CN113648408A - 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法 - Google Patents

一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法 Download PDF

Info

Publication number
CN113648408A
CN113648408A CN202111012386.4A CN202111012386A CN113648408A CN 113648408 A CN113648408 A CN 113648408A CN 202111012386 A CN202111012386 A CN 202111012386A CN 113648408 A CN113648408 A CN 113648408A
Authority
CN
China
Prior art keywords
rice
preparation
suspension stability
good suspension
adjuvant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111012386.4A
Other languages
English (en)
Inventor
孙冰冰
毕世升
薛长颖
梁智慧
李敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202111012386.4A priority Critical patent/CN113648408A/zh
Publication of CN113648408A publication Critical patent/CN113648408A/zh
Priority to PCT/CN2022/094465 priority patent/WO2023029604A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开一种悬浮稳定性良好的米粒状羟基氧化铝纳米材料的制备方法,该方法利用无机铝盐和尿素的混合溶液作为反应物,通过水热方法制备纳米尺寸的羟基氧化铝佐剂,所制备的羟基氧化铝佐剂纳米材料形貌均一,分散均匀,具有很好的均质性和免疫原性,对比现有的商业化羟基氧化铝佐剂突出优良的悬浮稳定性,在疫苗制备与生产及应用中具有良好的前景。

Description

一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备 方法
技术领域
本发明涉及具有良好悬浮稳定性以及良好的免疫原性的羟基氧化铝佐剂材料的制备方法,具体说是纳米羟基氧化铝佐剂制备方法以及相关性质表征。
背景技术
疫苗的发现可谓是人类发展史上一件具有里程碑意义的事件,控制传染性疾病最主要的手段就是预防,而接种疫苗被认为是最行之有效的措施。作为疫苗的重要组成部分,佐剂在指导和增强抗原的免疫反应中起着极其重要的作用。佐剂可以诱导人体产生长期,高效的特异性免疫反应,从而提高人体的保护能力。预防性疫苗中常见的铝佐剂包括羟基氧化铝和磷酸铝,羟基氧化铝占据重要的一部分。疫苗开发过程中的总体目标是配制和生产具有最佳免疫原性的安全稳定的产品,铝佐剂疫苗的效果受到多种因素影响,包括抗原,辅料等,其中铝佐剂是及其重要的一部分。其中配苗过程中需要重新均质后与抗原吸附,另外基于铝基疫苗制造的铝基疫苗是悬浮药物产品(DP),给药前也必须重新均质。基于需要解决铝佐剂疫苗制剂在储存后最终产品的再分散方面问题,在给药过程中均质性较差的疫苗会导致疫苗效果降低或者疫苗给药不足的现象,因此研究合成分散性,悬浮稳定性良好的,易于重悬的羟基氧化铝佐剂具有重要的意义。
发明内容
本发明的目的是提供一种用廉价易得的反应原料以及简单的生产方法获得形貌均一,分散性悬浮稳定性良好的,易于重悬的,有优良免疫原性,可工业化生产的羟基氧化铝纳米佐剂的制备方法。
本发明的目的通过以下技术方案来实现:
一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,包括以下步骤:
1)取无机铝盐与一定比例碱性固体完全溶解于去离子水形成透明澄清的前驱体混合溶液;
3)将上述混合均匀的澄清透明溶液转移至一定大小的反应釜中在一定温度下水热一定时间。
4)对上述产物冷却、离心、洗涤、干燥,得到羟基氧化铝粉末固体。
对于上文所述制备方法的技术方案中,优选的情况下,步骤1)所述的无机铝盐为九水合硝酸铝或六水合氯化铝,本发明中的前驱物材料是铝源。
对于上文所述制备方法的技术方案中,优选的情况下,步骤1)所述的碱性固体是氢氧化钾,氢氧化钠或尿素。
对于上文所述制备方法的技术方案中,优选的情况下,步骤1)所述的混合溶液中铝盐的浓度为0.03-0.08M,碱性固体的浓度为0.03-0.35M。
对于上文所述制备方法的技术方案中,优选的情况下,步骤1)所述的溶解过程在搅拌条件下进行;所述的搅拌条件为:搅拌转速为400-1000rpm,优选为400-600rpm,搅拌时间为10-20min,优选为15min;此处混合液反应总体积为50mL-2L。
对于上文所述制备方法的技术方案中,优选的情况下,步骤2)所述的水热条件为:水热温度优选为160℃-200℃,水热时间优选为20-100min,更优选为20-80min。
对于上文所述制备方法的技术方案中,优选的情况下,步骤3)中,所述冷却为将混合处理后的混合液空冷降温至室温即可;所述的离心转速为4000-9000rpm,优选为8000rpm;离心时间为5-40min,优选为5-10min;所述的洗涤目的是除去所含杂质,洗涤次数为3-5次,具体实施例中洗涤过程具体采用先乙醇后去离子水水洗两到三次除去所含杂质;干燥温度为50-80℃,干燥时间为10-24h。
对于上文所述制备方法的技术方案中,优选的情况下,步骤2)和3)之间还包括灭菌:对上述混合液在121℃条件下进行灭菌处理30min。
本发明的另一方面在于保护上文所述方法制备的悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂。
本发明的有益效果:
本发明以水热法为基础合成悬浮稳定性良好,易于分散,免疫原性良好的米粒状羟基氧化铝纳米材料的制备方法,该方法利用无机铝盐和碱性固体(尿素)的混合溶液作为反应物,通过水热方法制备纳米尺寸的羟基氧化铝佐剂,所制备的羟基氧化铝佐剂纳米材料形貌均一,分散均匀,具有很好的均质性和免疫原性,对比现有的商业化羟基氧化铝佐剂突出优良的悬浮稳定性,在疫苗制备与生产及应用中具有良好的前景。
附图说明
图1是实施例1中不同浓度碱性固体条件下收集所得的羟基氧化铝纳米佐剂的透射电镜图。图1a-d分别为铝盐与碱性固体摩尔比为1:2,1:4,1:6,1:13下反应所得的羟基氧化铝佐剂材料。其中,标尺为500nm。
图2是实施例1中不同碱性固体浓度下所得羟基氧化铝胶体的X射线衍射表征结果
图3是实施例1中不同碱性固体浓度下所得羟基氧化铝纳米佐剂和市场售卖的商业化羟基氧化铝,在盐溶液条件下的沉降结果。
图4是实施例1中不同碱性固体浓度下所得羟基氧化铝纳米佐剂和市场售卖的商业化羟基氧化铝吸附牛血清蛋白(BSA)抗原后在盐溶液条件下的沉降结果,采用Invivogen购买的
Figure BDA0003239368760000031
adjuvant,在盐溶液条件下的沉降结果。
图5是实施例1中不同碱性固体浓度下所得羟基氧化铝纳米佐剂吸附乙肝(HBV)抗原后进行的动物实验的总IgG抗体滴度实验结果。
图6是实施例1中不同碱性固体浓度下所得羟基氧化铝纳米佐剂吸附乙肝(HBV)抗原后进行的动物实验的IgG1抗体滴度实验结果。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中Alhydrogel为市场售卖的商业化羟基氧化铝,采用Invivogen购买的
Figure BDA0003239368760000032
adjuvant,CAS号:21645-51-2。
实施例1
准确称取0.9375g九水合硝酸铝分别与0.3g(铝盐与碱性固体摩尔比为1:2),0.6g(铝盐与碱性固体摩尔比为1:4),0.9g(铝盐与碱性固体摩尔比为1:6),1.95g(铝盐与碱性固体摩尔比为1:13)的尿素在室温下溶解到50mL去离子水中,对溶液进行搅拌速率控制在500rpm搅拌至完全溶解于去离子水形成透明澄清的溶液。将澄清透明溶液转移至50ml的高压反应釜中,水热条件控制在水热温度为165℃,水热时间为70min。反应结束后放置冷却至室温,之后开始收集产物。待自然冷却至室温,采用先乙醇后去离子水水洗两到三次除去所含杂质,60℃下恒温干燥16h,得到白色粉末状固体,即为所得产物羟基氧化铝纳米佐剂(将铝盐与碱性固体摩尔比分别为1:2,1:4,1:6,1:13下反应所得的羟基氧化铝佐剂材料,依次命名为Nanorice1,Nanorice2,Nanorice3,Nanorice4)。
对上述合成的羟基氧化铝佐剂材料经过表征,透射电子显微镜法(TEM)结果显示各浓度碱合成的羟基氧化铝佐剂均为米粒状结构(结果见图1),对透射电子显微镜法(TEM)结果图进行纳米粒子进行分析,羟基氧化铝佐剂的平均粒径分布在500-800nm之间(结果见表1)。用动态光散射仪(DLS,PALS)测定了羟基氧化铝纳米颗粒的流体力学尺寸和Zeta电位。羟基氧化铝纳米颗粒的DLS在200-300nm纳米级尺寸,Zeta电势50mV左右较高,PDI结果很小,材料分散性很好(结果见表1)。比表面积测试仪(BET)检测羟基氧化铝纳米颗粒的比表面积随着碱浓度的增大而逐渐增大(结果见表1)。检测羟基氧化铝纳米颗粒材料的悬浮稳定性以及吸附抗原后的悬浮稳定性良好,选择乙肝(HBV)、牛血清蛋白(BSA)作为抗原模型。定性使用生理盐水配置浓度均为1.1mg/ml的Alhydrogel、Nanorice1、Nanorice2、Nanorice3、Nanorice4纳米佐剂溶液静置0h与12h进行拍照图像显示,定量采用紫外-可见分光光度法在12h的时间间隔内,通过监测光吸光度(232nm)与时间的关系来测定悬浮液的稳定性指数(结果见图3)。吸附抗原后的悬浮稳定性通过使用生理盐水配置浓度均为1.1mg/ml的Alhydrogel、Nanorice1、Nanorice2、Nanorice3、Nanorice4纳米佐剂混合液,其中添加49.5ug/ml的BSA,37℃下孵育30min后实现抗原的吸附,将吸附抗原后的纳米佐剂溶液静置0h与12h进行拍照图像显示,定量采用紫外-可见分光光度法在12h的时间间隔内,通过监测光吸光度(232nm)与时间的关系来测定悬浮液的稳定性指数(结果见图4)。将生理盐水作为缓冲液,配置50ul缓冲液包含1111ug羟基氧化铝佐剂以及2ug的HBV的疫苗,将疫苗以每50ul的量于第0天和第21天肌内免疫于小鼠的胫骨前肌。生理盐水缓冲液组作为Ctrl对照。HBV单独溶解在生理盐水缓冲液中作为HBV组。第42天采集血清,ELISA检测乙肝抗原(HBV)总IgG、IgG1,结果该组佐剂的免疫原性结果很好(结果见图5和6)。
表1是实施例1中不同碱性固体浓度下所得羟基氧化铝纳米佐剂的水合粒径分布及Zeta电势表征结果,以及比表面积,表面羟基量的表征结果
Figure BDA0003239368760000041
对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:包括以下步骤:
1)将无机铝盐与碱性固体完全溶解于去离子水形成混合液;
2)对上述混合液进行水热反应;
3)对上述混合液进行冷却,离心,洗涤,干燥,得到羟基氧化铝粉末固体。
2.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤1)所述的无机铝盐为九水合硝酸铝或六水合氯化铝。
3.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤1)所述的碱性固体为氢氧化钾,氢氧化钠或尿素。
4.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤1)所述的混合液中铝盐的浓度为0.03-0.08M。
5.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤1)所述的混合液中碱性固体的浓度为0.03-0.35M。
6.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤1)所述的溶解过程在搅拌条件下进行;所述的搅拌转速为400-1000rpm,所述的搅拌时间为10-20min。
7.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤2)所述的水热条件为:160℃-200℃,20-1000min。
8.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤3)所述的离心转速为4000-9000rpm,离心时间为5-40min,洗涤次数为3-5次,干燥温度为50-80℃,干燥时间为10-24h。
9.根据权利要求1所述的一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法,其特征在于:步骤2)和3)之间还包括灭菌:对上述混合液在121℃条件下进行灭菌处理30min。
10.利用权利要求1所述方法制备的悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂。
CN202111012386.4A 2021-08-31 2021-08-31 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法 Pending CN113648408A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111012386.4A CN113648408A (zh) 2021-08-31 2021-08-31 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法
PCT/CN2022/094465 WO2023029604A1 (zh) 2021-08-31 2022-05-23 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111012386.4A CN113648408A (zh) 2021-08-31 2021-08-31 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法

Publications (1)

Publication Number Publication Date
CN113648408A true CN113648408A (zh) 2021-11-16

Family

ID=78482514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111012386.4A Pending CN113648408A (zh) 2021-08-31 2021-08-31 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法

Country Status (2)

Country Link
CN (1) CN113648408A (zh)
WO (1) WO2023029604A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029604A1 (zh) * 2021-08-31 2023-03-09 大连理工大学 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法
WO2023109469A1 (zh) * 2021-12-15 2023-06-22 大连理工大学 一种表面能可控的羟基氧化铝纳米佐剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101687A (zh) * 2009-12-16 2011-06-22 国家纳米科学中心 制备氢氧化铝纳米棒的设备及制备氢氧化铝纳米棒的方法
CN109395075A (zh) * 2018-11-01 2019-03-01 大连理工大学 一种结晶度可控的AlOOH纳米佐剂及其制备方法
CN109432417A (zh) * 2018-11-01 2019-03-08 大连理工大学 一种长径比可控的AlOOH纳米佐剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673382A (zh) * 2017-11-14 2018-02-09 湖北工业大学 一种水溶性羟基氧化铝纳米颗粒的制备方法
CN111643662A (zh) * 2020-07-01 2020-09-11 大连理工大学 一种基于全混流模型合成的羟基氧化铝纳米佐剂及其合成方法
CN113648408A (zh) * 2021-08-31 2021-11-16 大连理工大学 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法
CN114028556A (zh) * 2021-12-15 2022-02-11 大连理工大学 一种表面能可控的羟基氧化铝纳米佐剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101687A (zh) * 2009-12-16 2011-06-22 国家纳米科学中心 制备氢氧化铝纳米棒的设备及制备氢氧化铝纳米棒的方法
CN109395075A (zh) * 2018-11-01 2019-03-01 大连理工大学 一种结晶度可控的AlOOH纳米佐剂及其制备方法
CN109432417A (zh) * 2018-11-01 2019-03-08 大连理工大学 一种长径比可控的AlOOH纳米佐剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
傅小明等: "水热温度和pH对合成纳米结构γ-AlOOH形态的影响", 《科学技术与工程》 *
许荣辉等: "水热法合成纳米晶勃姆石的实验研究", 《广州化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029604A1 (zh) * 2021-08-31 2023-03-09 大连理工大学 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法
WO2023109469A1 (zh) * 2021-12-15 2023-06-22 大连理工大学 一种表面能可控的羟基氧化铝纳米佐剂的制备方法

Also Published As

Publication number Publication date
WO2023029604A1 (zh) 2023-03-09

Similar Documents

Publication Publication Date Title
CN113648408A (zh) 一种悬浮稳定性良好的米粒状羟基氧化铝纳米佐剂的制备方法
Kurtuldu et al. Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: Bioactivity, biocompatibility and antibacterial activity
US8383682B2 (en) Mixed ligand surface-modified nanoparticles
Trushina et al. CaCO3 vaterite microparticles for biomedical and personal care applications
JP4864205B2 (ja) ナノサイズ酸化亜鉛粒子の製造方法
JP5620265B2 (ja) リン酸アルミニウムを生成するためのプロセス
Vadia et al. Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement
WO2023109469A1 (zh) 一种表面能可控的羟基氧化铝纳米佐剂的制备方法
WO2020088495A1 (zh) 一种长径比可控的AlOOH纳米佐剂及其制备方法
JP6111245B2 (ja) 水酸化アルミニウムナノ粒子を含むワクチン組成物
CN103803565A (zh) 一种单分散性中空介孔二氧化硅纳米粒子的制备方法
CN114028559A (zh) 一种铝锰复合纳米晶及其制备方法和应用
Bi et al. Self-assembled aluminum oxyhydroxide nanorices with superior suspension stability for vaccine adjuvant
CN106215181A (zh) 一种口服疫苗给药系统及其应用
WO2020088494A1 (zh) 一种等电点可控的磷酸铝纳米佐剂及其制备方法
CN109482898B (zh) 一种金纳米颗粒的制备方法
JPH01145317A (ja) 真球状シリカ微粒子の製法
Wang et al. Synthesis of a crystalline zeolitic imidazole framework-8 nano-coating on single environment-sensitive viral particles for enhanced immune responses
CN103601201A (zh) 单分散介孔氧化硅纳米颗粒及其合成方法
CN113651331A (zh) 一种花状介孔二氧化硅纳米颗粒及其制备方法和应用
Setyawati et al. Effect of sterilization on protein adsorption of micro-and nano-sized aluminum hydroxide adjuvant
CN113527910B (zh) 一种单分散纳米氟化钙透明液相分散体的制备方法
CN113003562A (zh) 一种碳纳米粒及其制备方法和应用
JP6589724B2 (ja) 複合体の製造方法
Ashour et al. Silica nanoparticles as a potential carrier for doxycycline hyclate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination