轴与六轴机械臂的最后一个轴臂形成一个整体进行运动;此处的常态,是指常规工作状态下,即六轴机械臂在运动过程中没有遇到奇异点的情况下。根据工作空间、负载和规划轨迹的不同,六轴机械臂分为不同的构型,常用的构型有std型、UR型以及weld型,如图2所示;当然,还有其他各种不常用的构型。在设计六轴机械臂时,一般都会满足pieper准则,因此在设计增加辅助轴时,也应考虑pieper准则,使得求解逆解时更加简单;但是,辅助轴更应该增加六轴机械臂的有效自由度,与pieper准则两者结合,既可以使得机械臂求解逆解更加简单,还会增加六轴机械臂的有效自由度,使得机械臂肯定会有较优的解通过奇异点。综合考虑以上因素,针对不同构型的六轴机械臂,设计不同的辅助轴,具体可参见图3,其中三种构型中的虚线框内容表示增加的辅助轴。对于一些不常用的构型的六轴机械臂,主要是针对最后一个轴臂进行辅助轴的设计,因此可参见图3完成辅助轴的设计。
(2)六轴机械臂收到运动指令后,进行末端路径规划,并根据末端位姿进行逆解计算。具体地:
由正运动学可以得出六轴机械臂末端位姿向量x和关节空间的位置向量q的关系:
Figure 296185DEST_PATH_IMAGE001
式中,J为雅可比矩阵,δ为微分符号;
则根据公式(1),可以求出六轴机械臂的关节空间向量:
Figure 134697DEST_PATH_IMAGE002
由于雅可比矩阵具有对称性,则有:
Figure DEST_PATH_IMAGE009
(3)判断是否经过奇异点。要使得上述公式(3)有解,即六轴机械臂的逆解有解,则需要满足J T 满秩,即:
Figure DEST_PATH_IMAGE010
,此时表明不存在奇异点,通过执行计算直接获得逆解即可。若
Figure DEST_PATH_IMAGE011
,则表明六轴机械臂即将经过的位姿是奇异点,或者控制器规划的末端位姿x超出了工作范围;若此时同时满足
Figure 941198DEST_PATH_IMAGE006
,则表明六轴机械臂即将经过的位姿是奇异点;其中的
Figure DEST_PATH_IMAGE012
表示矩阵J T 的秩,其中的w表示为六轴机械臂的工作范围。
(4)经过判断后,若存在奇异点,则所述辅助轴生效,此时的六轴机械臂转换成七轴机械臂,通过形成的七轴机械臂完成运动指令,平稳柔顺经过奇异点。此时,转换成七轴机械臂后,需要求解七轴机械臂的逆解,可通过上述公式(1)和公式(2)求解出七个关节角度空间q,但是,此时的J -1 为7×6的矩阵,
Figure DEST_PATH_IMAGE013
,因此七轴机械臂的逆解有无数个。为了进一步优化机械臂的运动,通过能量最优算法求解七轴机械臂逆解的最优解:
Figure 244396DEST_PATH_IMAGE008
其中,Energy为七轴机械臂本次运动所需要的能量,m n 为机械臂上第n个轴臂的质量,n 表示第n个轴臂,∆q i 表示七轴机械臂第i个关节在下一时刻与当前时刻的角度差值(即第i个关节即将转动的角度),min(Energy)为七轴机械臂本次运动所需要的最小能量,q i 为七轴机械臂第i个关节的角度,q imin为七轴机械臂第i个关节所能运动到的最小角度,q imax为七轴机械臂第i个关节所能运动到的最大角度;
结合公式(2)、(4)和(5),即可求解出七轴机械臂最优的逆解,即获得七轴机械臂即将运动的角度数据;此时七轴机械臂执行求解出最优的逆解,按照所述角度数据进行运动,从而使得机械臂平稳顺滑通过奇异点。
当七轴机械臂经过奇异点后,为了降低正常情况下六轴机械臂的控制难度以及下次更好的过奇异点,需要将辅助轴进行复位处理。同时,为了确保机械臂的运动过程能够一直平稳连续,需要在机械臂执行本次规划的运动过程中将辅助轴复位,则此次机械臂的运动仍为七轴运动。在机械臂上一次过奇异点时,机械臂第七轴运动的角度为q 7 ,则此次第七轴运动的角度即为-q 7 ;原来的J -1 为7×6矩阵,但是第七轴的运动的角度已知,所以J -1 可以化为6×6矩阵,即可以求出其他六个轴的运动角度。这样,机械臂执行求解出的逆解,即可实现机械臂在平稳柔顺的执行规划的轨迹过程中,同时完成辅助轴的复位。
本实施例的六轴机械臂过奇异点的控制方法,在正常情况下,六轴机械臂的辅助轴保持不动,与最后一个轴臂即第六轴臂固定在一起形成一个整体,机械臂的运动和规划按照普通的六轴机械臂来执行即可,仍然具有六轴机械臂的各种优点。当检测判断到机械臂在约束条件内经过奇异点或者逆解无解时,此时辅助轴生效,机械臂暂时转变为七轴,并通过能量最优算法计算出最优逆解,使得机械臂能够平稳柔顺通过奇异点。与此同时,在之后的运动中,结合辅助轴的复位,重新固定不动和第六轴成为一个整体,继续执行下一步骤。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种六轴机械臂过奇异点的控制方法,其特征在于,包括以下步骤:
(1)在六轴机械臂的最后一个轴臂上增加一个辅助轴;常态下,所述辅助轴与六轴机械臂的最后一个轴臂形成一个整体进行运动;
(2)六轴机械臂收到运动指令后,进行末端路径规划,并根据末端位姿进行逆解计算;
(3)判断是否经过奇异点;
(4)若不存在奇异点,则基于六轴机械臂直接进行逆解计算,按照计算结果完成运动指令;若存在奇异点,则所述辅助轴生效,此时的六轴机械臂转换成七轴机械臂,并通过形成的七轴机械臂完成运动指令。
2.根据权利要求1所述的六轴机械臂过奇异点的控制方法,其特征在于,在步骤(2)和步骤(3)中,逆解计算和奇异点的判断如下:
由正运动学可以得出六轴机械臂末端位姿向量x和关节空间的位置向量q的关系:
Figure 259818DEST_PATH_IMAGE001
式中,J为雅可比矩阵,δ 为微分符号;
则根据公式(1),可以求出六轴机械臂的关节空间向量:
Figure 472494DEST_PATH_IMAGE002
由于雅可比矩阵具有对称性,则有:
Figure 395320DEST_PATH_IMAGE003
要使得上述公式(3)有解,即六轴机械臂的逆解有解,则需要满足J T 满秩,即:
Figure 252942DEST_PATH_IMAGE004
,此时表明不存在奇异点,通过计算直接获得逆解即可;若
Figure 843192DEST_PATH_IMAGE005
,且
Figure 226769DEST_PATH_IMAGE006
,则表明六轴机械臂即将经过的位姿是奇异点;其中的
Figure DEST_PATH_IMAGE007
表示矩阵J T 的秩,其中的w为六轴机械臂的工作范围。
3.根据权利要求2所述的六轴机械臂过奇异点的控制方法,其特征在于,当存在奇异点,转换为七轴机械臂时,通过能量最优算法求解七轴机械臂逆解的最优解:
Figure 555332DEST_PATH_IMAGE008
其中,Energy为七轴机械臂本次运动所需要的能量,m n 为机械臂上第n个轴臂的质量,n 表示第n个轴臂,∆q i 表示七轴机械臂第i个关节在下一时刻与当前时刻的角度差值,min(Energy)为七轴机械臂本次运动所需要的最小能量,q i 为七轴机械臂第i个关节的角度,q imin为七轴机械臂第i个关节所能运动到的最小角度,q imax为七轴机械臂第i个关节所能运动到的最大角度;
通过公式(2)、(4)和(5),即可求解出七轴机械臂最优的逆解,即获得七轴机械臂即将运动的角度数据;此时七轴机械臂执行求解出最优的逆解,按照所述角度数据进行运动,从而使得机械臂平稳顺滑通过奇异点。
4.根据权利要求3所述的六轴机械臂过奇异点的控制方法,其特征在于,当七轴机械臂经过奇异点后,结合辅助轴的复位,继续完成执行后续的运动,从而实现机械臂的运动过程保持平稳连续。
CN202111244075.0A 2021-10-26 2021-10-26 一种六轴机械臂过奇异点的控制方法 Active CN113681570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111244075.0A CN113681570B (zh) 2021-10-26 2021-10-26 一种六轴机械臂过奇异点的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111244075.0A CN113681570B (zh) 2021-10-26 2021-10-26 一种六轴机械臂过奇异点的控制方法

Publications (2)

Publication Number Publication Date
CN113681570A true CN113681570A (zh) 2021-11-23
CN113681570B CN113681570B (zh) 2022-01-04

Family

ID=78587915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111244075.0A Active CN113681570B (zh) 2021-10-26 2021-10-26 一种六轴机械臂过奇异点的控制方法

Country Status (1)

Country Link
CN (1) CN113681570B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115284298A (zh) * 2022-08-31 2022-11-04 深圳前海瑞集科技有限公司 机器人的奇异规避方法、装置、终端以及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278906A (ja) * 1985-06-03 1986-12-09 Hitachi Ltd ロボツトの制御方法
CN103909522A (zh) * 2014-03-19 2014-07-09 华南理工大学 一种六自由度工业机器人通过奇异域的方法
CN109605369A (zh) * 2018-12-07 2019-04-12 英华达(上海)科技有限公司 机械臂奇异点控制方法及系统
CN110802600A (zh) * 2019-11-28 2020-02-18 合肥工业大学 一种六自由度关节型机器人的奇异性处理方法
CN111014594A (zh) * 2019-11-19 2020-04-17 中南大学 一种铸锭过程动态除渣的机器人轨迹规划方法
CN113084792A (zh) * 2019-12-23 2021-07-09 配天机器人技术有限公司 关节奇异区域的确定方法、机器人及存储装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278906A (ja) * 1985-06-03 1986-12-09 Hitachi Ltd ロボツトの制御方法
CN103909522A (zh) * 2014-03-19 2014-07-09 华南理工大学 一种六自由度工业机器人通过奇异域的方法
CN109605369A (zh) * 2018-12-07 2019-04-12 英华达(上海)科技有限公司 机械臂奇异点控制方法及系统
CN111014594A (zh) * 2019-11-19 2020-04-17 中南大学 一种铸锭过程动态除渣的机器人轨迹规划方法
CN110802600A (zh) * 2019-11-28 2020-02-18 合肥工业大学 一种六自由度关节型机器人的奇异性处理方法
CN113084792A (zh) * 2019-12-23 2021-07-09 配天机器人技术有限公司 关节奇异区域的确定方法、机器人及存储装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周辉: "六轴机器人奇异点规避与轨迹规划研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115284298A (zh) * 2022-08-31 2022-11-04 深圳前海瑞集科技有限公司 机器人的奇异规避方法、装置、终端以及介质

Also Published As

Publication number Publication date
CN113681570B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN112757306A (zh) 一种机械臂逆解多解选择和时间最优轨迹规划算法
CN109676610B (zh) 一种断路器装配机器人及其实现工作轨迹优化的方法
Jia et al. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters
Liu et al. Online time-optimal trajectory planning for robotic manipulators using adaptive elite genetic algorithm with singularity avoidance
Vafaei et al. Integrated controller for an over-constrained cable driven parallel manipulator: KNTU CDRPM
CN113681570B (zh) 一种六轴机械臂过奇异点的控制方法
CN112987568B (zh) 并联加工机器人进给速度规划方法以及装置
CN116276966A (zh) 基于二次规划的移动操作机器人全身反应规划控制方法
JP6057284B2 (ja) 多関節ロボット及び半導体ウェハ搬送装置
Wen et al. Path-constrained optimal trajectory planning for robot manipulators with obstacle avoidance
CN111515954A (zh) 一种机械臂高质量运动路径生成方法
CN113084797B (zh) 一种基于任务分解的双臂冗余机械臂动态协同控制方法
Lim et al. Tension optimization for cable-driven parallel manipulators using gradient projection
WO2020017093A1 (ja) 加速度調整装置及び加速度調整プログラム
Ge et al. Feedforward control based on Fourier series trajectory fitting method for industrial robot
Fang et al. Exploitation of environment support contacts for manipulation effort reduction of a robot arm
Kalaycioglu et al. Coordinated Motion and Force Control of Multi-Rover Robotics System with Mecanum Wheels
Mai et al. Algorithm for improving feeding rates of industrial welding robot TA 1400 in combination with a turntable frame
CN116880165B (zh) 一种无接触型悬浮抓取系统的模型参考自适应有限时间控制方法
Chen et al. A novel autonomous obstacle avoidance path planning method for manipulator in joint space
CN114488953B (zh) 基于轴物理限制的传动机构进给率规划方法
CN113478495B (zh) 一种多维度的机械臂平滑路径规划方法
Muñoz Osorio et al. Operational space formulation under joint constraints
Ren et al. The Combination Trajectory Planning of Serial Robot in Cartesian Space and Joint Space
Qingmei et al. Vibration suppression of manipulator using quantum genetic algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant