CN110802600A - 一种六自由度关节型机器人的奇异性处理方法 - Google Patents

一种六自由度关节型机器人的奇异性处理方法 Download PDF

Info

Publication number
CN110802600A
CN110802600A CN201911193113.7A CN201911193113A CN110802600A CN 110802600 A CN110802600 A CN 110802600A CN 201911193113 A CN201911193113 A CN 201911193113A CN 110802600 A CN110802600 A CN 110802600A
Authority
CN
China
Prior art keywords
robot
singular
joint
interpolation point
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911193113.7A
Other languages
English (en)
Inventor
卢剑伟
陈新法
朱汉子
邵浩然
郭嘉豪
任远凯
杨凡
钱钧
曹剑
赵萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201911193113.7A priority Critical patent/CN110802600A/zh
Publication of CN110802600A publication Critical patent/CN110802600A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Abstract

本发明公开了一种六自由度关节型机器人的奇异性处理方法,包括以下步骤:1)建立所述机器人的运动学模型;2)对六自由度关节型机器人进行直角坐标空间的运动轨迹规划;3)对运动轨迹的各个插值点进行运动学逆解求解,得到各插值点处机器人各关节的角度,并根据雅可比矩阵对笛卡尔空间与关节空间的联系,得到各插值点处机器人各关节的的角速度和角加速度;4)求解关节奇异的条件,并得到奇异域;5)通过奇异性处理使机器人平稳通过奇异区。本发明能解决机器人在运动过程中发生奇异而导致的关节角速度突变问题,从而提高机器人运动的平稳性,使机器人各关节角度和角速度平稳通过奇异区域。

Description

一种六自由度关节型机器人的奇异性处理方法
技术领域
本发明涉及一种六自由度关节型机器人的奇异性处理方法。
背景技术
奇异位形是机器人机构的固有特性,当机器人处于奇异位形时,对于给定操作器的从关节空间映射到工作空间的雅可比矩阵就变为奇异矩阵,因而无法求得它的运动学逆解,从而基于雅可比的各种控制算法就失效了,这样其轨迹控制和运动控制都无法准确实现。以目前常见的六自由度关节型机器人为例,主要包括三种奇异点,分别为边界奇异、内部奇异和腕部奇异。当第二、三和五关节同轴时会出现边界奇异;当第一和第六关节同轴时会出现内部奇异;当第四和第六关节同轴时会出现腕部奇异。这些奇异位形会导致机器人关节速度突然变大,从而导致停机或者其他安全问题。
发明内容
本发明是为了避免现有技术所存在的不足,提供一种六自由度关节型机器人的奇异性处理方法,以期能在保证机器人工作性能和运动精度前提下,提高机器人运动的平稳性,使机器人各关节角度和角速度平稳通过奇异区域。
本发明解决技术问题采用如下技术方案:
本发明一种六自由度关节型机器人的奇异性处理方法的特点是按如下步骤进行:
步骤1、对六自由度关节型机器人进行结构学与运动学分析,建立运动学模型,从而获取运动学正逆解求解公式及雅可比矩阵;
步骤2、对所述六自由度关节型机器人进行笛卡尔空间的运动轨迹规划,得到末端执行器在各个插值点处的位置、速度和加速度;
步骤3、对所述运动轨迹的各个插值点进行运动学逆解求解,得到各插值点处机器人各关节的角度,并根据雅可比矩阵对笛卡尔空间与关节空间的联系,得到各插值点处机器人各关节的角速度和角加速度;
步骤4、求解关节奇异的条件,并得到奇异域;
步骤5、基于所述奇异域的边界上的插值点处机器人各关节的角度、角速度、角加速度,利用五次多项式对奇异域内的所有插值点进行重新规划,得到非奇异域内的插值点,从而与奇异域边界上的插值点组成新的运动轨迹,以使六自由度关节型机器人平稳地通过奇异域。
本发明所述的六自由度关节型机器人的奇异性处理方法的特点也在于,所述步骤5是按如下过程进行:
步骤5.1、将奇异域边界上的始端插值点的角度记为θ0、角速度记为θ′0、角加速度记为θ″0;将奇异域边界上的末端插值点的角度记为θf、角速度记为θ′f、角加速度记为θ″f,并带入五次多项式中,从而求解得到五次多项式的各个系数如式(1)所示:
Figure BDA0002294070680000021
式(1)中,tf表示末端插值点的时间;
步骤5.2、将奇异域内的所有插值点的时刻带入求解后的五次多项式中,从而得到新的插值点作为非奇异域内的插值点。
与已有技术相比,本发明有益效果体现在:
1、本发明方法简单,可操作性高,便于实现程序化,对扩大机器人的应用范围、提高操作精度、灵活性和运动学及动力学性能都有着十分重要的实际意义。
2、本发明方法通过离线仿真可预先判断工业机器人是否处于奇异位形,并对位于奇异位形内的运动轨迹进行重新规划,与非奇异区域的轨迹组成新的轨迹并写入机器人控制器中,克服了工业机器人在工作过程中遇到奇异位形时出现关节角速度突变而运行不稳定的问题,从而使机器人平稳通过奇异区域。
附图说明
图1为本发明中六自由度奇异性处理方法流程图;
图2为六自由度关节型机器人D-H坐标示意图;
图3a为本发明中未进行奇异性处理前的各关节角度与时间关系图;
图3b为本发明中未进行奇异性处理前的角速度与时间关系图;
图3c为本发明中未进行奇异性处理前的角加速度与时间关系图;
图4a为本发明中进行奇异性处理后的各关节角度与时间关系图;
图4b为本发明中进行奇异性处理后的角速度与时间关系图;
图4c为本发明中进行奇异性处理后的角加速度与时间关系图。
具体实施方式
本实施例中的六自由度关节型机器人是指具有六个旋转关节的工业机器人。如图1所示,一种六自由度关节型机器人的奇异性处理方法是按如下方式进行:
步骤1、对六自由度关节型机器人进行结构学与运动学分析,建立运动学模型,从而获取运动学正逆解求解公式及雅可比矩阵;如图2所示,分别建立六自由度关节型机器人的D-H坐标系;具体为:坐标系原点O为六自由度机器人腰关节、肩关节轴线的公垂线与腰关节轴线的交点,Z轴与腰关节轴线重合,方向竖直向上,X轴与腰关节、肩关节轴线的公垂线重合,从腰关节指向肩关节,Y轴按右手螺旋法则确定。并且可以用如式(1)所示的六个D-H关节变换矩阵来表示:
Figure BDA0002294070680000031
Figure BDA0002294070680000032
式(1)中,
Figure BDA0002294070680000034
为关节轴i相对关节轴i-1的齐次变换矩阵,i=1、2、3、4、5、6;si为关节角正弦值,且si=sinθi;ci为关节角余弦值,且ci=cosθi;θi是两相邻连杆绕公共轴线旋转的夹角,称作关节角;di是两相邻连杆公共轴线方向的距离,称作连杆偏距;ai-1是两个关节轴之间的距离,称作连杆长度;
运动学正解如式(2)所示:
Figure BDA0002294070680000033
式(2)中,nx为x轴第一旋转参量,ny为x轴第二旋转参量,nz为x轴第三旋转参量,ox为y轴第一旋转参量,oy为y轴第二旋转参量,oz为y轴第三旋转参量,ax为z轴第一旋转参量,ay为z轴第二旋转参量,az为z轴第三旋转参量,px为第一偏移参量,py为第二偏移参量,pz为第三偏移参量,并有:
nx=s6(s1c4-c1c23s4)-c6[c1s23s5-c5(s1s4-c1c23c4)];
ny=-s6(c1c4+s1c23s4)-c6[s1s23s5+c5(c1s4-s1c23c4)];
nz=s23s4s6-c6(c23s5+s23c4c5);
ox=s6[c1s23s5-c5(s1s4+c1c23c4)]+c6(s1s4-c1c23s4);
oy=s6[s1s23s5+c5(c1s4-s1c23c4)]-c6(c1c4+s1c23s4);
oz=s6(c23s5+s23c4c5)+s23s4c6
ax=-c1s23c5-s5(s1s4+c1c23c4);
ay=-s1s23c5+s5(c1s4-s1c23c4);
az=s23c4s5-c23c5
px=c1(a1+a2c2+a3c23-d4s23)+d6ax
py=s1(a1+a2c2+a3c23-d4s23)+d6ay
pz=-a2s2-a3s23-d4c23+d6az+d1
c23=c2c3-s2s3;s23=c2s3+s2c3
运动学逆解如式(3)所示:
Figure BDA0002294070680000041
式(3)中,K为中间参量1,M为中间参量2,并有:
Figure BDA0002294070680000043
M=pxc1+pys1-a1
利用式(4)得到六自由度关节型机器人雅可比矩阵J(θ):
Figure BDA0002294070680000042
式(4)中,J11为第一雅可比块矩阵1,J12为第二雅可比块矩阵,J21为第三雅可比块矩阵,J22为第四雅可比块矩阵,并有:
Figure BDA0002294070680000052
Figure BDA0002294070680000053
步骤2、在仿真软件中对六自由度关节型机器人进行笛卡尔空间的运动轨迹规划,得到末端执行器在各个插值点处的位置p、速度v和加速度a;
步骤3、对运动轨迹的各个插值点进行运动学逆解求解,利用式(5)得到各插值点处机器人各关节的角度θi:
Figure BDA0002294070680000055
根据雅可比矩阵对笛卡尔空间与关节空间的联系,利用式(6)得到各插值点处机器人各关节的角速度
Figure BDA0002294070680000056
和角加速度
Figure BDA0002294070680000058
步骤4、求解关节奇异的条件,并得到奇异域。当det(J(θ))=0时,六自由度关节型机器人产生奇异位形,此时求得:
a3s3+d4c4=0;
Figure BDA0002294070680000059
s5=0分别为边界奇异、内部奇异和腕部奇异。
利用式(7)分别设置奇异判别因子:
Figure BDA0002294070680000061
式(7)中,kb为边界奇异判别因子,kn1为第一内部奇异判别因子,kn2为第二内部奇异判别因子,kw为腕部奇异判别因子。
针对三种奇异点分别设置奇异阈值t1、t2、t3。当|kb|<t1时,六自由度关节型机器人处于边界奇异位形;当|kn1|<t2|kn2|<t2时六自由度关节型机器人处于内部奇异位形;当|kw|<t3时六自由度关节型机器人处于腕部奇异。
步骤5、基于奇异域的边界上的插值点处机器人各关节的角度、角速度、角加速度,利用五次多项式对奇异域内的所有插值点进行重新规划,得到非奇异域内的插值点,从而与奇异域边界上的插值点组成新的运动轨迹,以使六自由度关节型机器人平稳地通过奇异域。
步骤5.1、对原规划轨迹插值点进行运动学逆解求解时,使用奇异性判别条件,若插值点未经过奇异域则正常输出,若插值点进入奇异域,则记录进入奇异域和离开奇异域两个插值点的各关节角位移、角速度和角加速度。将奇异域边界上的始端插值点的角度记为θ0、角速度记为θ′0、角加速度记为θ″0;将奇异域边界上的末端插值点的角度记为θf、角速度记为θ′f、角加速度记为θ″f,并带入五次多项式θ(t)=a0+a1t+a2t2+a3t3+a4t4+a5t5中,从而求解得到五次多项式的各个系数如式(8)所示:
Figure BDA0002294070680000062
式(8)中,tf表示末端插值点的时间。
步骤5.2、将奇异域内的所有插值点的时刻带入求解后的五次多项式中,从而得到新的插值点作为非奇异域内的插值点,与非奇异区域内轨迹组成新的轨迹输出。从而使得机器人平稳通过奇异区域。
实施例1:
当给出机器人运动起始点p1和终点p2,奇异性处理方法按如下步骤进行:
步骤1、利用D-H坐标系建立运动学模型,进行运动学正逆解求解。
步骤2、进行笛卡尔空间轨迹规划,插补周期0.05s,总时间5s。
步骤3、对各个插值点进行运动学逆解求解,求得各个关节角度、角速度和角加速度。
步骤4、利用奇异判别条件,判断插值点是否在奇异区域内,图3a、图3b和图3c为未经奇异性处理前的关节空间轨迹,从图中可以看到机器人各个关节的角度、角速度、角加速度的变化情况,机器人经过腕部奇异位形区域,第四关节速度与第六关节速度产生突变。
步骤5、记录上述步骤中运动轨迹进入奇异区域和出奇异区域时候的角度、角速度、角加速度,利用五次多项式对奇异区域内的轨迹进行重新规划,与非奇异区域内轨迹组成新的轨迹,使机器人平稳通过奇异区域,图4a、图4b和图4c为经奇异性处理后的关节空间轨迹,从图中曲线可以看到机器人顺利通过奇异区域并且保证了运动的连续性,没有出现关节速度突变情况,证明了通过奇异区域轨迹规划算法的正确性和可行性。

Claims (2)

1.一种六自由度关节型机器人的奇异性处理方法,其特征是按如下步骤进行:
步骤1、对六自由度关节型机器人进行结构学与运动学分析,建立运动学模型,从而获取运动学正逆解求解公式及雅可比矩阵;
步骤2、对所述六自由度关节型机器人进行笛卡尔空间的运动轨迹规划,得到末端执行器在各个插值点处的位置、速度和加速度;
步骤3、对所述运动轨迹的各个插值点进行运动学逆解求解,得到各插值点处机器人各关节的角度,并根据雅可比矩阵对笛卡尔空间与关节空间的联系,得到各插值点处机器人各关节的角速度和角加速度;
步骤4、求解关节奇异的条件,并得到奇异域;
步骤5、基于所述奇异域的边界上的插值点处机器人各关节的角度、角速度、角加速度,利用五次多项式对奇异域内的所有插值点进行重新规划,得到非奇异域内的插值点,从而与奇异域边界上的插值点组成新的运动轨迹,以使六自由度关节型机器人平稳地通过奇异域。
2.根据权利要求1所述的六自由度关节型机器人的奇异性处理方法,其特征在于,所述步骤5是按如下过程进行:
步骤5.1、将奇异域边界上的始端插值点的角度记为θ0、角速度记为θ′0、角加速度记为θ″0;将奇异域边界上的末端插值点的角度记为θf、角速度记为θ′f、角加速度记为θ″f,并带入五次多项式中,从而求解得到五次多项式的各个系数如式(1)所示:
Figure FDA0002294070670000011
式(1)中,tf表示末端插值点的时间;
步骤5.2、将奇异域内的所有插值点的时刻带入求解后的五次多项式中,从而得到新的插值点作为非奇异域内的插值点。
CN201911193113.7A 2019-11-28 2019-11-28 一种六自由度关节型机器人的奇异性处理方法 Pending CN110802600A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911193113.7A CN110802600A (zh) 2019-11-28 2019-11-28 一种六自由度关节型机器人的奇异性处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911193113.7A CN110802600A (zh) 2019-11-28 2019-11-28 一种六自由度关节型机器人的奇异性处理方法

Publications (1)

Publication Number Publication Date
CN110802600A true CN110802600A (zh) 2020-02-18

Family

ID=69491898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911193113.7A Pending CN110802600A (zh) 2019-11-28 2019-11-28 一种六自由度关节型机器人的奇异性处理方法

Country Status (1)

Country Link
CN (1) CN110802600A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211442A (zh) * 2021-05-14 2021-08-06 山东科技大学 一种6自由度机器人或7自由度机器人的奇异性处理方法
CN113263496A (zh) * 2021-04-01 2021-08-17 北京无线电测量研究所 一种六自由度机械臂优化路径的方法和计算机设备
CN113681570A (zh) * 2021-10-26 2021-11-23 季华实验室 一种六轴机械臂过奇异点的控制方法
CN114378830A (zh) * 2022-02-18 2022-04-22 深圳市大族机器人有限公司 一种机器人腕关节奇异规避方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014920A (ja) * 2012-06-15 2014-01-30 Kumamoto Univ 機構制御装置、プログラム及び機構制御方法
CN105382835B (zh) * 2015-12-11 2017-06-20 华中科技大学 一种可穿越腕部奇异点的机器人路径规划方法
CN110434844A (zh) * 2019-08-02 2019-11-12 中科新松有限公司 快换式可重构桌面级机器人及其逆运动学解通用计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014920A (ja) * 2012-06-15 2014-01-30 Kumamoto Univ 機構制御装置、プログラム及び機構制御方法
CN105382835B (zh) * 2015-12-11 2017-06-20 华中科技大学 一种可穿越腕部奇异点的机器人路径规划方法
CN110434844A (zh) * 2019-08-02 2019-11-12 中科新松有限公司 快换式可重构桌面级机器人及其逆运动学解通用计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邵浩然: "六自由度焊接机器人工作性能评价分析及轨迹规划研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263496A (zh) * 2021-04-01 2021-08-17 北京无线电测量研究所 一种六自由度机械臂优化路径的方法和计算机设备
CN113211442A (zh) * 2021-05-14 2021-08-06 山东科技大学 一种6自由度机器人或7自由度机器人的奇异性处理方法
CN113211442B (zh) * 2021-05-14 2022-06-17 山东科技大学 一种6自由度机器人或7自由度机器人的奇异性处理方法
CN113681570A (zh) * 2021-10-26 2021-11-23 季华实验室 一种六轴机械臂过奇异点的控制方法
CN113681570B (zh) * 2021-10-26 2022-01-04 季华实验室 一种六轴机械臂过奇异点的控制方法
CN114378830A (zh) * 2022-02-18 2022-04-22 深圳市大族机器人有限公司 一种机器人腕关节奇异规避方法及系统
CN114378830B (zh) * 2022-02-18 2024-02-20 深圳市大族机器人有限公司 一种机器人腕关节奇异规避方法及系统

Similar Documents

Publication Publication Date Title
CN110802600A (zh) 一种六自由度关节型机器人的奇异性处理方法
US11484982B2 (en) Online CNC machine tool geometric/thermal error measurement and compensation system
WO2018188276A1 (zh) 一种六自由度机器人末端空间曲线轨迹的误差建模方法
CN103909522A (zh) 一种六自由度工业机器人通过奇异域的方法
CN110900612B (zh) 一种位姿同步的六轴工业机器人轨迹平顺方法
CN113601512B (zh) 一种机械臂奇异点的通用规避方法与系统
CN107116542B (zh) 一种六关节工业机器人通过姿态奇点的控制方法及系统
CN105500354A (zh) 一种工业机器人应用的过渡轨迹规划方法
CN108994418B (zh) 一种管-管相贯线机器人运动轨迹规划方法
CN104827479A (zh) 一种面向激光加工机器人的管道插接相贯线轨迹规划方法
CN103481288B (zh) 一种5关节机器人末端工具位姿控制方法
CN105382835A (zh) 一种可穿越腕部奇异点的机器人路径规划方法
CN107791248B (zh) 基于不满足Pieper准则的六自由度串联机器人的控制方法
JP5790840B2 (ja) ロボットの制御装置及びロボットの姿勢補間方法
CN113334385A (zh) 一种自驱动关节臂测量机直线轨迹间平滑过渡的规划方法
CN105522577A (zh) 一种用于五轴折弯机器人笛卡尔轨迹规划的方法及其装置
CN112077851A (zh) 一种基于混合空间的工业机器人过渡轨迹规划方法
CN104090492B (zh) 基于指数函数的scara机器人ptp轨迹规划
CN111679629A (zh) 一种多主轴头加工的空行程无干涉轨迹规划方法
CN112318508A (zh) 一种水下机器人-机械手系统受海流扰动强弱评估方法
CN113001069B (zh) 一种六关节机器人的焊缝跟踪方法
Liu et al. Kinematics of a 5-axis hybrid robot near singular configurations
CN111515954A (zh) 一种机械臂高质量运动路径生成方法
Wang et al. Fuzzy-PI double-layer stability control of an online vision-based tracking system
CN114723160B (zh) 一种用于在机检测的测量路径规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200218