CN113667711A - 一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途 - Google Patents

一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途 Download PDF

Info

Publication number
CN113667711A
CN113667711A CN202010409362.1A CN202010409362A CN113667711A CN 113667711 A CN113667711 A CN 113667711A CN 202010409362 A CN202010409362 A CN 202010409362A CN 113667711 A CN113667711 A CN 113667711A
Authority
CN
China
Prior art keywords
autophagy
influenza
influenza virus
compound
macrophage polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010409362.1A
Other languages
English (en)
Inventor
史训龙
耿萍
夏成杰
朱海燕
周伟
黄海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202010409362.1A priority Critical patent/CN113667711A/zh
Publication of CN113667711A publication Critical patent/CN113667711A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47064-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Pulmonology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本发明属生物医药领技术域,涉及调节巨噬细胞极化的方法,具体涉及一种基于自噬‑外泌通路调节巨噬细胞极化的方法及其用途,本发明方法通过抑制细胞自噬行为和细胞外泌行为的化合物对巨噬细胞极化进行调节,经试验证实,通过细胞自噬‑细胞外泌通路阻断可以调节巨噬细胞M1自噬和招募,拮抗流感病毒诱导的巨噬细胞过度M1活化及招募,达到抑制流感病毒感染的作用。进一步,本方法的抑制细胞自噬行为和细胞外泌行为的化合物可用于制备治疗流感病毒感染的药物。

Description

一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途
技术领域
本发明属生物医药领技术域,涉及调节巨噬细胞极化的方法,具体涉及一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途,本发明方法通过多种细胞自噬抑制剂、外泌体抑制剂调节巨噬细胞极化功能,进一步用于制备治疗流感病毒感染的药物。
背景技术
现有技术公开了流感病毒属正黏科病毒属,是一种包含8个负义单链RNA(ssRNA)的有包膜的病毒,所述ssRNA紧紧围绕在核蛋白周围,构成流感病毒的基因组。研究显示流感病毒表面附有糖蛋白,如血凝素(Hemagglutinin,HA)和神经氨酸酶(Neuraminidase,NA),根据HA和NA的不同,流感病毒分为不同的亚型[1]。据报道,流感病毒造成经常性的季节流行及不可预测的病毒突变导致流感大流行。根据世界卫生组织(World HealthOrganization,WHO)的报告,流感病毒每年造成10亿人感染,300-500万严重病例,30-50万患者死亡[2],在不规则时间间隔内,来自动物宿主的病毒通常会跨越物种屏障,通过禽流感病毒与人流感病毒之间的基因片段重组步骤,导致抗原重组而产生新的流感病毒株,造成流感病毒的大流行[3],该种新流感病毒大流行相关的发病率和死亡率远超季节性流感病毒,如1918年的H1N1流感病毒大流行,保守估计导致约4千万人死亡[4]。
研究显示,流感病毒感染会募集呼吸道中的免疫和非免疫细胞到感染部位[5],引起一系列的炎症反应,诱发细胞因子风暴的产生,导致病毒性肺炎,增加死亡率[6];其中最严重的是急性肺损伤(Acute lung injury,ALI),伴随肺水肿,炎症细胞浸润,肺部免疫失衡等。临床实践抗流感病毒的药物主要是两种:M2离子通道抑制剂,如金刚烷胺;神经氨酸酶抑制剂,如奥司他韦等,这些药物并不能改善流感病毒感染诱导的病毒性肺炎等免疫过度应激问题,这也是流感死亡率居高不下的原因,同时这些抗病毒药物还面临流感病毒突变耐药的问题。
巨噬细胞作为机体的固有免疫细胞之一,在生理和病理状态下发挥重要的作用。巨噬细胞的功能需要根据其所在组织进行调整,这种适应是由组织和环境因素共同驱动的,如肝脏中的枯否细胞,骨中的破骨细胞和肺脏中的肺泡巨噬细胞具有不同的作用,不同表型[7]。巨噬细胞按照极化功能分为2类:经典激活的M1型巨噬细胞(促炎)和替代激活的M2型巨噬细胞(抑炎)[8];M1型极化巨噬细胞分泌促炎细胞因子,产生抗菌抗病毒的作用,过量分泌的炎症细胞因子会造成组织损伤;M2型极化巨噬细胞分泌抗炎因子,在组织修复和肿瘤发生中发挥重要作用;研究表明,巨噬细胞功能的转化在不同疾病的不同进展阶段发挥重要作用。
对于流感病毒感染,巨噬细胞既作为固有免疫细胞的一员,同时也是病毒感染复制的宿主细胞[9],因此巨噬细胞的角色会更加复杂。有文献报道,甲型流感病毒感染后,高剂量GM-CSF的应用通过调节促炎M1型巨噬细胞极化减少病毒感染后的高致死率[10]。
细胞自噬是一种保守的细胞内消化过程,在真核细胞内降解胞内受损细胞器或者蛋白的过程[11];受损的细胞器或者错误折叠的蛋白质被包裹在双层膜内,该双层膜结构被称为自噬小体,然后与溶酶体融合,其作用是作为一个废物处理系统清除潜在的有毒细胞产品,目标是对聚集蛋白和功能失调的细胞器进行降解,然后释放降解的产品进行细胞回收[12],进入细胞质中的小分子作为合成其他物质的原料或者为细胞运作提供能量[13];在该过程中,自噬通过介导细胞大分子和功能失调的细胞器的降解,和细胞生长所需营养物质的再生,在维持细胞内环境平衡方面发挥重要作用;此外,自噬也在固有[14]和适应性免疫[15]中发挥重要作用,丙型肝炎病毒(Hepatitis C Virus,HCV)利用自噬实现自身的复制,并减弱机体的固有免疫[16];同样,在A型流感病毒感染中,也存在这种现象,流感病毒诱导自噬体形成,但通过基质离子通道蛋白2(Matrix 2,M2)阻断自噬体和溶酶体的融合,因此,病毒通过多功能的自噬体进行病毒组件的复制[1];自噬也与炎症密切相关,有研究显示,自噬是炎症小体的负调节剂,自噬蛋白,例如Atg7,LC3B或Beclin 1,或给予自噬抑制剂wortmannin,3-MA都能增强巨噬细胞中IL-1β或IL-18的产生[17];自噬对于巨噬细胞功能极化的影响也在癌症治疗等领域开展[18],而在神经退行性疾病中,自噬的抑制可以增强巨噬细胞的M1极化,导致神经性炎症[19]。
外泌体是多泡小体(Multivesicular bodies,MVBs)与细胞膜融合后释放到细胞外的纳米级囊泡。外泌体内含有功能性蛋白、脂质和RNA,被证实在生理和病理中都发挥重要作用[20]。外泌体调节细胞的稳态,促进受体细胞广泛的表型改变,调节免疫反应、细胞迁移、癌症转移,其生成和内部化合物选择性的快速释放,赋予细胞在应激或病理状态下对抗蛋白质、脂质或RNA的稳态的改变[21]。除此之外,外泌体在细胞的信号沟通间起到重要作用,外泌体通过分泌microRNAs调节细胞的自噬[22],外泌体促使病毒感染[23],发挥抗病毒免疫应答作用[24]。细胞自噬同样也可以调节外泌体,如在肿瘤中,自噬相关基因调节外泌体的生成,促进肿瘤的转移[25]。还有研究显示,自噬蛋白LC3可能参与病毒的包膜与胞吐过程[26]。
迄今,尚未见有关通过细胞自噬和细胞外泌阻断方法调节流感病毒诱导的巨噬细胞极化和招募,最终达到控制流感病毒感染及急性肺炎的有关报道。
基于现有技术的现状,本申请的发明人拟提供一种调节巨噬细胞极化的方法,尤其是基于自噬-外泌通路调节巨噬细胞极化的方法及其制备治疗流感病毒感染的药物的用途,本发明为研发新的抗流感病毒药物和抗病毒治疗策略提供基础。
与本申请相关的现有技术有:
[1]IWASAKI A,PILLAI P S Innate immunity to influenza virus infection[J].Nat Rev Immunol.2014;14:315-328.
[2]KRAMMER F,SMITH G J D,FOUCHIER R A M,et al.Influenza[J].Nat RevDis Primers.2018;4:3.
[3]GUAN Y,VIJAYKRISHNA D,BAHL J,et al.The emergence of pandemicinfluenza viruses[J].Protein&Cell.2010;1:9-13.
[4]SAUNDERS-HASTINGS P R,KREWSKI D Reviewing the History of PandemicInfluenza:Understanding Patterns of Emergence and Transmission[J].Pathogens.2016;5.
[5]MANICASSAMY B,MANICASSAMY S,BELICHA-VILLANUEVA A,et al.Analysis ofin vivo dynamics of influenza virus infection in mice using a GFP reportervirus[J].Proc Natl Acad Sci U S A.2010;107:11531-11536.
[6]TEIJARO J R,WALSH K B,RICE S,et al.Mapping the innate signalingcascade essential for cytokine storm during influenza virus infection[J].ProcNatl Acad Sci U S A.2014;111:3799-3804.
[7]GEISSMANN F,MANZ M G,JUNG S,et al.Development of monocytes,macrophages,and dendritic cells[J].Science.2010;327:656-661.
[8]TAIT WOJNO E D,ARTIS D Innate lymphoid cells:balancing immunity,inflammation,and tissue repair in the intestine[J].Cell Host Microbe.2012;12:445-457.
[9]IWASAKI A,MEDZHITOV R Control of adaptive immunity by the innateimmune system[J].Nat Immunol.2015;16:343-353.
[10]GORDON S Alternative activation of macrophages[J].Nat RevImmunol.2003;3:23-35.
[11]SHAYKHIEV R,KRAUSE A,SALIT J,et al.Smoking-dependentreprogramming of alveolar macrophage polarization:implication forpathogenesis of chronic obstructive pulmonary disease[J].Journal ofImmunology.2009;183:2867-2883.
[12]KASLOFF S B,WEINGARTL H M Swine alveolar macrophage cell modelallows optimal replication of influenza A viruses regardless of their origin[J].Virology.2016;490:91-98.
[13]ALENQUER M,AMORIM M J Exosome Biogenesis,Regulation,and Functionin Viral Infection[J].Viruses.2015;7:5066-5083.
[14]DESDIN-MICO G,MITTELBRUNN M Role of exosomes in the protection ofcellular homeostasis[J].Cell Adh Migr.2017;11:127-134.
[15]YANG Y,LI Y,CHEN X,et al.Exosomal transfer of miR-30a betweencardiomyocytes regulates autophagy after hypoxia[J].J Mol Med(Berl).2016;94:711-724.
[16]SHAPOURI-MOGHADDAM A,MOHAMMADIAN S,VAZINI H,et al.Macrophageplasticity,polarization,and function in health and disease[J].Journal ofCellular Physiology.2018;233:6425-6440.
[17]LIU Y M,TSENG C H,CHEN Y C,et al.Exosome-delivered and Y RNA-derived small RNA suppresses influenza virus replication[J].J BiomedSci.2019;26:58.
[18]YANG Y,HAN Q,HOU Z,et al.Exosomes mediate hepatitis B virus(HBV)transmission and NK-cell dysfunction[J].Cellular&Molecular Immunology.2017;14:465-475.
[19]GUO H,CHITIPROLU M,RONCEVIC L,et al.Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent ofCanonical Macroautophagy[J].Dev Cell.2017;43:716-730.e717.
[20]NOWAG H,MUNZ C Diverting autophagic membranes for exocytosis[J].Autophagy.2015;11:425-427.
[21]CAROLAN L A,ROCKMAN S,BORG K,et al.Characterization of theLocalized Immune Response in the Respiratory Tract of Ferrets followingInfection with Influenza A and B Viruses[J].J Virol.2015;90:2838-2848.
[22]BETAKOVA T,KOSTRABOVA A,LACHOVA V,et al.Cytokines Induced DuringInfluenza Virus Infection[J].Curr Pharm Des.2017;23:2616-2622.
[23]COLE S L,DUNNING J,KOK W L,et al.M1-like monocytes are a majorimmunological determinant of severity in previously healthy adults with life-threatening influenza[J].Jci Insight.2017;2:e91868.
[24]CHANG P,KUCHIPUDI S V,MELLITS K H,et al.Early apoptosis ofporcine alveolar macrophages limits avian influenza virus replication andpro-inflammatory dysregulation[J].Sci Rep.2015;5:17999.
[25]SHORT K R,KROEZE E,FOUCHIER R A M,et al.Pathogenesis ofinfluenza-induced acute respiratory distress syndrome[J].Lancet InfectDis.2014;14:57-69.
[26]JULKUNEN I,MELEN K,NYQVIST M,et al.Inflammatory responses ininfluenza A virus infection[J].Vaccine.2000;19Suppl 1:S32-37.。
发明内容
本发明的目的在于基于现有技术的现状,提供一种调节巨噬细胞极化的方法,具体涉及一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途。
本发明通过抑制细胞自噬行为和细胞外泌行为的化合物对巨噬细胞极化进行调节,更具体的通过多种细胞自噬抑制剂、外泌体抑制剂调节巨噬细胞极化功能,进一步用于制备治疗流感病毒感染的药物。
本发明中,所述抑制细胞自噬的化合物,包括但不限于细胞自噬各个环节的阻断剂,如PI3K抑制剂LY294002,自噬溶酶体阻断剂氯喹CQ等多种结构类似物中的一种或几种。
本发明中,所述抑制细胞外泌行为的化合物,包括但不限于细胞外泌活化的各个环节阻断剂,如鞘磷脂酶(N-SMase)抑制剂GW4869等多种结构类似物中的一种或几种。
本发明的实施例中,通过PI3K抑制和外泌体抑制能有效的抑制流感病毒诱导的巨噬细胞招募和极化行为。
本发明进行了以下体外细胞试验,结果显示:
(1)在流感病毒感染的体外细胞体系中,自噬抑制剂和外泌体抑制剂对流感病毒感染招募巨噬细胞有明显的影响;
(2)自噬抑制剂对流感病毒复制及巨噬细胞极化有明显影响;
本发明的实验证实了通过细胞自噬抑制剂和外泌体抑制剂能有效的阻断巨噬细胞的M1极化和招募,为进一步用于制备治疗流感病毒感染的药物提供了基础。
本发明中,可以不改变现有药物剂型下,将所述的两类化合物单独或组合方式,进行流感病毒治疗,或,将上述化合物制成一种剂型,其给药途径或制剂包括且不限定于:口服、注射、粘膜给药,注射液等方式。
本发明所述的调节巨噬细胞极化功能,与流感病毒感染不直接相关;本发明的方法可用于制备治疗多种流感病毒感染的药物,所述的流感病毒感染包括但不限于甲型流感病毒、乙型流感病毒、及新的流感病毒类型等。
本申请提供了一种调节巨噬细胞极化的方法,尤其是基于自噬-外泌通路调节巨噬细胞极化的方法,进一步可制备治疗流感病毒感染的药物。本发明为研发新的抗流感病毒药物和抗病毒治疗策略提供基础。
附图说明
图1显示PI3K抑制剂和外泌体抑制剂抑制流感病毒诱导的巨噬细胞招募及细胞聚集。
图2显示泛PI3K抑制剂和PI3Kγ抑制剂对细胞极化与流感病毒复制的影响。
图3显示特异性PI3Kγ抑制剂AS605240对细胞自噬及外泌的影响。
图4显示非活性PI3K结构类似物不影响流感病毒诱导的巨噬细胞自噬及活化。
下面结合具体实施例对本发明作进一步说明。
具体实施方式
实施例1PI3K抑制剂和外泌体抑制剂抑制巨噬细胞招募及细胞聚集
分别在细胞穿膜迁移Transwell系统的下室病毒感染的Ana-1巨噬细胞中分别添加自噬抑制剂LY294002(1μM)和外泌体抑制剂GW4869(1μM),观察对上室GFP+巨噬细胞招募的影响(感染后给药干预24小时),如图1所示的免疫荧光分析显示,病毒感染能招募更多GFP+巨噬细胞;当使用自噬抑制剂LY294002和外泌体抑制剂GW4869时,结果显示均相似性的大幅度减弱了对GFP+巨噬细胞的招募,抑制了流感病毒诱导的过度炎症应答反应。
实施例2泛PI3K抑制剂和PI3Kγ抑制剂对巨噬细胞极化的影响
在本实施例中,对比不同的PI3K抑制剂对于流感病毒感染的巨噬细胞极化的影响,如图2所示,当使用泛PI3K抑制剂LY294002和PI3Kγ抑制剂AS605240时,显著抑制iNOS转录水平,上调抑炎性IL-10水平,无明显降低流感病毒的复制,结果表明,泛抑制剂一致性的调低了巨噬细胞的M1极化,IL-1β的转录。
实施例3PI3K抑制剂对细胞自噬及外泌的影响
本试验对比了PI3Kγ抑制剂AS605240在感染和非感染条件下对巨噬细胞自噬和外泌行为的影响,如图3Western blot图片所示,与正常组相比,病毒感染后,LC3II/I的比例增加,表明细胞自噬增强;当使用特异性PI3Kγ抑制剂AS时,显示LC3II/I的蛋白比例明显减少,表明AS抑制流感病毒引起的细胞自噬,且与给药剂量呈依赖性;同时,结果显示,流感病毒感染后,外泌体CD63、CD81蛋白水平明显低于正常组,而当使用AS阻断自噬LC3生成时,CD63、CD81蛋白呈现剂量依赖性的上升,自噬蛋白LC3与外泌蛋白CD63/CD81改变提示了一种自噬性外泌存在的可能性,当自噬LC3蛋白生成受限时,也抑制了自噬性外泌,导致胞内蛋白蓄积性增加;该过程印证了流感病毒诱导了细胞自噬蛋白LC3和外泌体蛋白CD63增加,并存在自噬性外泌的现象;
进一步进行自噬抑制剂的非活性成分LY303511盐酸盐对流感病毒诱导的巨噬细胞自噬和焦亡小体蛋白NLRP3的影响试验,如图4所示,随时间延长,流感病毒诱导了越来越显著的巨噬细胞发生细胞自噬LC3累积和M1活化现象,同时伴随着NLRP3的显著增加,表明细胞自噬和细胞焦亡同步性;LY303511盐酸盐时,并未对LC3II/I的比例,p62水平,及NLRP3产生明显影响;巨噬细胞受流感病毒诱导的细胞自噬和细胞焦亡是被活性PI3K抑制分子所影响。
本发明的实验证实了通过细胞自噬抑制剂和外泌体抑制剂能有效的阻断巨噬细胞的M1极化和招募,为进一步用于制备治疗流感病毒感染的药物提供了基础。

Claims (7)

1.一种基于自噬-外泌通路调节巨噬细胞极化行为的方法,其特征在于,通过抑制细胞自噬行为和细胞外泌行为的化合物对巨噬细胞极化进行调节,其包括:对流感病毒感染招募巨噬细胞影响的体外细胞试验以及对流感病毒复制及巨噬细胞极化影响的体外细胞试验。
2.根据权利要求1所述的方法,其特征在于,所述的抑制细胞自噬行为的化合物,包括但不限于细胞自噬各个环节的阻断剂,如PI3K抑制剂LY294002,自噬溶酶体阻断剂氯喹CQ结构类似物中的一种或几种。
3.根据权利要求1所述的方法,其特征在于,所述的抑制细胞外泌行为的化合物包括但不限于细胞外泌活化的各个环节阻断剂,如鞘磷脂酶(N-SMase)抑制剂GW4869结构类似物中的一种或几种。
4.根据权利要求1或2或3所述的方法,其特征在于,可以不改变现有药物剂型,将所述的两类化合物单独或组合方式,进行所述的体外细胞试验。
5.根据权利要求1或2或3所述的方法,其特征在于,所述的化合物制成所需剂型,其给药途径或制剂采用口服、注射、粘膜,注射液给药方式。
6.根据权利要求1所述的方法,其特征在于,所述的抑制细胞自噬行为和细胞外泌行为的化合物在用于制备治疗流感病毒感染的药物中的用途。
7.根据权利要求6所述的方法,其特征在于,所述的流感病毒感染包括但不限于甲型流感病毒、乙型流感病毒、及新发的流感病毒类型感染。
CN202010409362.1A 2020-05-14 2020-05-14 一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途 Pending CN113667711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010409362.1A CN113667711A (zh) 2020-05-14 2020-05-14 一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010409362.1A CN113667711A (zh) 2020-05-14 2020-05-14 一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途

Publications (1)

Publication Number Publication Date
CN113667711A true CN113667711A (zh) 2021-11-19

Family

ID=78537378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010409362.1A Pending CN113667711A (zh) 2020-05-14 2020-05-14 一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途

Country Status (1)

Country Link
CN (1) CN113667711A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130131146A1 (en) * 2010-04-30 2013-05-23 The Johns Hopkins University Compositions and Methods for Treating Pulmonary Conditions
CN104958301A (zh) * 2015-06-18 2015-10-07 铜仁学院 一种抑制剂ly294002的用途
CN106860471A (zh) * 2015-12-13 2017-06-20 复旦大学 一种AhR受体蛋白抑制剂在制备抗病毒药物中的用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130131146A1 (en) * 2010-04-30 2013-05-23 The Johns Hopkins University Compositions and Methods for Treating Pulmonary Conditions
CN104958301A (zh) * 2015-06-18 2015-10-07 铜仁学院 一种抑制剂ly294002的用途
CN106860471A (zh) * 2015-12-13 2017-06-20 复旦大学 一种AhR受体蛋白抑制剂在制备抗病毒药物中的用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBINA ESSANDOH 等: "Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction", BIOCHIM BIOPHYS ACTA *
XIANGFENG ZHAO等: "PI3K/Akt Signaling Pathway Modulates Influenza Virus Induced Mouse Alveolar Macrophage Polarization to M1/M2b", PLOS ONE *

Similar Documents

Publication Publication Date Title
JP7019727B2 (ja) インフルエンザの治療方法
Ma et al. Liu Shen Wan inhibits influenza a virus and excessive virus-induced inflammatory response via suppression of TLR4/NF-κB signaling pathway in vitro and in vivo
Wang et al. Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret)
CA3093492C (en) Antiviral immunotropic agent for the treatment of acute respiratory viral infections
Tanaka et al. T-705 (Favipiravir) suppresses tumor necrosis factor α production in response to influenza virus infection: A beneficial feature of T-705 as an anti-influenza drug
KR101597391B1 (ko) 인플루엔자 치료용 재조합 사람 cc10 단백질
Li et al. Cappariloside A shows antiviral and better anti-inflammatory effects against influenza virus via regulating host IFN signaling, in vitro and vivo
TWI453026B (zh) 魚針草萃取物及其純化物抗流感病毒之用途
US10221152B2 (en) Usage of mycophenolate mofetil or salt thereof in preparing drug for resisting against influenza virus
CN113667711A (zh) 一种基于自噬-外泌通路调节巨噬细胞极化的方法及其用途
US11433080B2 (en) Antiviral treatment
US20230201215A1 (en) Drug combinations for inhibiting infectivity of influenza and corona viruses
Michalski et al. Review of studies on SARS-CoV-2 infection inhibitors
KR101135946B1 (ko) 연교추출물을 함유하는 고병원성 조류인플루엔자 h5n1 감염예방 및 치료용 조성물
Zheng et al. In vitro and in vivo antiviral effect of Fufang Yinhua Jiedu granules (FFYH) combined with oseltamivir against influenza A virus
KR101978541B1 (ko) 퀴나졸린 유도체를 함유하는 인플루엔자 바이러스 치료용 약학적 조성물
JPH11193242A (ja) 抗インフルエンザウイルス剤
CN114712342A (zh) 紫草酸在制备抗流感病毒药物中的应用
CN118436653A (zh) 甲基莲心碱在制备抗流感病毒的药物中的应用
CN118370758A (zh) 托法替尼在制备治疗流感病毒感染的药物中的应用
CN117838697A (zh) 巴瑞替尼在制备治疗流感病毒感染的药物中的应用
CN110559291A (zh) 联苯苄唑在制备治疗或预防流感病毒感染的药物中的应用
WO2021243162A1 (en) Use of rigosertib to treat rna virus infections
CN117838689A (zh) 培菲替尼在制备治疗流感病毒感染的药物中的应用
CN118203571A (zh) 白花前胡甲素在制备防治流感与自噬疾病药物中的新应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination