CN113678091A - 用于改进换能器动力学特性的方法和系统 - Google Patents

用于改进换能器动力学特性的方法和系统 Download PDF

Info

Publication number
CN113678091A
CN113678091A CN202080026500.6A CN202080026500A CN113678091A CN 113678091 A CN113678091 A CN 113678091A CN 202080026500 A CN202080026500 A CN 202080026500A CN 113678091 A CN113678091 A CN 113678091A
Authority
CN
China
Prior art keywords
electromagnetic load
waveform signal
lces
rres
discrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080026500.6A
Other languages
English (en)
Other versions
CN113678091B (zh
Inventor
埃里克·林德曼
卡尔·伦纳特·斯塔尔
伊曼纽尔·马查斯
约翰·L·梅兰森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic International Semiconductor Ltd
Original Assignee
Cirrus Logic International Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic International Semiconductor Ltd filed Critical Cirrus Logic International Semiconductor Ltd
Publication of CN113678091A publication Critical patent/CN113678091A/zh
Application granted granted Critical
Publication of CN113678091B publication Critical patent/CN113678091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/022Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0261Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken from a transducer or electrode connected to the driving transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • User Interface Of Digital Computer (AREA)
  • Manipulator (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

一种系统可以包括信号发生器,其被配置为生成原始波形信号;以及建模子系统,其被配置为实施仿真虚拟电磁负载的电磁负载的离散时间模型,并且进一步被配置为通过下列方式来修改原始波形信号以生成用于驱动电磁负载的波形信号:修改虚拟电磁负载,以具有期望特性;将离散时间模型施加到原始波形信号,以生成用于驱动电磁负载的波形信号;并且将波形信号施加到电磁负载。

Description

用于改进换能器动力学特性的方法和系统
技术领域
本公开总体上涉及改进换能器,例如触觉换能器的动力学特性。
背景技术
振动-触觉换能器,例如线性共振致动器(LRA)广泛应用于诸如移动电话之类的便携式设备,以向用户产生振动反馈。以各种形式的振动-触觉反馈给用户的皮肤造成不同的触感,并且可以在用于现代设备的人-机交互中发挥日益重要的作用。
LRA可以被建模为质量-弹簧机电振动系统。当采用适当设计或控制的驱动信号驱动时,LRA可以生成特定期望形式的振动。例如,用户手指上的急剧且确切的振动模式可以用于产生模拟机械按钮点击的感觉。这种确切的振动然后可以用作虚拟开关以取代机械按钮。
图1示出了设备100中的振动-触觉系统的示例。设备100可以包括控制器101,其被配置为控制所施加到放大器102的信号。然后,放大器102可以基于信号来驱动触觉换能器103。控制器101可以由触发器触发以输出信号。触发器可以例如包括设备100的屏幕或虚拟按钮上的压力传感器或力传感器。
在各种形式的振动-触觉反馈之中,长时间持续的音调振动可以在通知设备用户某些预定义事件(诸如来电或消息、紧急警报以及定时器警告等)方面上发挥重要作用。为了有效地生成音调振动通知,可能期望以其共振频率来操作触觉致动器。
触觉换能器的共振频率f0可以近似估计为:
Figure BDA0003287843460000011
其中,C是弹簧系统的柔量,并且M是等效移动质量,其可以基于触觉换能器中的实际移动部分和持有触觉换能器的便携式设备的质量两者来确定。
由于单独的触觉换能器中样本-样本的变化、移动设备装配的变化、由老化所引起的时间分量的改变、以及诸如用户抓握设备的各种不同强度之类的使用条件,触觉换能器的振动共振可能时不时地变化。
图2A示出了被建模为线性系统的线性共振致动器(LRA)的示例。LRA是非线性分量,其取决于例如施加的电压电平、工作温度和工作频率,行为可能会有所不同。然而,这些分量可以被建模为特定条件内的线性分量。
图2B示出了被建模为线性系统的LRA的示例,所述线性系统包括LRA的质量-弹簧系统201的电气等效模型。在该示例中,LRA被建模为具有电气和机械元件的三阶系统。具体地,Re和Le分别是线圈-磁体系统中的DC电阻和线圈电感;并且Bl是线圈的磁力因数。驱动放大器输出具有输出阻抗Ro的电压波形V(t)。端电压VT(t)可以跨触觉换能器的端子之间感测。质量-弹簧系统201以速度u(t)运动。
电磁负载诸如LRA可以具有其阻抗ZLRA被视为线圈阻抗Zcoil与机械阻抗Zmech之和的特征:
ZLRA=Zcoil+Zmech (2)
反过来,线圈阻抗Zcoil又可以包括与电感Le串联的直流(DC)电阻Re:
Zcoil=Re+s*Le (3)
机械阻抗Zmech可以由下列三个参数界定,包括:共振时的电阻RRES,其表示代表了触觉换能器的质量-弹簧系统的机械摩擦的电阻;电容CMES,其表示代表了触觉换能器的质量-弹簧系统的等效移动质量M的电容;以及电感LCES,其代表触觉换能器的质量-弹簧系统的柔量C。总机械阻抗的电气等效是RRES、CMES、LCES的并联连接。这种并联连接的拉普拉斯(Laplace)变换由如下描述:
Figure BDA0003287843460000021
触觉换能器的共振频率f0可以如下表示为:
Figure BDA0003287843460000022
LRA的品质因数Q可以如下表示为:
Figure BDA0003287843460000031
参考等式(6),其可能表现得不直观,在于其表达式涉及描述电阻Re与RRES的并联连接的子表达式(即,
Figure BDA0003287843460000032
),而在图2B中,这些电阻示出为串联连接。然而,这种情况可能是驱动电压Ve在振荡,但然后突然关闭且变为零。图2B中示出的电压放大器可以被视为具有较低的源阻抗,理想地为零源阻抗。在这些条件下,当驱动电压Ve变为零时,电压放大器有效地从电路中消失。在这时,图2B中的电阻Re的最顶部端子如电阻RRES的最底部端子一样接地,并且因此如等式(6)中所反映的,电阻Re和RRES确实并联连接。
电磁换能器诸如LRA或微型扬声器可能具有较慢的响应时间。图3是LRA的示例响应的曲线图,其描绘了到LRA的示例驱动信号、流经LRA的电流以及LRA的反电动势(反EMF),其中这种反电动势可以与换能器的移动元件(例如线圈或磁体)的速度成比例。如图3所示,在能量被传递到LRA时,反EMF的启动时间可能较慢,并且随着存储在LRA中的机械能放电,反电动势可能会在驱动信号已经结束之后出现一些“嗡嗡”的振铃。在触觉LRA的背景下,这种行为特性可能导致“稠糊的”感觉的点击或脉冲,而不是“清脆的”触觉响应。因此,可能期望LRA而是具有类似于图4中所示的那种响应,图4中在驱动信号已经结束之后存在最小的振铃,并且其可以在触觉的背景下提供更“清脆的”触觉响应。因此,可能期望施加处理到驱动信号,使得在将处理的驱动信号施加到换能器时,换能器的速度或反电动势更紧密接近图4中的换能器的速度或反电动势。
发明内容
根据本公开的教导,可以减少或消除与电磁负载的不理想动力学特性相关联的不足和问题。
根据本公开的实施例,一种系统可以包括信号发生器,其被配置为生成原始波形信号;以及建模子系统,其被配置为实施仿真虚拟电磁负载的电磁负载的离散时间模型,并且进一步被配置为通过下列方式,修改原始波形信号以生成用于驱动电磁负载的波形信号:修改虚拟电磁负载,以具有期望特性;将离散时间模型施加到原始波形信号以生成用于驱动电磁负载的波形信号;并且将波形信号施加到电磁负载。
根据本公开的这些以及其它实施例,一种方法可以包括实施仿真虚拟电磁负载的电磁负载的离散时间模型;以及通过下列方式,修改原始波形信号以生成用于驱动电磁负载的波形信号:修改虚拟电磁负载,以具有期望特性;将离散时间模型施加到原始波形信号,以生成用于驱动电磁负载的波形信号;并且将波形信号施加到电磁负载。
根据本公开的这些以及其它实施例,一种主机设备可以包括电磁负载;信号发生器,其被配置为生成原始波形信号;以及建模子系统,其被配置为实施仿真虚拟电磁负载的电磁负载的离散时间模型,并且进一步被配置为通过下列方式,修改原始波形信号,以生成用于驱动电磁负载的波形信号:修改虚拟电磁负载,以具有期望特性;将离散时间模型施加到原始波形信号,以生成用于驱动电磁负载的波形信号;并且将波形信号施加到电磁负载。
从本文所包括的附图、说明书和权利要求书中来看,本公开的技术优势对于本领域普通技术人员而言将会是显而易见的。至少通过权利要求书中特别指出的元件、特征以及组合,将会完成和实现实施例的目的和优点。
应当理解的是,前面的总体描述和下面的详细描述两者都是示例和说明性的,并非是对本公开中所阐述的权利要求书的限制。
附图说明
本实施例及其优点可以通过参考与附图结合的下述说明书,获得更完整的理解,其中类似的附图标记指示类似的特征,并且其中:
图1示出了如本领域中公知的设备中的振动-触觉系统的示例;
图2A和2B各自示出了如本领域中公知的被建模为线性系统的线性共振致动器(LRA)的示例;
图3示出了如本领域中公知的电磁负载的示例波形的曲线图;
图4示出了根据本公开的实施例的电磁负载的理想示例波形的曲线图;
图5示出了根据本公开的实施例的用于改进换能器动力学特性的示例系统;以及
图6示出了根据本公开的实施例的被建模为线性系统并且包括负电阻的线性共振致动器(LRA)的示例。
具体实施方式
以下说明书阐述了根据本公开的示例实施例。进一步的示例实施例和实施方式对于本领域普通技术人员而言将是显而易见的。此外,本领域普通技术人员将认识到可以应用各种等效技术来代替,或结合以下讨论的实施例,并且所有的这类等效技术应当被视为被涵盖在本公开中。
各种电子器件设备或智能设备可以具有换能器、扬声器、以及声输出换能器,例如用于将适当的电气驱动信号转换为声输出(诸如声压波或机械振动)的任何换能器。例如,许多电子器件设备可以包括一个或多个扬声器或扩音器,以用于生成声音,例如用于音频内容、语音通信的回放和/或用于提供可听通知。
这种扬声器或扩音器可以包括电磁致动器,例如音圈电机,其机械耦合到柔性膜片(例如常规的扩音器纸盆),或其机械耦合到设备的表面(例如移动设备的玻璃屏幕)。一些电子器件设备还可以包括能够生成超声波的声输出换能器,例如用于接近检测式的应用和/或机器-机器的通信。
附加地或可替代地,许多电子器件设备可以包括更专用的声输出换能器,例如触觉换能器,其被定制为生成振动以用于给用户提供触觉控制反馈或通知。附加地或可替代地,电子器件设备可以具有连接器例如插座,以用于与附件装置的对应连接器进行可拆卸的接合连接,并且可以被布置为向连接器提供驱动信号以便在连接时驱动上述类型的附件装置的一个或多个中的换能器。因此,这种电子器件设备将包括驱动电路系统,以用于采用适当的驱动信号驱动主机设备的换能器或连接附件。对于声换能器或触觉换能器,驱动信号将生成模拟时变电压信号,例如时变波形。
图3所示的问题可能由具有高品质因数Q的换能器301造成,其在换能器的共振频率f0处具有阻抗的尖峰。
图5示出了根据本公开的实施例的用于改进电磁负载的动力学特性的示例系统300。在一些实施例中,系统300可以对包括系统300和触觉换能器301的主机设备是不可或缺的。这类设备可以包括但不限于:移动设备、家用电器、车辆、和/或包括人-机界面的各种其它系统、设备或装置。如以下更详细地描述,系统300可以实施负阻抗滤波器326以施加原始换能器驱动信号,这可以降低换能器的有效品质因数Q,反过来这又可以减少启动时间并且最小化在原始换能器驱动信号已经结束之后发生的振铃。换能器的质量因数Q可以如下表示为:
Figure BDA0003287843460000061
在等式(7)中,随着DC电阻Re增加,分子项RRES*Re比分母项RRES+Re增加得更为迅速。所以,品质因数QLRA通常随着DC电阻Re的增加而增加。因此,系统300可以最小化品质因数q的一种方式是有效地减少DC电阻Re。在一些实施例中,系统300可以理想地将有效DC电阻Re减少至在换能器301中发生临界阻尼的点。
图6示出了根据本公开的实施例,被建模为包括电气分量602和机械分量604的电气模型并且包括所插入与触觉换能器301串联的具有负阻抗Re_neg的负电阻电阻器606的线性系统的触觉换能器301的示例。增加负阻抗Re_neg可以降低品质因数QLRA,因为实际上其从DC电阻Re中减去从而减少了总DC电阻抗。
实际上,不存在负电阻器。反而,负阻抗滤波器326可以包括数字滤波器,其被配置为基本上表现得类似图6所示的电路,其包括与触觉换能器301的数学模型串联的负阻抗Re_neg的数学模型。在工作中,负阻抗滤波器326实际上可以计算电压Vm,事实上如果可能放置具有负阻抗Re_neg的物理电阻器与触觉传感器301相串联,所述电压Vm将发生在如图6所示的负阻抗Re_neg与DC电阻Re的结点处。计算的电压Vm然后可以用于驱动触觉传感器301。
从图6的检测中来看,电压Vm与驱动电压Ve之间的拉普拉斯(Laplace)变换关系可以由下式给出:
Figure BDA0003287843460000062
等式(8)实际上是输出给定输入Ve的Vm的分压器。负阻抗滤波器326可以是数字滤波器,其实施如下的传递函数的数字版本:
Figure BDA0003287843460000071
在系统300中,由脉冲发生器322所生成并且被驱动到负阻抗滤波器326的原始波形信号x′(t)可以对应于图6所示的驱动电压Ve的数字表示。由负阻抗滤波器326所生成的波形信号x(t)可以依次对应于电压Vm。电压Vm可以被输入到放大器306,其依次可以驱动触觉传感器301。
在一些实施例中,负阻抗Re_neg可以如下表示为DC电阻Re中的一小部分:
Re_neg=Re*Re_cancel (10)
其中因数Re_cancel可以包括0与1之间的无单位数值,并且可以是先验选择,其表示由负阻抗滤波器326所抵消的DC电阻Re中的一小部分。
负阻抗326可以采用对应于等式(9)的传递函数来实施数字滤波器。假设负阻抗Re_neg由等式(10)给定,则将负阻抗滤波器326实施为数字滤波器可能需要换能器阻抗ZLRA、DC电阻Re和用于因数Re_cancel的先验选择的数字估计。
负阻抗滤波器传递函数可以是具有Z变换的三阶数字滤波器,如下表示为:
Figure BDA0003287843460000072
负阻抗滤波器326的系数b0_nif、b1_nif、b2_nif、b3_nif、a1_nif、a2_nif和a3_nif可以具体表现关于换能器阻抗ZLRA、DC电阻Re和因数Re_cancel的信息。
在于2019年3月29日提交的美国临时专利申请序列号62/826,388以及要求保护其优先权权益的任何申请中,描述了用于在线实时估计触觉换能器阻抗ZLRA的参数的示例方法和系统,所有这些以其整体通过引用并入本文,并且在本文中可以被称为“估计专利申请”,并且以其整体通过引用并入。
在“估计专利申请”中,描述了一种方法,其将估计问题分为一方面估计线圈阻抗Zcoil=Re+Le*s,和另一方面估计机械阻抗Zmech。具体地,机械阻抗Zmech的电气等效可以使用最小二乘估计来估计为二阶系统,其然后被放置与线圈阻抗Zcoil串联以确定三阶触觉换能器阻抗ZLRA。在“估计专利申请”中,二阶机械阻抗Zmech从三个最小二乘参数估计g、a1和a2中来估计。然后,完整的触觉换能器阻抗ZLRA可以从这三个参数加上单独估计的DC线圈电阻Re和线圈电感Le中来估计。
Figure BDA0003287843460000081
是传递函数,其可以描述采用电流作为输入并且产生电压作为输出的滤波器。然而,期望找到用于描述采用Ve(z)=VLRA(z)作为输入并且产生电压Vm(z)作为输出的分压器的负阻抗滤波器326中的参数b0_nif、b1_nif、b2_nif、b3_nif、a1_nif、a2_nif和a3_nif。通过使用以上等式(9)以及获知单独估计的DC线圈电阻Re(例如,其可以假设线圈电感Le通过实验室测量或其它方式固定或先验估计),则可以提供用于负阻抗滤波器326的表达式。将用于来自“估计专利申请”中的涉及g、a1、a2和Re的触摸换能器阻抗ZLRA的表达式代入以上等式(9),并且应用双线性变换以从连续时间转换为离散(数字)时间,则用于参数b0_nif、b1_nif、b2_nif、b3_nif、a1_nif、a2_nif和a3_nif的表达式可以被推导用于负阻抗滤波器326。电感Le_nrm和阻抗Zfb可以如下界定为:
Le_nrm=2*Le*fs;
Zfb=Re_cancel*Re;
用于负阻抗滤波器326的非归一化系数可以如下界定为:
b0_nif=-Le_nrm-Re–g;
b1_nif=Le_nrm-Re-g-Le_nrm*a1-Re*a1;
b2_nif=g+Le_nrm*a1-Le_nrm*a2-Re*a1-Re*a2;
b3_nif=g+Le_nrm*a2-Re*a2;
a0_nif=Zfb-Le_nrm-Re–g;
a1_nif=Zfb+Le_nrm-Re-g+Zfb*a1-Le_nrm*a1-Re*a1;
a2_nif=g+Zfb*a1+Zfb*a2+Le_nrm*a1-Le_nrm*a2-Re*a1-Re*a2;以及
a3_nif=g+Zfb*a2+Le_nrm*a2-Re*a2。
所有这些表达式可以进一步通过将上述系数除以a0_nif来归一化,以得到负阻抗滤波器326的最终参数系数b0_nif、b1_nif、b2_nif、b3_nif、a1_nif、a2_nif和a3_nif。
负阻抗滤波器326的传递函数可以是具有z变换的三阶数字滤波器,其如下表示为:
Figure BDA0003287843460000091
其中负阻抗滤波器326的系数b0_nif、b1_nif、b2_nif、b3_nif、a1_nif、a2_nif和a3_nif具体表现关于换能器阻抗ZLRA、DC电阻Re和因数Re_cancel的信息。
在一些实施例中,可以离线获知电气及电气等效换能器参数Re、Le、RRES、CMES、LCES。这些知识可以源于换能器设备的实验室测量和/或由换能器制造商所公布的数据。
用于等式(9)中给出的负阻抗滤波器326函数的传递函数的表达式是以s域拉普拉斯(Laplace)变换的形式。这种表达式可以使用任何数量的标准技术(诸如双线性变换、脉冲不变转换及其它)被转换为数字z变换。
通过将用于换能器阻抗ZLRA的等式(2)和用于负阻抗Re_neg的等式(10)代入等式(9)中,负阻抗滤波器326的传递函数可以如下表示为:
Figure BDA0003287843460000092
进一步将用于Zcoil(s)的等式(3)和用于Zmech(s)的等式(3)代入,如下给出为:
Figure BDA0003287843460000101
因此,等式(13)可以依据电气及电气等效参数Re、Le、RRES、CMES、LCES以及因数Re_cancel,提供用于负阻抗滤波器326的传递函数ZNIF(s)的拉普拉斯(Laplace)变换的表达式。为了使用双线性变换将等式(14)转换为数字滤波器z变换,可以根据下式来代入拉普拉斯变量s:
Figure BDA0003287843460000102
如果将等式(15)代入到等式(14)中,然后进行简化,则可以获得以等式(12)形式的用于数字z变换ZNIF(z)的等式,其中根据下式,依据Re、Le、RREs、CMES、LCES以及因数Re_cancel表示系数b0_nif、b1_nif、b2_nif、b3_nif、a1_nif、a2_nif和a3_nif:
b0_nif=(Re*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2);
b1_nif=(3*Re*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs-4*Lces*Le*fs2-24*Cmes*Lces*Le*Rres*fs3-4*Cmes*Lces*Re*Rres*fs2)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2);
b2_nif=-(2*Lces*Re*fs-3*Re*Rres+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-24*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs3)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2);
b3_nif=-(2*Lces*Re*fs-Re*Rres+2*Lces*Rres*fs+2*Le*Rres*fs-4*Lces*Le*fs2+8*Cmes*Lces*Le*Rres*fs3-4*Cmes*Lces*Re*Rres*fs2)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2);
a1_nif=(3*Re*Rres-3*Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs-4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs-24*Cmes*Lces*Le*Rres*fs3-4*Cmes*Lces*Re*Rres*fs2+4*Cmes*Lces*Re*Re_cancel*Rres*fs2)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2);
a2_nif=-(3*Re*Re_cancel*Rres-3*Re*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs-24*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2)
a3_nif=-(Re*Re_cancel*Rres-Re*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs-4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3-4*Cmes*Lces*Re*Rres*fs2+4*Cmes*Lces*Re*Re_cancel*Rres*fs2)/(Re*Rres-Re*Re_cancel*Rres+2*Lces*Re*fs+2*Lces*Rres*fs+2*Le*Rres*fs+4*Lces*Le*fs2-2*Lces*Re*Re_cancel*fs+8*Cmes*Lces*Le*Rres*fs3+4*Cmes*Lces*Re*Rres*fs2-4*Cmes*Lces*Re*Re_cancel*Rres*fs2)
在其中离线获得参数Re、Le、RRES、CMES、LCES以及因数Re_cancel的实施例中,以上表达式可以用于计算用于负阻抗滤波器326的系数。
虽然前面讨论了对线性电磁负载的应用,但是理解的是,与所公开的那些相类似或完全相同的系统和方法可以应用到其它线性或非线性系统。
此外,虽然前面考虑了使用负阻抗滤波器以实施LRA的模型,但是在一些实施例中,LRA的数学等效可以用来代替模型。
因此,使用上述系统和方法,系统(例如系统300)可以包括信号发生器(例如脉冲发生器322),其被配置为生成原始波形信号(例如原始波形信号x′(t));以及建模子系统(例如负阻抗滤波器326),其被配置为实施仿真虚拟电磁负载的电磁负载(例如触觉换能器301)的离散时间模型(例如图6所示的模型),并且进一步被配置为通过下列方式,修改原始波形信号以生成用于驱动电磁负载的波形信号(例如波形信号x(t)):修改虚拟电磁负载以具有期望特性(例如施加负电阻606);将离散时间模型施加到原始波形信号以生成用于驱动电磁负载的波形信号;并且将波形信号施加到电磁负载。
如本文中使用的,当两个或更多个元件被称为“耦合”到另一个元件时,这一术语指示这样的两个或更多个元件如适用的话,无论是间接或直接地相连接,具有中介元件与否都在进行电子通信或机械通信。
本公开涵盖本领域普通技术人员将理解的对本文中的示例实施例的所有的变化、代替、变型、更改和修改。类似地,在适当的情况下,所附权利要求书涵盖本领域普通技术人员将理解的对本文中的示例实施例的所有的变化、代替、变型、更改和修改。此外,所附权利要求书中对适配、布置、能够、配置、启用、可操作或操作为执行特定功能的装置、或者系统、或者装置或系统的组件的参考,涵盖无论其或其特定功能是否激活、打开或解锁的装置、系统或组件,只要装置、系统或组件如此适配、布置、能够、配置、启用、可操作或操作。因此,在不脱离本公开的范围的情况下,可以对本文中描述的系统、装置和方法进行修改、添加或删除。例如,可以将系统和装置中的组件进行集成或分离。此外,可以通过更多、更少或其它的组件执行本文中公开的系统和装置的操作,并且所述方法可以包括更多、更少或其它的步骤。另外,可以以任何适当的顺序执行步骤。如本文档中所使用的,“每个”是指集合中的每个元素,或集合的子集中的每个元素。
虽然以下附图中示出并且描述了示例性实施例,但是可以使用无论当前已知与否的任何数量的技术来实施本公开的原理。本公开不应当以任何方式受限于以上附图中示出并且描述的示例性实施方式和技术。
除非另外特别指出,否则附图中所描绘的物品未必是按比例绘制的。
本文中列举的所有示例和条件性语言旨在用于教学目的,以辅助读者理解由发明者促进深入本领域所贡献的本公开和概念,并且被解释为不受限于这些特别列举的示例和条件。虽然已经详细描述了本公开的实施例,但是应当理解的是,在不脱离本公开的精神和范围的情况下,可以对其进行各种变化、替换和更改。
虽然以上已经列举了具体优势,但是各种实施例可以包括具体优点中的一些、没有一个或全部。另外,对于在阅读了前面的附图和说明书之后的本领域普通技术人员而言,其它技术优势将变得显而易见。
为了帮助专利局以及本申请上所发布的任何专利的任何读者解释其中所附的权利要求书,申请人希望注意到的是,除非在特定权利要求中明确使用词语“...的手段”或“...的步骤”,否则他们并不打算任何所附权利要求或权利要求元素援引35 U.S.C.§112(f)。

Claims (21)

1.一种系统,包括:
信号发生器,其被配置为生成原始波形信号;以及
建模子系统,其被配置为实施对虚拟电磁负载进行仿真的电磁负载的离散时间模型,并且进一步被配置为通过下列方式来修改所述原始波形信号以生成用于驱动所述电磁负载的波形信号:
修改所述虚拟电磁负载,以具有期望特性;
将所述离散时间模型施加到所述原始波形信号,以生成用于驱动所述电磁负载的所述波形信号;并且
将所述波形信号施加到所述电磁负载。
2.根据权利要求1所述的系统,其中所述电磁负载是触觉换能器。
3.根据权利要求1所述的系统,其中,所述离散时间模型是基于根据实验室模拟所确定的电磁负载的一个或多个参数。
4.根据权利要求1所述的系统,其中,所述离散时间模型是基于根据在所述系统的工作期间所述一个或多个参数的实时估计所确定的电磁负载的一个或多个参数。
5.根据权利要求4所述的系统,其中,基于至少所述波形信号的瞬态的开始与所述波形信号的瞬态的结束中的宽带内容,执行所述实时估计。
6.根据权利要求4所述的系统,其中,所述建模子系统被配置为周期性地更新所述实时估计,以便实现所述期望特性。
7.根据权利要求1所述的系统,其中,所述期望特性是虚拟换能器的期望阻抗。
8.一种方法,包括:
实施对虚拟电磁负载进行仿真的电磁负载的离散时间模型;以及
通过下列方式来修改原始波形信号以生成用于驱动所述电磁负载的波形信号:
修改所述虚拟电磁负载,以具有期望特性;
将所述离散时间模型施加到所述原始波形信号,以生成用于驱动所述电磁负载的所述波形信号;并且
将所述波形信号施加到所述电磁负载。
9.根据权利要求8所述的方法,其中所述电磁负载是触觉换能器。
10.根据权利要求8所述的方法,其中,所述离散时间模型是基于根据实验室模拟所确定的电磁负载的一个或多个参数。
11.根据权利要求8所述的方法,其中,所述离散时间模型是基于根据在所述系统的工作期间所述一个或多个参数的实时估计所确定的电磁负载的一个或多个参数。
12.根据权利要求11所述的方法,其中,基于至少所述波形信号的瞬态的开始与所述波形信号的瞬态的结束中的宽带内容,执行所述实时估计。
13.根据权利要求11所述的方法,进一步包括周期性地更新所述实时估计,以便实现所述期望特性。
14.根据权利要求8所述的方法,其中所述期望特性是虚拟换能器的期望阻抗。
15.一种主机设备,包括:
电磁负载;
信号发生器,其被配置为生成原始波形信号;以及
建模子系统,其被配置为实施对虚拟电磁负载进行仿真的所述电磁负载的离散时间模型,并且进一步被配置为通过下列方式来修改所述原始波形信号以生成用于驱动所述电磁负载的波形信号:
修改所述虚拟电磁负载,以具有期望特性;
将所述离散时间模型施加到所述原始波形信号,以生成用于驱动所述电磁负载的所述波形信号;并且
将所述波形信号施加到所述电磁负载。
16.根据权利要求15所述的主机设备,其中所述电磁负载是触觉换能器。
17.根据权利要求15所述的主机设备,其中,所述离散时间模型是基于根据实验室模拟所确定的电磁负载的一个或多个参数。
18.根据权利要求15所述的主机设备,其中,所述离散时间模型是基于根据在所述系统的工作期间所述一个或多个参数的实时估计所确定的电磁负载的一个或多个参数。
19.根据权利要求18所述的主机设备,其中,基于至少所述波形信号的瞬态的开始与所述波形信号的瞬态的结束中的宽带内容,执行所述实时估计。
20.根据权利要求18所述的主机设备,其中,所述建模子系统被配置为周期性地更新所述实时估计,以便实现所述期望特性。
21.根据权利要求15所述的主机设备,其中,所述期望特性是虚拟换能器的期望阻抗。
CN202080026500.6A 2019-03-29 2020-03-26 用于改进换能器动力学特性的方法和系统 Active CN113678091B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962826388P 2019-03-29 2019-03-29
US201962826348P 2019-03-29 2019-03-29
US62/826,388 2019-03-29
US62/826,348 2019-03-29
US16/816,790 2020-03-12
US16/816,790 US11283337B2 (en) 2019-03-29 2020-03-12 Methods and systems for improving transducer dynamics
PCT/US2020/024864 WO2020205408A1 (en) 2019-03-29 2020-03-26 Methods and systems for improving transducer dynamics

Publications (2)

Publication Number Publication Date
CN113678091A true CN113678091A (zh) 2021-11-19
CN113678091B CN113678091B (zh) 2023-03-24

Family

ID=72603742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080026500.6A Active CN113678091B (zh) 2019-03-29 2020-03-26 用于改进换能器动力学特性的方法和系统

Country Status (5)

Country Link
US (2) US11283337B2 (zh)
KR (1) KR102562869B1 (zh)
CN (1) CN113678091B (zh)
GB (1) GB2596449B (zh)
WO (1) WO2020205408A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124275A1 (de) * 2016-12-13 2018-06-14 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Verfahren zur Ansteuerung einer motorischen Verschlusselementanordnung eines Kraftfahrzeugs
US10732714B2 (en) 2017-05-08 2020-08-04 Cirrus Logic, Inc. Integrated haptic system
US10832537B2 (en) 2018-04-04 2020-11-10 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
GB201817495D0 (en) 2018-10-26 2018-12-12 Cirrus Logic Int Semiconductor Ltd A force sensing system and method
US10955955B2 (en) 2019-03-29 2021-03-23 Cirrus Logic, Inc. Controller for use in a device comprising force sensors
US10992297B2 (en) 2019-03-29 2021-04-27 Cirrus Logic, Inc. Device comprising force sensors
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11283337B2 (en) * 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US10828672B2 (en) 2019-03-29 2020-11-10 Cirrus Logic, Inc. Driver circuitry
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load
US10976825B2 (en) 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
KR20220024091A (ko) 2019-06-21 2022-03-03 시러스 로직 인터내셔널 세미컨덕터 리미티드 디바이스 상에 복수의 가상 버튼을 구성하기 위한 방법 및 장치
US11250675B2 (en) * 2019-09-03 2022-02-15 Facebook Technologies, Llc Systems and methods for characterization of mechanical impedance of biological tissues
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US11662821B2 (en) 2020-04-16 2023-05-30 Cirrus Logic, Inc. In-situ monitoring, calibration, and testing of a haptic actuator
JP7475789B2 (ja) * 2020-12-25 2024-04-30 アルプスアルパイン株式会社 モータ制御装置
US11933822B2 (en) 2021-06-16 2024-03-19 Cirrus Logic Inc. Methods and systems for in-system estimation of actuator parameters
GB2621801A (en) * 2021-06-22 2024-02-21 Cirrus Logic Int Semiconductor Ltd Methods and systems for detecting and managing unexpected spectral content in an amplifier system
US11908310B2 (en) 2021-06-22 2024-02-20 Cirrus Logic Inc. Methods and systems for detecting and managing unexpected spectral content in an amplifier system
KR20240026186A (ko) 2021-06-22 2024-02-27 시러스 로직 인터내셔널 세미컨덕터 리미티드 혼합 모드 전자기계식 액츄에이터 드라이브 관리 방법 및 시스템
US11765499B2 (en) 2021-06-22 2023-09-19 Cirrus Logic Inc. Methods and systems for managing mixed mode electromechanical actuator drive
TWI784744B (zh) * 2021-09-23 2022-11-21 立錡科技股份有限公司 電子裝置及控制方法
US20230144960A1 (en) * 2021-11-09 2023-05-11 Cirrus Logic International Semiconductor Ltd. Compensating for current splitting errors in a measurement system
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748578A (en) * 1995-01-25 1998-05-05 Discovision Associates Colpitts type oscillator having reduced ringing and improved optical disc system utilizing same
US20110161537A1 (en) * 2008-09-11 2011-06-30 Electronics And Telecommunications Research Institute Method for generating electromagnetic waves using software
CN103620525A (zh) * 2011-03-09 2014-03-05 美国亚德诺半导体公司 智能线性谐振执行器控制
CN103699215A (zh) * 2012-09-27 2014-04-02 快捷半导体(苏州)有限公司 谐振驱动器与检测
CN104020844A (zh) * 2013-03-01 2014-09-03 英默森公司 具有线性共振致动器的触觉设备
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
US9329721B1 (en) * 2010-08-05 2016-05-03 Amazon Technologies, Inc. Reduction of touch-sensor interference from stable display
CN105630021A (zh) * 2015-12-31 2016-06-01 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
US20180059793A1 (en) * 2016-08-31 2018-03-01 Apple Inc. Electronic device including multi-phase driven linear haptic actuator and related methods
CN108873235A (zh) * 2017-05-15 2018-11-23 半导体组件工业公司 用于致动器控制的方法和电路

Family Cites Families (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686927A (en) 1967-03-24 1972-08-29 Bolt Beranek & Newman Vibration testing method and apparatus
JPS54131890A (en) 1978-04-05 1979-10-13 Toshiba Corp Semiconductor device
JPS58169960A (ja) 1983-02-18 1983-10-06 Nec Corp 容量素子を含む集積回路
DE3743131A1 (de) 1987-10-26 1989-05-03 Siemens Ag Anordnung zur hochaufloesenden spektroskopie
US5684722A (en) 1994-09-21 1997-11-04 Thorner; Craig Apparatus and method for generating a control signal for a tactile sensation generator
JP3295564B2 (ja) 1994-11-24 2002-06-24 株式会社テラテック アナログ・ディジタル変換器
KR19990044170A (ko) 1995-09-02 1999-06-25 헨리 에이지마 패널형 라우드스피커
US5857986A (en) 1996-05-24 1999-01-12 Moriyasu; Hiro Interactive vibrator for multimedia
JP3525015B2 (ja) 1996-10-14 2004-05-10 愛三工業株式会社 振動体駆動装置及び粉体供給装置
ATE279811T1 (de) 1997-04-02 2004-10-15 Olufsen Powerhouse A S Bang Pulzreferiertes steuerverfahren für verbesserte leistungsverstärkung eines pulsmodulierten signals
EP0913808B1 (en) * 1997-10-31 2004-09-29 Yamaha Corporation Audio signal processor with pitch and effect control
US6278790B1 (en) 1997-11-11 2001-08-21 Nct Group, Inc. Electroacoustic transducers comprising vibrating panels
CN100584107C (zh) 1998-01-16 2010-01-20 索尼公司 扬声装置及内部安装了扬声装置的电子设备
JP3397116B2 (ja) 1998-01-27 2003-04-14 ヤマハ株式会社 音響効果付与装置
US6762745B1 (en) 1999-05-10 2004-07-13 Immersion Corporation Actuator control providing linear and continuous force output
WO2001008319A1 (fr) 1999-07-28 2001-02-01 Fujitsu Limited Dispositif radio avec compensation de distorsion
DE20080209U1 (de) 1999-09-28 2001-08-09 Immersion Corp Steuerung von haptischen Empfindungen für Schnittstellenvorrichtungen mit Vibrotaktiler Rückkopplung
JP3344385B2 (ja) * 1999-10-22 2002-11-11 ヤマハ株式会社 振動源駆動装置
JP3337669B2 (ja) 1999-12-27 2002-10-21 株式会社半導体理工学研究センター 半導体集積回路
US20020018578A1 (en) 2000-08-03 2002-02-14 Paul Burton Bending wave loudspeaker
US6906697B2 (en) 2000-08-11 2005-06-14 Immersion Corporation Haptic sensations for tactile feedback interface devices
US7084854B1 (en) 2000-09-28 2006-08-01 Immersion Corporation Actuator for providing tactile sensations and device for directional tactile sensations
JP2002119912A (ja) * 2000-10-12 2002-04-23 Nec Saitama Ltd 複合音響アクチュエータ駆動回路及び携帯情報端末
US7154470B2 (en) 2001-07-17 2006-12-26 Immersion Corporation Envelope modulator for haptic feedback devices
US6661410B2 (en) 2001-09-07 2003-12-09 Microsoft Corporation Capacitive sensing and data input device power management
US7623114B2 (en) 2001-10-09 2009-11-24 Immersion Corporation Haptic feedback sensations based on audio output from computer devices
US6703550B2 (en) 2001-10-10 2004-03-09 Immersion Corporation Sound data output and manipulation using haptic feedback
US6683437B2 (en) 2001-10-31 2004-01-27 Immersion Corporation Current controlled motor amplifier system
US6659208B2 (en) 2002-01-15 2003-12-09 Fairway Golf Cars, Llc Powered golf caddy vehicle
US7158122B2 (en) 2002-05-17 2007-01-02 3M Innovative Properties Company Calibration of force based touch panel systems
US11275405B2 (en) 2005-03-04 2022-03-15 Apple Inc. Multi-functional hand-held device
AU2003286504A1 (en) 2002-10-20 2004-05-13 Immersion Corporation System and method for providing rotational haptic feedback
US7277678B2 (en) 2002-10-28 2007-10-02 Skyworks Solutions, Inc. Fast closed-loop power control for non-constant envelope modulation
US6784740B1 (en) 2002-12-20 2004-08-31 Atheros Communications, Inc. Power amplifier
US20050031140A1 (en) 2003-08-07 2005-02-10 Tymphany Corporation Position detection of an actuator using a capacitance measurement
US7742036B2 (en) 2003-12-22 2010-06-22 Immersion Corporation System and method for controlling haptic devices having multiple operational modes
US7791588B2 (en) 2003-12-22 2010-09-07 Immersion Corporation System and method for mapping instructions associated with haptic feedback
US7336725B2 (en) * 2004-03-03 2008-02-26 Powerwave Technologies, Inc. Digital predistortion system and method for high efficiency transmitters
US7392066B2 (en) 2004-06-17 2008-06-24 Ixi Mobile (R&D), Ltd. Volume control system and method for a mobile communication device
US7765333B2 (en) 2004-07-15 2010-07-27 Immersion Corporation System and method for ordering haptic effects
JP2006048302A (ja) 2004-08-03 2006-02-16 Sony Corp 圧電複合装置、その製造方法、その取扱方法、その制御方法、入出力装置及び電子機器
KR100883010B1 (ko) 2004-11-30 2009-02-12 임머숀 코퍼레이션 진동촉각 햅틱 효과를 발생시키는 공진 디바이스를제어하기 위한 시스템 및 방법
WO2006059372A1 (ja) 2004-11-30 2006-06-08 Fujitsu Limited 信号取出回路およびそれを有する歪み補償増幅器
US7333604B2 (en) 2005-01-10 2008-02-19 Infone Tech, Ltd. Adaptive notification of an incoming call in a mobile phone
US20060277466A1 (en) 2005-05-13 2006-12-07 Anderson Thomas G Bimodal user interaction with a simulated object
US20060284856A1 (en) 2005-06-10 2006-12-21 Soss David A Sensor signal conditioning in a force-based touch device
US7199964B2 (en) * 2005-06-29 2007-04-03 Seagate Technology Llc Adaptive voltage-mode controller for a voice coil motor
US8572296B2 (en) 2005-06-30 2013-10-29 Freescale Semiconductor, Inc. Device and method for arbitrating between direct memory access task requests
US8700791B2 (en) 2005-10-19 2014-04-15 Immersion Corporation Synchronization of haptic effect data in a media transport stream
US7979146B2 (en) 2006-04-13 2011-07-12 Immersion Corporation System and method for automatically producing haptic events from a digital audio signal
JP5364233B2 (ja) * 2006-09-27 2013-12-11 富士通株式会社 電磁界シミュレータおよび電磁界シミュレートプログラム
US9097639B2 (en) 2012-12-28 2015-08-04 General Electric Company Systems for analysis of fluids
US8150044B2 (en) 2006-12-31 2012-04-03 Personics Holdings Inc. Method and device configured for sound signature detection
US8136952B2 (en) 2007-02-20 2012-03-20 Canon Kabushiki Kaisha Image capturing apparatus
US8098234B2 (en) 2007-02-20 2012-01-17 Immersion Corporation Haptic feedback system with stored effects
JP2008219202A (ja) 2007-02-28 2008-09-18 National Institute Of Information & Communication Technology 音響振動再生装置
US20080293453A1 (en) 2007-05-25 2008-11-27 Scott J. Atlas Method and apparatus for an audio-linked remote indicator for a wireless communication device
US8988359B2 (en) 2007-06-19 2015-03-24 Nokia Corporation Moving buttons
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
US10126942B2 (en) 2007-09-19 2018-11-13 Apple Inc. Systems and methods for detecting a press on a touch-sensitive surface
US20090079690A1 (en) 2007-09-21 2009-03-26 Sony Computer Entertainment America Inc. Method and apparatus for enhancing entertainment software through haptic insertion
US20090088220A1 (en) 2007-10-01 2009-04-02 Sony Ericsson Mobile Communications Ab Cellular terminals and other electronic devices and methods using electroactive polymer transducer indicators
US9019087B2 (en) 2007-10-16 2015-04-28 Immersion Corporation Synchronization of haptic effect data in a media stream
US8325144B1 (en) 2007-10-17 2012-12-04 Immersion Corporation Digital envelope modulator for haptic feedback devices
US20090102805A1 (en) 2007-10-18 2009-04-23 Microsoft Corporation Three-dimensional object simulation using audio, visual, and tactile feedback
US7911328B2 (en) 2007-11-21 2011-03-22 The Guitammer Company Capture and remote reproduction of haptic events in synchronous association with the video and audio capture and reproduction of those events
KR100941638B1 (ko) 2007-12-18 2010-02-11 한국전자통신연구원 접촉 행동 인식 시스템 및 그 방법
US10969917B2 (en) * 2008-01-30 2021-04-06 Apple Inc. Auto scanning for multiple frequency stimulation multi-touch sensor panels
US9495013B2 (en) 2008-04-24 2016-11-15 Oblong Industries, Inc. Multi-modal gestural interface
WO2010009152A1 (en) 2008-07-15 2010-01-21 Immersion Corporation Systems and methods for shifting haptic feedback function between passive and active modes
EP3654141A1 (en) 2008-10-06 2020-05-20 Samsung Electronics Co., Ltd. Method and apparatus for displaying graphical user interface depending on a user's contact pattern
US9400555B2 (en) 2008-10-10 2016-07-26 Internet Services, Llc System and method for synchronization of haptic data and media data
US20100141408A1 (en) 2008-12-05 2010-06-10 Anthony Stephen Doy Audio amplifier apparatus to drive a panel to produce both an audio signal and haptic feedback
US7843277B2 (en) 2008-12-16 2010-11-30 Immersion Corporation Haptic feedback generation based on resonant frequency
CN102577434A (zh) 2009-04-10 2012-07-11 伊默兹公司 用于声-触扬声器的系统和方法
US8068025B2 (en) 2009-05-28 2011-11-29 Simon Paul Devenyi Personal alerting device and method
KR20110019144A (ko) 2009-08-19 2011-02-25 엘지전자 주식회사 진동 패턴 발생 장치 및 방법
JP2011057000A (ja) 2009-09-07 2011-03-24 Yamaha Corp 音響共鳴装置
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
US8902050B2 (en) 2009-10-29 2014-12-02 Immersion Corporation Systems and methods for haptic augmentation of voice-to-text conversion
US20120011436A1 (en) 2009-11-02 2012-01-12 Motorola, Inc. Devices and Methods of a User Interface for a Small Display Screen
US8633916B2 (en) 2009-12-10 2014-01-21 Apple, Inc. Touch pad with force sensors and actuator feedback
KR101642149B1 (ko) 2010-01-05 2016-07-25 삼성전자주식회사 터치스크린을 구비한 휴대용 단말기의 햅틱 피드백 제어 방법 및 장치
US8432368B2 (en) 2010-01-06 2013-04-30 Qualcomm Incorporated User interface methods and systems for providing force-sensitive input
EP2524288A1 (en) 2010-01-13 2012-11-21 Elo Touch Solutions, Inc. Noise reduction in electronic device with touch sensitive surface
US20110187651A1 (en) 2010-02-03 2011-08-04 Honeywell International Inc. Touch screen having adaptive input parameter
JP5841713B2 (ja) 2010-07-27 2016-01-13 京セラ株式会社 触感呈示装置及び触感呈示装置の制御方法
US9549252B2 (en) * 2010-08-27 2017-01-17 Nokia Technologies Oy Microphone apparatus and method for removing unwanted sounds
US9262002B2 (en) 2010-11-03 2016-02-16 Qualcomm Incorporated Force sensing touch screen
US20120112894A1 (en) 2010-11-08 2012-05-10 Korea Advanced Institute Of Science And Technology Haptic feedback generator, portable device, haptic feedback providing method using the same and recording medium thereof
US8797830B2 (en) 2011-02-02 2014-08-05 General Monitors, Inc. Explosion-proof acoustic source for hazardous locations
US8717152B2 (en) 2011-02-11 2014-05-06 Immersion Corporation Sound to haptic effect conversion system using waveform
US9448626B2 (en) 2011-02-11 2016-09-20 Immersion Corporation Sound to haptic effect conversion system using amplitude value
ES2773295T3 (es) 2011-02-14 2020-07-10 Siemens Ag Controlador para un convertidor de alimentación y método de funcionamiento del mismo
EP2489442A1 (en) 2011-02-18 2012-08-22 Aernnova Engineering Solutions Iberica Integrated phased array transducer, system and methodology for structural health monitoring of aerospace structures
KR20120126446A (ko) 2011-05-11 2012-11-21 엘지전자 주식회사 입력된 오디오 신호로부터 진동 피드백을 생성하기 위한 장치
US9083821B2 (en) 2011-06-03 2015-07-14 Apple Inc. Converting audio to haptic feedback in an electronic device
US9124961B2 (en) 2011-07-15 2015-09-01 Mediatek Inc. Control device for driving multi-function speaker by using digital mixing scheme and related control method thereof
US8723824B2 (en) 2011-09-27 2014-05-13 Apple Inc. Electronic devices with sidewall displays
TW201329815A (zh) 2011-10-14 2013-07-16 Nextinput Inc 力敏感介面裝置及使用其之方法
US20130141382A1 (en) 2011-12-01 2013-06-06 Martin John Simmons Touch Sensor With Force Sensing
GB201200587D0 (en) 2012-01-13 2012-02-29 Hiwave Technologies Uk Ltd Haptic feedback and pressure sensing
US10632040B2 (en) 2012-02-29 2020-04-28 Frederick Muench Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
US9715276B2 (en) 2012-04-04 2017-07-25 Immersion Corporation Sound to haptic effect conversion system using multiple actuators
US20130275058A1 (en) 2012-04-13 2013-10-17 Google Inc. Apparatus and method for a pressure sensitive device interface
EP3444711A1 (en) 2012-04-19 2019-02-20 Nokia Technologies Oy A display apparatus
US9117449B2 (en) 2012-04-26 2015-08-25 Nuance Communications, Inc. Embedded system for construction of small footprint speech recognition with user-definable constraints
EP2845191B1 (en) 2012-05-04 2019-03-13 Xmos Inc. Systems and methods for source signal separation
WO2013169300A1 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Thresholds for determining feedback in computing devices
US8847741B2 (en) 2012-05-16 2014-09-30 Immersion Corporation System and method for display of multiple data channels on a single haptic display
JP5822023B2 (ja) 2012-06-11 2015-11-24 富士通株式会社 電子機器、振動発生プログラム、及び振動パターン利用システム
US9063570B2 (en) 2012-06-27 2015-06-23 Immersion Corporation Haptic feedback control system
US9030428B2 (en) 2012-07-11 2015-05-12 Immersion Corporation Generating haptic effects for dynamic events
WO2014018086A1 (en) 2012-07-26 2014-01-30 Changello Enterprise Llc Force correction on multiple sense elements
CN104602748B (zh) 2012-08-16 2016-06-15 行为研究株式会社 振动处理装置及方法
US20140056461A1 (en) 2012-08-21 2014-02-27 Immerz, Inc. Systems and methods for a vibrating input device
US9368005B2 (en) 2012-08-31 2016-06-14 Immersion Corporation Sound to haptic effect conversion system using mapping
WO2014049398A1 (en) 2012-09-28 2014-04-03 Nokia Corporation Apparatus displaying animated image combined with tactile output
RU2568314C2 (ru) * 2012-10-19 2015-11-20 Александр Яковлевич Богданов Усилитель и способ коррекции амплитудно-частотной характеристики
US9092059B2 (en) 2012-10-26 2015-07-28 Immersion Corporation Stream-independent sound to haptic effect conversion system
US9274602B2 (en) 2012-10-30 2016-03-01 Texas Instruments Incorporated Haptic actuator controller
US20140119244A1 (en) 2012-11-01 2014-05-01 Research In Motion Limited Cognitive radio rf front end
US8947216B2 (en) 2012-11-02 2015-02-03 Immersion Corporation Encoding dynamic haptic effects
US9122330B2 (en) 2012-11-19 2015-09-01 Disney Enterprises, Inc. Controlling a user's tactile perception in a dynamic physical environment
KR102141044B1 (ko) 2012-12-03 2020-08-04 삼성전자주식회사 복수의 터치스크린을 가지는 휴대 장치 및 복수의 터치스크린을 가지는 휴대 장치의 사운드 출력방법
KR102091077B1 (ko) 2012-12-14 2020-04-14 삼성전자주식회사 입력 유닛의 피드백을 제어하는 휴대 단말 및 방법과, 이를 제공하는 상기 입력 유닛 및 방법
WO2014094283A1 (en) 2012-12-20 2014-06-26 Intel Corporation Touchscreen including force sensors
US9128523B2 (en) 2012-12-20 2015-09-08 Amazon Technologies, Inc. Dynamically generating haptic effects from audio data
CN103165328B (zh) 2013-02-25 2016-06-08 苏州达方电子有限公司 力回馈键盘结构
US9117347B2 (en) 2013-02-25 2015-08-25 Nokia Technologies Oy Method and apparatus for a flexible housing
EP2962172B1 (en) 2013-03-01 2020-04-29 Nokia Technologies Oy Control apparatus for a tactile audio display
US9715300B2 (en) 2013-03-04 2017-07-25 Microsoft Technology Licensing, Llc Touch screen interaction using dynamic haptic feedback
US8754757B1 (en) 2013-03-05 2014-06-17 Immersion Corporation Automatic fitting of haptic effects
US11393461B2 (en) 2013-03-12 2022-07-19 Cerence Operating Company Methods and apparatus for detecting a voice command
KR101666393B1 (ko) 2013-03-27 2016-10-14 한국전자통신연구원 음향효과를 이용한 촉각효과 재생 장치 및 방법
US9519346B2 (en) 2013-05-17 2016-12-13 Immersion Corporation Low-frequency effects haptic conversion system
US9274603B2 (en) 2013-05-24 2016-03-01 Immersion Corporation Method and apparatus to provide haptic feedback based on media content and one or more external parameters
US9196135B2 (en) 2013-06-28 2015-11-24 Immersion Corporation Uniform haptic actuator response with a variable supply voltage
US9976713B2 (en) * 2013-07-05 2018-05-22 Qualcomm Incorporated Apparatus and method for providing a frequency response for audio signals
DE102013012811B4 (de) 2013-08-01 2024-02-22 Wolfgang Klippel Anordnung und Verfahren zur Identifikation und Korrektur der nichtlinearen Eigenschaften elektromagnetischer Wandler
US9898085B2 (en) 2013-09-06 2018-02-20 Immersion Corporation Haptic conversion system using segmenting and combining
US9158379B2 (en) 2013-09-06 2015-10-13 Immersion Corporation Haptic warping system that transforms a haptic signal into a collection of vibrotactile haptic effect patterns
US9245429B2 (en) 2013-09-06 2016-01-26 Immersion Corporation Haptic warping system
US9619980B2 (en) 2013-09-06 2017-04-11 Immersion Corporation Systems and methods for generating haptic effects associated with audio signals
US10162416B2 (en) 2013-09-06 2018-12-25 Immersion Corporation Dynamic haptic conversion system
US9520036B1 (en) 2013-09-18 2016-12-13 Amazon Technologies, Inc. Haptic output generation with dynamic feedback control
US9213408B2 (en) 2013-10-08 2015-12-15 Immersion Corporation Generating haptic effects while minimizing cascading
US9164587B2 (en) 2013-11-14 2015-10-20 Immersion Corporation Haptic spatialization system
US9349378B2 (en) * 2013-11-19 2016-05-24 Dolby Laboratories Licensing Corporation Haptic signal synthesis and transport in a bit stream
CN105745031A (zh) 2013-12-06 2016-07-06 富士通株式会社 驱动装置、电子设备、驱动控制程序、以及驱动信号的生成方法
US9248840B2 (en) 2013-12-20 2016-02-02 Immersion Corporation Gesture based input system in a vehicle with haptic feedback
US10831318B2 (en) 2013-12-24 2020-11-10 Intel Corporation Adaptive enclosure for a mobile computing device
US10986454B2 (en) 2014-01-06 2021-04-20 Alpine Electronics of Silicon Valley, Inc. Sound normalization and frequency remapping using haptic feedback
TWI535304B (zh) 2014-01-23 2016-05-21 立錡科技股份有限公司 揚聲器的磁力強度參數的偵測裝置及方法
US9338533B2 (en) * 2014-03-11 2016-05-10 Texas Instruments Incorporated Drivers and methods of driving transducers
US9946348B2 (en) 2014-03-21 2018-04-17 Immersion Corporation Automatic tuning of haptic effects
US9959744B2 (en) 2014-04-25 2018-05-01 Motorola Solutions, Inc. Method and system for providing alerts for radio communications
US9928728B2 (en) 2014-05-09 2018-03-27 Sony Interactive Entertainment Inc. Scheme for embedding a control signal in an audio signal using pseudo white noise
KR102229137B1 (ko) 2014-05-20 2021-03-18 삼성디스플레이 주식회사 표시장치
US9389263B2 (en) * 2014-06-05 2016-07-12 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using measured and expected voltage
US9588586B2 (en) 2014-06-09 2017-03-07 Immersion Corporation Programmable haptic devices and methods for modifying haptic strength based on perspective and/or proximity
US9696859B1 (en) 2014-06-17 2017-07-04 Amazon Technologies, Inc. Detecting tap-based user input on a mobile device based on motion sensor data
WO2016007426A1 (en) 2014-07-07 2016-01-14 Immersion Corporation Second screen haptics
CN204903757U (zh) 2014-07-11 2015-12-23 菲力尔系统公司 声纳系统
KR101641418B1 (ko) 2014-07-25 2016-07-20 포항공과대학교 산학협력단 청각 주목도에 기반한 햅틱 신호 생성 방법 및 이를 위한 장치
US9921678B2 (en) 2014-08-05 2018-03-20 Georgia Tech Research Corporation Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification
EP2988528B1 (en) 2014-08-18 2019-01-02 Nxp B.V. Voice coil motor and loudspeaker controller
KR102143310B1 (ko) 2014-09-02 2020-08-28 애플 인크. 햅틱 통지
JP6501487B2 (ja) 2014-10-27 2019-04-17 キヤノン株式会社 超音波モータ及び超音波モータを用いた駆動装置
KR102292385B1 (ko) 2014-11-19 2021-08-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9846484B2 (en) 2014-12-04 2017-12-19 Immersion Corporation Systems and methods for controlling haptic signals
US10073523B2 (en) 2014-12-23 2018-09-11 Immersion Corporation Position control of a user input element associated with a haptic output device
JP2018506802A (ja) 2015-02-25 2018-03-08 イマージョン コーポレーションImmersion Corporation コンテキスト依存触覚通知フレームワークを提供するためのシステム及び方法
US9612685B2 (en) 2015-04-09 2017-04-04 Microsoft Technology Licensing, Llc Force-sensitive touch sensor compensation
CN107850964B (zh) * 2015-05-22 2021-04-02 触觉实验室股份有限公司 用于双向正交信令传感器的发送与接收系统和方法
DE112015006772T5 (de) 2015-08-05 2018-04-12 Ford Global Technologies, Llc System und Verfahren für Geräuschrichtungsdetektion in einem Fahrzeug
DK3148214T3 (da) 2015-09-15 2022-01-03 Oticon As Høreanordning der omfatter et forbedret feedback-annulleringssystem
KR20180044877A (ko) 2015-09-22 2018-05-03 임머숀 코퍼레이션 압력-기반 햅틱들
US9842476B2 (en) 2015-09-25 2017-12-12 Immersion Corporation Programmable haptic devices and methods for modifying haptic effects to compensate for audio-haptic interference
US9971407B2 (en) 2015-09-30 2018-05-15 Apple Inc. Haptic feedback for rotary inputs
US10007344B2 (en) 2015-09-30 2018-06-26 Apple Inc. Electronic device including closed-loop controller for haptic actuator and related methods
US9740245B2 (en) 2015-10-05 2017-08-22 Microsoft Technology Licensing, Llc Locking mechanism
US20170153760A1 (en) 2015-12-01 2017-06-01 Apple Inc. Gain-based error tracking for force sensing
EP3179335B1 (en) 2015-12-10 2020-03-04 Nxp B.V. Haptic feedback controller
CN105446646B (zh) 2015-12-11 2019-01-11 小米科技有限责任公司 基于虚拟键盘的内容输入方法、装置及触控设备
US20170220197A1 (en) 2016-02-02 2017-08-03 Fujitsu Ten Limited Input device, system, method of manufacturing input device and display device
US9881467B2 (en) 2016-02-22 2018-01-30 Immersion Corporation Haptic effects conflict avoidance
US10904664B2 (en) 2016-03-02 2021-01-26 SonicSensory, Inc. Device for generating chest-chamber acoustic resonance and delivering the resultant audio and haptic to headphones
US10198125B2 (en) 2016-03-22 2019-02-05 Synaptics Incorporated Force sensor recalibration
US10467123B2 (en) 2016-05-09 2019-11-05 Oracle International Corporation Compression techniques for encoding stack trace information
KR101790892B1 (ko) 2016-05-17 2017-10-26 주식회사 씨케이머티리얼즈랩 음향 신호를 촉각 신호로 변환하기 방법 및 이를 이용하는 햅틱 장치
US9965092B2 (en) 2016-05-18 2018-05-08 Apple Inc. Managing power consumption of force sensors
US10719232B2 (en) 2016-06-08 2020-07-21 Qualcomm Incorporated Providing virtual buttons in a handheld device
US10073525B2 (en) 2016-06-16 2018-09-11 Immersion Corporation Systems and methods for a low profile haptic actuator
US9886829B2 (en) 2016-06-20 2018-02-06 Immersion Corporation Systems and methods for closed-loop control for haptic feedback
JP6922908B2 (ja) 2016-07-07 2021-08-18 ソニーグループ株式会社 情報処理装置、情報処理方法、およびプログラム
US10304298B2 (en) 2016-07-27 2019-05-28 Immersion Corporation Braking characteristic detection system for haptic actuator
US20180082673A1 (en) 2016-07-28 2018-03-22 Theodore Tzanetos Active noise cancellation for defined spaces
US9697450B1 (en) 2016-07-29 2017-07-04 Alpha And Omega Semiconductor Incorporated Magnetic stripe data transmission system and method for reliable data transmission and low power consumption
US9921609B2 (en) 2016-08-02 2018-03-20 Immersion Corporation Systems and methods for deformation and haptic effects
CN106438890B (zh) 2016-09-05 2018-08-28 南京航空航天大学 电磁铁-超声换能器宏微结合的无级变速传动装置及方法
DK201670720A1 (en) 2016-09-06 2018-03-26 Apple Inc Devices, Methods, and Graphical User Interfaces for Generating Tactile Outputs
DK201670728A1 (en) 2016-09-06 2018-03-19 Apple Inc Devices, Methods, and Graphical User Interfaces for Providing Feedback During Interaction with an Intensity-Sensitive Button
WO2018049355A1 (en) 2016-09-09 2018-03-15 Sensel Inc. System for detecting and characterizing inputs on a touch sensor
WO2018053159A1 (en) 2016-09-14 2018-03-22 SonicSensory, Inc. Multi-device audio streaming system with synchronization
US10469971B2 (en) 2016-09-19 2019-11-05 Apple Inc. Augmented performance synchronization
US9929703B1 (en) 2016-09-27 2018-03-27 Cirrus Logic, Inc. Amplifier with configurable final output stage
JPWO2018061528A1 (ja) 2016-09-30 2019-07-25 ソニー株式会社 コンテンツ提供システム、制御装置及び受信装置
CN110139730B (zh) 2016-10-03 2022-09-16 卡耐基梅隆大学 触摸感测系统
JP6977312B2 (ja) 2016-10-07 2021-12-08 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム
EP3321933B1 (en) * 2016-11-14 2021-08-25 Goodix Technology (HK) Company Limited Linear resonant actuator controller
US10229565B2 (en) 2016-11-30 2019-03-12 Samsung Electronics Co., Ltd. Method for producing haptic signal and electronic device supporting the same
GB201620746D0 (en) 2016-12-06 2017-01-18 Dialog Semiconductor Uk Ltd An apparatus and method for controlling a haptic actuator
US10341767B2 (en) 2016-12-06 2019-07-02 Cirrus Logic, Inc. Speaker protection excursion oversight
US10333443B2 (en) 2016-12-06 2019-06-25 Dialog Semiconductor (Uk) Limited Apparatus and method for controlling a device
US10297120B2 (en) 2016-12-13 2019-05-21 Disney Enterprises, Inc. Haptic effect generation system
JP6588421B2 (ja) 2016-12-28 2019-10-09 任天堂株式会社 情報処理システム、情報処理プログラム、情報処理装置、および、情報処理方法
US10261685B2 (en) 2016-12-29 2019-04-16 Google Llc Multi-task machine learning for predicted touch interpretations
US20180196567A1 (en) 2017-01-09 2018-07-12 Microsoft Technology Licensing, Llc Pressure sensitive virtual keyboard
CN106950832B (zh) 2017-03-08 2020-01-31 杭州电子科技大学 一种利用空化强度反馈的超声分散控制装置
KR20180104830A (ko) 2017-03-14 2018-09-27 에스케이하이닉스 주식회사 메모리 시스템 및 이의 동작 방법
US10032550B1 (en) 2017-03-30 2018-07-24 Apple Inc. Moving-coil haptic actuator for electronic devices
US10732714B2 (en) 2017-05-08 2020-08-04 Cirrus Logic, Inc. Integrated haptic system
DK201770372A1 (en) 2017-05-16 2019-01-08 Apple Inc. TACTILE FEEDBACK FOR LOCKED DEVICE USER INTERFACES
GB2563460B (en) 2017-06-15 2021-07-14 Cirrus Logic Int Semiconductor Ltd Temperature monitoring for loudspeakers
US10498890B2 (en) 2017-07-14 2019-12-03 Motorola Mobility Llc Activating virtual buttons using verbal commands
AT15914U1 (de) 2017-07-26 2018-09-15 Epcos Ag Vorrichtung, die einen haptischen Feedback vermittelt und Bauelement mit der Vorrichtung
US10295576B2 (en) * 2017-07-26 2019-05-21 Akustica, Inc. Ratiometric biasing for high impedance capacitive sensing
US11009411B2 (en) 2017-08-14 2021-05-18 Sentons Inc. Increasing sensitivity of a sensor using an encoded signal
US10110152B1 (en) 2017-09-29 2018-10-23 Apple Inc. Integrated driver and controller for haptic engine
US10601355B2 (en) 2017-09-29 2020-03-24 Apple Inc. Closed-loop control of linear resonant actuator using back EMF and inertial compensation
GB201801661D0 (en) 2017-10-13 2018-03-21 Cirrus Logic International Uk Ltd Detection of liveness
KR102430582B1 (ko) 2017-11-28 2022-08-08 엘지디스플레이 주식회사 표시 장치
US11095264B2 (en) * 2017-12-20 2021-08-17 Dolby Laboratories Licensing Corporation Configurable modal amplifier system
US10726638B2 (en) 2017-12-21 2020-07-28 Micron Technology, Inc. Providing autonomous vehicle maintenance
US10264348B1 (en) 2017-12-29 2019-04-16 Nvf Tech Ltd Multi-resonant coupled system for flat panel actuation
US10546585B2 (en) 2017-12-29 2020-01-28 Comcast Cable Communications, Llc Localizing and verifying utterances by audio fingerprinting
US10620704B2 (en) 2018-01-19 2020-04-14 Cirrus Logic, Inc. Haptic output systems
US10455339B2 (en) 2018-01-19 2019-10-22 Cirrus Logic, Inc. Always-on detection systems
US10782785B2 (en) 2018-01-29 2020-09-22 Cirrus Logic, Inc. Vibro-haptic design and automatic evaluation of haptic stimuli
US11139767B2 (en) 2018-03-22 2021-10-05 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10795443B2 (en) 2018-03-23 2020-10-06 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10667051B2 (en) 2018-03-26 2020-05-26 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10820100B2 (en) 2018-03-26 2020-10-27 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10832537B2 (en) 2018-04-04 2020-11-10 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US10707828B2 (en) 2018-05-04 2020-07-07 Samsung Electro-Mechanics Co., Ltd. Filter including bulk acoustic wave resonator
KR20200001770A (ko) 2018-06-28 2020-01-07 주식회사 동운아나텍 액츄에이터 제어장치 및 방법
WO2020055405A1 (en) 2018-09-12 2020-03-19 Google Llc Calibrating haptic output for trackpad
GB201817495D0 (en) 2018-10-26 2018-12-12 Cirrus Logic Int Semiconductor Ltd A force sensing system and method
EP3677996B1 (en) 2019-01-07 2022-03-23 Goodix Technology (HK) Company Limited Audio-haptic signal generator
US10955955B2 (en) 2019-03-29 2021-03-23 Cirrus Logic, Inc. Controller for use in a device comprising force sensors
US10726683B1 (en) * 2019-03-29 2020-07-28 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US10828672B2 (en) 2019-03-29 2020-11-10 Cirrus Logic, Inc. Driver circuitry
US20200314969A1 (en) * 2019-03-29 2020-10-01 Cirrus Logic International Semiconductor Ltd. Resonant tracking of an electromagnetic load
US11283337B2 (en) * 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US10976825B2 (en) * 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
US11121661B2 (en) * 2019-06-20 2021-09-14 Cirrus Logic, Inc. Minimizing transducer settling time
KR20220024091A (ko) 2019-06-21 2022-03-03 시러스 로직 인터내셔널 세미컨덕터 리미티드 디바이스 상에 복수의 가상 버튼을 구성하기 위한 방법 및 장치
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11380175B2 (en) * 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US20210174777A1 (en) * 2019-12-05 2021-06-10 Cirrus Logic International Semiconductor Ltd. Methods and systems for estimating coil impedance of an electromagnetic transducer
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US20210328535A1 (en) 2020-04-16 2021-10-21 Cirrus Logic International Semiconductor Ltd. Restricting undesired movement of a haptic actuator
US11662821B2 (en) 2020-04-16 2023-05-30 Cirrus Logic, Inc. In-situ monitoring, calibration, and testing of a haptic actuator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748578A (en) * 1995-01-25 1998-05-05 Discovision Associates Colpitts type oscillator having reduced ringing and improved optical disc system utilizing same
US20110161537A1 (en) * 2008-09-11 2011-06-30 Electronics And Telecommunications Research Institute Method for generating electromagnetic waves using software
US9329721B1 (en) * 2010-08-05 2016-05-03 Amazon Technologies, Inc. Reduction of touch-sensor interference from stable display
CN103620525A (zh) * 2011-03-09 2014-03-05 美国亚德诺半导体公司 智能线性谐振执行器控制
CN103699215A (zh) * 2012-09-27 2014-04-02 快捷半导体(苏州)有限公司 谐振驱动器与检测
CN104020844A (zh) * 2013-03-01 2014-09-03 英默森公司 具有线性共振致动器的触觉设备
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN105630021A (zh) * 2015-12-31 2016-06-01 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
US20180059793A1 (en) * 2016-08-31 2018-03-01 Apple Inc. Electronic device including multi-phase driven linear haptic actuator and related methods
CN108873235A (zh) * 2017-05-15 2018-11-23 半导体组件工业公司 用于致动器控制的方法和电路

Also Published As

Publication number Publication date
GB2596449B (en) 2024-02-28
GB2596449A (en) 2021-12-29
KR20210144764A (ko) 2021-11-30
WO2020205408A1 (en) 2020-10-08
KR102562869B1 (ko) 2023-08-04
CN113678091B (zh) 2023-03-24
US20200313529A1 (en) 2020-10-01
US11283337B2 (en) 2022-03-22
US20200306796A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
CN113678091B (zh) 用于改进换能器动力学特性的方法和系统
US11847906B2 (en) Reproducibility of haptic waveform
US11736093B2 (en) Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US20210328535A1 (en) Restricting undesired movement of a haptic actuator
CN114341959A (zh) 最小化换能器稳定时间
US11545951B2 (en) Methods and systems for detecting and managing amplifier instability
US11933822B2 (en) Methods and systems for in-system estimation of actuator parameters
US20220408181A1 (en) Methods and systems for managing mixed mode electromechanical actuator drive
US20230144960A1 (en) Compensating for current splitting errors in a measurement system
US20230141666A1 (en) Systems and methods for minimizing idle channel noise in a single-ended amplifier
US11854738B2 (en) Slew control for variable load pulse-width modulation driver and load sensing
KR102672886B1 (ko) 햅틱 파형의 재현성
US20230237886A1 (en) Detection and prevention of non-linear excursion in a haptic actuator
US11552649B1 (en) Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths
US11948739B2 (en) Minimizing transient artifact of position estimate in inductively-sensed electromagnetic actuator system with shared inductive sensor
GB2590549A (en) Methods and systems for detecting and managing amplifier instability
WO2023146763A1 (en) Detection and prevention of non-linear excursion in a haptic actuator
WO2023081636A1 (en) Systems and methods for maximizing amplifier linearity and minimizing noise in a single-ended amplifier
WO2023146770A2 (en) Determination and avoidance of over-excursion of internal mass of transducer
WO2022265825A1 (en) Methods and systems for in-system estimation of actuator parameters
EP4359147A1 (en) Methods and systems for managing mixed mode electromechanical actuator drive

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant