CN1136216A - 推挽式反相器 - Google Patents

推挽式反相器 Download PDF

Info

Publication number
CN1136216A
CN1136216A CN96101293A CN96101293A CN1136216A CN 1136216 A CN1136216 A CN 1136216A CN 96101293 A CN96101293 A CN 96101293A CN 96101293 A CN96101293 A CN 96101293A CN 1136216 A CN1136216 A CN 1136216A
Authority
CN
China
Prior art keywords
transformer
voltage
coil
output winding
push
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96101293A
Other languages
English (en)
Other versions
CN1071953C (zh
Inventor
木精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KK Ki
Original Assignee
KK Ki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KK Ki filed Critical KK Ki
Publication of CN1136216A publication Critical patent/CN1136216A/zh
Application granted granted Critical
Publication of CN1071953C publication Critical patent/CN1071953C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53832Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement
    • H02M7/53835Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement of the parallel type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

一种推挽式反相器,能使薄形化、小形化的升压变压器的绝缘耐电压尽可能地低,同时能有效地防止泄漏电流和噪声,该反相器设置备有第1次级线圈和第2次级线圈的升压变压器,第1、第2次级线圈在这些线圈之间连接电容器等的阻抗元件并形成串联电路体,并且使第1次级线圈的输出部与直流电源的负电位变成同电位那样地连接,在第1、第2次级线圈的输出部连接荧光灯等的负载。

Description

推挽式反相器
本发明涉及作为使例如冷阴极管、作为部分加热使用的热阴极管等的放电管点灯的驱动器而利用的推挽式反相器。
图6是表示构成荧光灯11的驱动器的推挽式反相器的已有技术例子的电路图。
该反相器备有由升压变压器12、起开关动作的晶体三极管13、14等构成的推挽电路。
即,当从端子15输送低电平的起动信号时,使作为电源开关用的晶体三极管16接通,从与端子17、18连接的DC电源供给电流电功率。
由此,基极电流各自通过起动阻抗19流入晶体三极管13,同时也通过动动电阻20流入晶体管14。
这些晶体三极管13、14同时向导通方向转移,但晶体管特性或电路结构中任何一个的晶体三极管进入大的导通状态,该晶体三极管就先接通。
例如,晶体三极管14先接通时,从DC电源送来的电流通过扼流圈线圈21从变压器12的初级线圈(输入线圈)12P的中间分接抽头流入,在初级线圈12P中直流电流流动,产生如图示箭头方向的电压Ep1,Ep2。
并且,由于在第三线圈(反馈线圈)12F产生如图示箭头方向的电压Ef,所以反馈供给晶体三极管14的基极,集电极电流迅速增加。
这时,次级线圈(输出线圈)12S产生的如图示箭头方向的感应电压,该感应电压作为变压器的输出电压Es供给荧光灯11,荧光灯11开始点灯。
还有,在荧光灯11上加以管电压Vo,镇流电容器22产生充电电压Vc。
晶体三极管14的电流增加由于受到到达因基极电流和放大率所决定的饱和点时刻的抑制,随着电流增加变少,升压变压器12的初线线圈12P产生和图示箭头相反方向的电压,晶体三极管12从接通转换成断开,晶体三极管13从断开转换成接通。
其结果是,因在第三线圈12F处产生的与图示箭头相反方向的电压反馈给晶体三极管13,在次级线圈12S上产生和图示箭头相反方向的感应电压,继续使荧光灯11点灯。
以后,晶体三极管13、14同样地相互反复接通,在次级线圈12S处产生高的交流电压。
还有,与初级线圈12P并联连接的电容器23是共振用的电容器,是用于产生正弦波电压的电容器。
图7是表示在下述的各种条件下使上述反相器动作时的晶体三极管输出电压Es、荧光灯的管电压Vo和镇流电容器Vc的关系的矢量图。
晶体三极管输出电压  Es=1800V(有效值)
    (峰值电压       Ep-P=5091V)
管电压              Vo=600V(有效值)
管电流              Io=20mmA(有效值)
管功率              Wo=12W
镇流电容器电压      Vc=1697V(有效值),(39.9pF)
输出电压频率        f=47kHz
管电流相位角        θ=70.53度
从该矢量图就可知道,Es=Vo+Vc(但是,该式是矢量加法式)。
另外,上述反相器的升压变压器12是将初级线圈12P、次级线圈12S和第三线圈12F重叠地卷绕在绕线管的线圈筒状部后,将一部分插入到该线圈筒状部内那样地装配铁淦氧铁心,同时形成将线圈端部停止在嵌设于绕线管上的端子销上那样结构的小型变压器。
可是,这时反相器由于作为在字处理机或个人处理机等上装备的指示器的后退信号灯电源等使用的关系,所以反相器的升高变压器12是要求极力限制其高度的薄型变压器。
今天随着开发研究的进展,提也了研制相当薄的升压变压器12的方案,但这种变压器12由于必需使直流电压(例如3~24伏)升压成高电压(例如600~3000伏)后输出,所以耐电压处理困难,其薄型化和小型化已接近实际的限度。
若具体地说,上述这种升压变压器12由于次级线圈12S(输出线圈)的低电压侧是零伏,而高电压侧是数千伏,所以对于次级线圈12S的高电压部来说,初线线圈12P、第三线圈12F、铁淦氧铁心、端子销、接地之间的绝缘处理结构越薄型化越困难。
并且,这种升压用变压器12除了因变压器的分布电容引起泄漏电流外,从荧光灯、高压电部分的各元件、引线等放射的噪声问题越薄型化就越容易发生。
本发明的目的在于鉴于上述实际情况,开发一种推挽式反相器,以便能使变压器形态薄型化、小型化的小型升压变压器的绝缘耐电压尽可能的低,同时能防止泄漏电流和噪声。
为了达到上述目的,本发明的推挽式反相器备有升压变压器,使从直流电源的输入电压升压并变换成交流电压,设置备有第1输出线圈和第2输出线圈的升压变压器,第1、第2输出线圈将阻抗元件连接到这些线圈之间并形成串联电路体,且对于这些第1、第2输出线圈中的一个线圈使其输出部与直流电源的负电位连接,形成同电位,同时第1、第2输出线圈的输出部与负载连接。
上述反相器将在升压变压器的第1、第2的输出线圈上发生的感应电压相加,该相加的电压变成总的输出电压。
其结果是,对于第1输出线圈的感应电压和第2输出线圈的感应电压就容易分别进行耐电压处理,与已有技术的反相器比较,能制成充分低的输出电压的耐电压处理结构。
并且,升压变压器的分布电容和高电压部产生的噪声由于是根据第1、第2输出线圈所发生的感应电压而产生的,所以泄漏电流和噪声电流极少。
因此,对升压变压器薄型化、小型化极有利。
图1是表示第1实施例的反相器电路图。
图2是表示第1实施例的反相器的变压器输出电压、管电压、耦合用电容器电压的矢量图。
图3是表示第2实施例的反相器电路图。
图4是表示第3实施例的反相器电路的部分图。
图5是表示第3实施例的反相器的变压器输出电压、管电压、线圈元件电压的矢量图。
图6是作为已有技术例而表示的反相器电路图。
图7是表示已有技术例的变压器输出电压、管电压、镇流电容器电压的矢量图。
下面,根据附图说明本发明的实施例。
图1是表示作为荧光灯的驱动器而实施的第1实施例的电路图。该实施例在升压变压器30有特点,其他的结构是与图6所示已有技术例的反相器电路相同的结构,共同的电路零件给与相同的符号。
如图示那样,升压变压器30备有初级线圈30P、第1次级线圈30S1、第2次级线圈30S2和第三线圈30F。
并且,该升压变压器30中,通过耦合用的电容器31连接作为输出的第1输出线圈30S1和第2输出线圈30S2,用这些输出线圈30S1、30S2和电容器31形成串联电路体。
上述升压变压器30在输出线圈30S1的输出部b和输出线圈30S2的输出部a处连接荧光灯11的同时,输出线圈30S1的输出部b与直流电源的负电位连接,形成同电位(地线)。
这样地构成的反相器通过推挽式反相器的振荡动作,使升压变压器30的第1次级线圈30S1和第2次级线圈30S2各自产生感应电压Es1和Es2,将这些感应电压Es1和Es2相加,形成总的输出电压Es。
图2是表示在下述这样地具体设定的各条件下使本实施例的反相器动作时的各电压的矢量图。
变压器总的输出电压Es=1,800V(有效值)
(峰值电压Ep-p=5,091V)
第1次级线圈30S1的输出电压Es1=900V(有效值)
第2次级线圈30S2的输出电压Es2=900V(有效值)
管电压           Vo=600V(有效值)
管电流           Io=20mmA(有效值)
管电功率         Wo=12W
耦合用的电容器电压Vca=1,697V(有效值)、(39.9pF)
输出电压频率     f=47kHz
管电流相位角     θ=70.53度
从该矢量图可知,第1次级线圈30S1的输出电压Es1和第2次级线圈30S2的输出电压Es2由于将电动势电压、荧光灯11和耦合用的电容器31作为负载,所以从Es1+Es2=Vo+Vca中得到(Es/2)+(Es/2)=Vo+Vca(但,这些各式是矢量的加法式)。
这样,耦合用的电容器31能起到把输出电压分成二部分的作用和镇流电容器的作用。
因而,变方Es1=Es2=900伏(Vp-p=2,545.5V),和已有技术例相比,能使变压器的绝缘耐电压减小一半。
其结果是,由于耐电压处理的构成简单,对变压器形态的薄形化、小形化有利,并且即使谋求薄形化、小形化也能防止因分布电容而引起的泄漏电流和从高电压部来的噪声放射。
又,由于只要不追求变压器形态的薄形化、小形化,就能较高地设定各个输出线圈电压,所以能充分提高总的输出电压Es,能作为管电压高的荧光灯的驱动器而使用。
图3是表示第2实施例的反相器电路图。该实施例在次级线圈30S1和30S2的d~e端之间连接荧光灯11,在这些次级线圈30S1和30S2的d~b端之间连接耦合用的电容器31。
设置起动用的晶体三极管32,当该晶体三极管32接通时,在晶体三极管13、14的基极输入起动电流。
其它的结构与图1所示的第1实施例相同。
该第2实施例由于进行和第1实施例相同的动作,所以省略该动作的说明。
图4是表示第3实施例的反相器部分电路图,该实施例的特征在于用线圈元件33连接升压变压器30的第1次级线圈30S1和第2次级线圈30S2,其它的结构与图1所示的反相器电路相同。
在本实施例中,由于管电流Io对输出电压Es1、Es2是滞后电流,所以输出电压Es1、Es2、管电压Vo和线圈元件电压VL变成如图5所示的矢量图,矢量加法式变为Es1+Es2=Vo+VL。
其结果,由于(Es/2)+(Es/2)=Vo+VL(矢量加法式)成立,就能得到和上述各实施例相同的效果。
以上仅说明了具体的实施例,也能用电阻元件连接升压变压器30的第1次级线圈30S1和第2次级线圈30S2而实施。但是,这时反相器的效率多少有些下降。
并且,在实施本发明时,升压变压器30的输出电压未必一定要形成Es1=Es2,也可以Es1>Es2或者与此相反地构成变压器。
本发明如上述实施例那样作为照明用放电管的反相器使用时,从端子15供给改变占空因数的脉冲就能进行调光动作。
另外,本发明的反相器不限于荧光灯那样的阻抗性负载,即使对于感应性负载或电容性负载也能同样地实施。

Claims (5)

1.一种推挽式反相器,备有升压变压器,使从直流电源的输入电压升压并变换成交流电压,其特征是,设置备有第1输出线圈和第2输出线圈的升压变压器,第1、第2输出线圈将阻抗元件连接到这些线圈之间并形成串联电路体,且对于这些第1、第2输出线圈中的一个线圈使其输出部与直流电源的负电位连接,形成同电位,同时第1、第2输出线圈的输出部与负载连接。
2.如权利要求1所述的推挽式反相器,其特征是,在第1、第2输出线圈之间,将电容器、线圈和电阻中的一个作为阻抗元件而连接。
3.如权利要求1所述的推挽式反相器,其特征是,在第1、第2线圈的输出部连接作为负载的荧光灯。
4.如权利要求1所述的推挽式反相器,其特征是,备有升压变压器、使从中间分抽接头流入一侧输入线圈的输入电流断续的第1晶体三极管、使从中间分抽接头流入另一侧输入线圈的输入电流断续的第2晶体三极管、连接在第1、第2输出线圈之间的电容器和连接在第1、第2输出线圈的输出部的荧光灯,升压变压器备有带中间分接抽头的输入线圈、第1、第2输出线圈。
5.如权利要求4所述的推挽式反相器,其特征是,用改变占空因数的脉冲使第1、第2晶体三极管动作,从而改变荧光灯点灯光的亮度。
CN96101293A 1995-03-06 1996-03-06 推挽式反相器 Expired - Fee Related CN1071953C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP07041495A JP3543236B2 (ja) 1995-03-06 1995-03-06 プッシュプルインバ−タ
JP70414/1995 1995-03-06
JP70414/95 1995-03-06

Publications (2)

Publication Number Publication Date
CN1136216A true CN1136216A (zh) 1996-11-20
CN1071953C CN1071953C (zh) 2001-09-26

Family

ID=13430796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96101293A Expired - Fee Related CN1071953C (zh) 1995-03-06 1996-03-06 推挽式反相器

Country Status (4)

Country Link
US (1) US5822201A (zh)
JP (1) JP3543236B2 (zh)
CN (1) CN1071953C (zh)
GB (1) GB2299469B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994959A (zh) * 2012-10-30 2013-03-27 无锡鸿声铝业有限公司 卷绕式真空镀铝机用加热装置
CN108886324A (zh) * 2016-04-21 2018-11-23 三菱电机株式会社 绝缘型升压转换器

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325099A (en) 1997-05-07 1998-11-11 David John Aarons Gas discharge lamp drive circuit; dimming
JPH11127576A (ja) * 1997-10-20 1999-05-11 Sansha Electric Mfg Co Ltd 直流電源装置
JPH11262168A (ja) * 1998-01-12 1999-09-24 Sanyo Electric Works Ltd 中点接地形漏洩変圧器の保護回路
US5969955A (en) * 1998-12-29 1999-10-19 General Electric Company Push-pull power converter with crowbar circuit for very fast output voltage turn-off
DE19943575A1 (de) * 1999-09-13 2001-03-22 Mannesmann Vdo Ag Gleichspannungswandler
US6469915B2 (en) * 2000-09-15 2002-10-22 Delta Electronics Inc. Resonant reset dual switch forward DC-to-DC converter
US6317347B1 (en) * 2000-10-06 2001-11-13 Philips Electronics North America Corporation Voltage feed push-pull resonant inverter for LCD backlighting
US6356035B1 (en) * 2000-11-27 2002-03-12 Philips Electronics North America Corporation Deep PWM dimmable voltage-fed resonant push-pull inverter circuit for LCD backlighting with a coupled inductor
JP2002175891A (ja) * 2000-12-08 2002-06-21 Advanced Display Inc 多灯式バックライト用インバータ
US7271546B2 (en) * 2001-07-16 2007-09-18 Harison Toshiba Lighting Corporation Lighting device for dielectric barrier discharge lamp
KR100925468B1 (ko) 2003-02-28 2009-11-06 삼성전자주식회사 액정 표시 장치
US6936975B2 (en) * 2003-04-15 2005-08-30 02Micro International Limited Power supply for an LCD panel
US7187139B2 (en) 2003-09-09 2007-03-06 Microsemi Corporation Split phase inverters for CCFL backlight system
JP4658061B2 (ja) 2003-10-06 2011-03-23 マイクロセミ・コーポレーション 複数のccfランプを動作させるための電流分配方法および装置
US7279851B2 (en) 2003-10-21 2007-10-09 Microsemi Corporation Systems and methods for fault protection in a balancing transformer
TW200517014A (en) * 2003-11-10 2005-05-16 Kazuo Kohno Drive circuit for lighting fixture
US7265499B2 (en) 2003-12-16 2007-09-04 Microsemi Corporation Current-mode direct-drive inverter
US7468722B2 (en) 2004-02-09 2008-12-23 Microsemi Corporation Method and apparatus to control display brightness with ambient light correction
US7112929B2 (en) 2004-04-01 2006-09-26 Microsemi Corporation Full-bridge and half-bridge compatible driver timing schedule for direct drive backlight system
US7250731B2 (en) 2004-04-07 2007-07-31 Microsemi Corporation Primary side current balancing scheme for multiple CCF lamp operation
US7755595B2 (en) 2004-06-07 2010-07-13 Microsemi Corporation Dual-slope brightness control for transflective displays
KR20050117924A (ko) * 2004-06-11 2005-12-15 엘지전자 주식회사 프로세서간 통신 향상을 위한 구조 및 방법
US7173382B2 (en) 2005-03-31 2007-02-06 Microsemi Corporation Nested balancing topology for balancing current among multiple lamps
US20080211615A1 (en) * 2005-09-29 2008-09-04 Greatchip Technology Co., Ltd. Inverter transformer
US7569998B2 (en) 2006-07-06 2009-08-04 Microsemi Corporation Striking and open lamp regulation for CCFL controller
US7746674B2 (en) * 2007-02-22 2010-06-29 Leader Electronics Inc. Self-oscillating power converter
TW200948201A (en) 2008-02-05 2009-11-16 Microsemi Corp Arrangement suitable for driving floating CCFL based backlight
US8093839B2 (en) 2008-11-20 2012-01-10 Microsemi Corporation Method and apparatus for driving CCFL at low burst duty cycle rates
JP4555388B1 (ja) * 2009-07-24 2010-09-29 株式会社白寿生科学研究所 電位治療装置
KR101083389B1 (ko) 2010-06-15 2011-11-14 건국대학교 산학협력단 공진형 컨버터를 이용한 연료전지용 전력변환장치 및 그 제어방법
WO2012012195A2 (en) 2010-07-19 2012-01-26 Microsemi Corporation Led string driver arrangement with non-dissipative current balancer
CN103477712B (zh) 2011-05-03 2015-04-08 美高森美公司 高效led驱动方法
US8754581B2 (en) 2011-05-03 2014-06-17 Microsemi Corporation High efficiency LED driving method for odd number of LED strings
CN105141134B (zh) * 2014-05-26 2019-06-14 中兴通讯股份有限公司 一种开关电源和控制该开关电源的方法
CN111740608B (zh) * 2020-07-03 2021-09-28 海信(山东)冰箱有限公司 双级升压高频电源拓扑、臭氧发生装置及洗衣机集成电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101806A (en) * 1976-08-26 1978-07-18 General Electric Company Ballast emi and shock hazard reduction
US4464606A (en) * 1981-03-25 1984-08-07 Armstrong World Industries, Inc. Pulse width modulated dimming arrangement for fluorescent lamps
US4513226A (en) * 1983-03-04 1985-04-23 Astec Components, Ltd. Electronic ballast-inverter circuit
GB2151090A (en) * 1983-12-08 1985-07-10 Min Yung Shyu Electronic ballast
US4873471A (en) * 1986-03-28 1989-10-10 Thomas Industries Inc. High frequency ballast for gaseous discharge lamps
FI903403A0 (fi) * 1989-07-10 1990-07-05 Philips Corp Krettssammanstaellning.
GB2244608A (en) * 1990-04-23 1991-12-04 P I Electronics Pte Ltd High frequency drive circuit for a fluorescent lamp
DE4039498B4 (de) * 1990-07-13 2006-06-29 Lutron Electronics Co., Inc. Schaltkreis und Verfahren zum Dimmen von Gasentladungslampen
JP3127405B2 (ja) * 1991-03-19 2001-01-22 株式会社キジマ コンバ−タ
US5359274A (en) * 1992-08-20 1994-10-25 North American Philips Corporation Active offset for power factor controller
US5406174A (en) * 1992-12-16 1995-04-11 U. S. Philips Corporation Discharge lamp operating circuit with frequency control of dimming and lamp electrode heating
US5557176A (en) * 1994-01-31 1996-09-17 Diversitec Incorporated Modulated electronic ballast for driving gas discharge lamps
US5586016A (en) * 1994-07-05 1996-12-17 Motorola, Inc. Circuit for quickly energizing electronic ballast

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994959A (zh) * 2012-10-30 2013-03-27 无锡鸿声铝业有限公司 卷绕式真空镀铝机用加热装置
CN108886324A (zh) * 2016-04-21 2018-11-23 三菱电机株式会社 绝缘型升压转换器

Also Published As

Publication number Publication date
GB2299469A (en) 1996-10-02
GB9603220D0 (en) 1996-04-17
CN1071953C (zh) 2001-09-26
US5822201A (en) 1998-10-13
JP3543236B2 (ja) 2004-07-14
JPH08251945A (ja) 1996-09-27
GB2299469B (en) 1999-11-03

Similar Documents

Publication Publication Date Title
CN1071953C (zh) 推挽式反相器
CN1056950C (zh) 具有功率因数校正的高频交流/交流变换器
CN1156200C (zh) 镇流系统
CN1117782A (zh) 具有两个晶体管和两个变压器的电子镇流器
CN1713499A (zh) Dc-dc变换器
CN1040599C (zh) 电源装置
CN1397150A (zh) 带前馈控制的电子镇流器
CN1116037A (zh) 气体放电灯的单晶体管镇流器
CN1039272C (zh) 推挽式逆变器
CN1171509C (zh) 并联存储串联驱动的电子镇流器
CN1381157A (zh) 电子镇流器
JPH11507176A (ja) 力率補正機能を有する単一スイッチ・バラスト
CN1193489C (zh) 电源装置、采用该电源的电子镇流器和自镇流的荧光灯
US7030568B2 (en) Circuit arrangement for operation of one or more lamps
CN1149005C (zh) 荧光灯点亮装置
CN1166254C (zh) 带灯丝预热的单个晶体管镇流器
CN1280975C (zh) 电子换流器
CN1692545A (zh) 电源电路及电子设备
EP0617567A1 (en) Ballast for discharge lamp with improved crest factor
CN1883107A (zh) 具有电阻性输入和低电磁干扰的可调光镇流器
US6246181B1 (en) Discharge lamp lighting device
CN1173963A (zh) 镇流系统
CN1049553C (zh) 镇流电路
JP3486883B2 (ja) 電源装置、放電灯点灯装置及び照明装置
CN100346674C (zh) 放电灯启动装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1028032

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010926

Termination date: 20100306