CN113600830B - 利用响应性聚合物基质进行硬质合金光打印的方法 - Google Patents

利用响应性聚合物基质进行硬质合金光打印的方法 Download PDF

Info

Publication number
CN113600830B
CN113600830B CN202111008064.2A CN202111008064A CN113600830B CN 113600830 B CN113600830 B CN 113600830B CN 202111008064 A CN202111008064 A CN 202111008064A CN 113600830 B CN113600830 B CN 113600830B
Authority
CN
China
Prior art keywords
responsive polymer
solvent
printing
hard alloy
polymer matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111008064.2A
Other languages
English (en)
Other versions
CN113600830A (zh
Inventor
赵治
王悦
王海滨
邢明
宋晓艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111008064.2A priority Critical patent/CN113600830B/zh
Publication of CN113600830A publication Critical patent/CN113600830A/zh
Application granted granted Critical
Publication of CN113600830B publication Critical patent/CN113600830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

利用响应性聚合物基质进行硬质合金光打印的方法,属于合金材料增材制造领域。利用响应性聚合物基质配制兼容全组分硬质合金的光固化前体,并在打印后进行分子冷压与分步致密化,大大提升了打印质量。以上方法操作简单,可将现有硬质合金打印精度由百微米量级提升一个数量级,并可实现致最高密度接近100%的样品打印。

Description

利用响应性聚合物基质进行硬质合金光打印的方法
技术领域
本发明涉及一种基于动态光处理技术(DLP),利用响应性聚合物基质在室温下对硬质合金进行3D打印的方法,属于合金材料增材制造领域。
背景技术
硬质合金因具有高硬度和耐磨性、优良的抗压和耐腐蚀性能,在航空航天、石油钻井、机械加工等领域中获得广泛应用并占据着重要地位。当前硬质合金产品主要依靠粉末冶金法制备,流程繁琐、成形难度大,无法满足现代工业的需求。3D打印是硬质合金的新型制备方法,工序简单、周期短,可实现产品一步制备成形,引起了业内广泛关注。激光选区熔化(SLM)是目前打印硬质合金的最常用技术。其工作流程是在打印设备成形区中均匀铺涂一层金属粉末,利用高能激光束熔化粉末,并在惰性气体保护下冷却,完成单层打印。经过循环上述步骤可实现三维零部件打印。然而,SLM成形的零件质量较低(特别是粘结相含量较低的硬质合金),成型精度差,且在快速升降温过程中内部应力来不及释放,易在工件内部产生由残余应力导致的微观与宏观缺陷,降低材料的服役性能与寿命。硬质合金的其他3D打印方法,如选区激光烧结(SLS)、熔丝制造(FFF)、墨水直写法(DIW)等其综合表现一般逊于SLM方法。
DLP技术是一类利用光化学反应固化打印前体的3D打印技术,具有成形速度快、打印精度高、打印质量优异等优势,特别适合作为硬质合金打印的新型技术手段。尽管DLP在打印树脂、水凝胶、金属纳米颗粒和陶瓷材料方面已有成功实践,但在硬质合金打印上的应用仍处于技术空白。
针对上述需求与技术瓶颈,本申请的发明人开发了首个基于DLP技术的硬质合金打印方法。利用响应性聚合物基质配制兼容全组分硬质合金的光固化前体,并在打印后进行分子冷压与分步致密化,大大提升了打印质量。以上方法操作简单,可将现有硬质合金打印精度由百微米量级提升一个数量级,并可实现致最高密度接近100%的样品打印。
发明内容
本发明针对现有硬质合金主要3D打印方法成形精度差、样品缺陷较多的问题以及DLP在硬质合金打印领域的技术空白,提出利用响应性聚合物基质开发硬质合金的动态光处理打印方法,以达到同时提高打印质量与精度的目的(图1)。
基于响应性聚合物基质的硬质合金DLP打印方法包括如下步骤:
(1)按照一定比例混合响应性聚合物单体、交联剂、光引发剂、粘稠剂与溶剂,在室温下超声约30min使各组分混合均匀,再加入硬质合金粉末如WC-Co复合粉末震荡均匀配制成可光固化前体;为便于显微镜下观察,可以再加入0.1mg/mL的荧光素-O-甲基丙烯酸酯。
响应性聚合物单体选自如丙烯酰胺、丙烯酸等;交联剂选自N,N’亚甲基双丙烯酰胺、聚乙二醇二丙烯酸酯等;光引发剂选自Irgacure819、Irgacure2959等;粘稠剂选自聚乙二醇PEG等;溶剂选自水、乙醇、乙二醇、二甲亚砜等。
响应性聚合物单体、交联剂、光引发剂、粘稠剂、溶剂、硬质合金粉末的用量关系为:当使用1mL溶剂时,响应性聚合物单体为0.1-0.3g,交联剂为10-40mg,光引发剂为1-5mg,粘稠剂为1g,硬质合金粉末为1-2g。
(2)利用常规DLP打印设备与流程打印步骤(1)可光固化前体;其中打印光源应选择波长不大于405nm的LED光源或在紫光波段具有一定强度的连续光源,光源强度应选择200mW,以保证适当的聚合速率;
(3)将打印后的毛坯置于溶剂中浸泡以脱去粘稠剂;此过程中响应性聚合物膨胀加速粘稠剂脱除,随后毛坯在室温环境中自然干燥,或在真空箱中室温干燥除去溶剂,获得初步致密化的打印坯体;在上述干燥过程中响应性聚合物网络收缩,从而具有对WC-Co复合粉料进行分子级别的冷压,可有效提高坯体致密度,经过分子冷压的坯体致密度可提高到80%以上,有利于后期烧结过程中进一步致密化。
所述的溶剂为响应性聚合物浸泡其中时能够膨胀且加速粘稠剂脱除,同时脱除粘稠剂与溶剂后膨胀的响应性聚合物能够收缩;可使用相应溶剂如水、乙醇等进行浸泡干燥。
(4)将初步致密化的坯体脱蜡烧结,脱蜡烧结可以在真空炉、低压炉或热等静压炉中进行,其中低压炉及热等静压炉烧结应保持还原性或惰性气氛;烧结时应先以小于1℃/min升温至高于有机物组分分解温度50℃左右,保持一段时间,使有机物分解气化完全,再升温至1390-1480℃,进行高温致密化烧结。经烧结后的样品致密度进一步提高,最高可达到接近100%,同时缺陷大幅减少。
与现有硬质合金3D打印技术相比,本发明的优势在于:分子冷压与分步致密化可有效提升产品的最终致密度,减少有机物的影响;温和的打印条件有助于减少应力导致的材料缺陷;动态光处理打印可有效提升产品的成形速度与分辨率。
附图说明
图1本发明打印原理示意图。
图2实施例1中试样各阶段实物图(a)和荧光显微图片(b)。
图3不同有机物、WC-Co含量前体打印干燥后的荧光显微图片。
图4打印毛坯可用烧结工艺曲线。(a)实施例1对应的1390℃烧结;(b)是实施例2对应的1480℃烧结,均为氩气气氛,压力5MPa。
图5实施例1中打印样品烧结后的SEM显微形貌。
图6实施例1中打印样品烧结后的物相XRD图谱。
图7实施例1中打印样品烧结后的EDS分析。
图8不同条件下打印样品的最终致密度统计。
图9对比例1中样品存在的微观缺陷
图10本打印方法与SLM打印方法的样品分辨率对比。(a)SLM方法;(b)、(c)本方法。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1:
取丙烯酰胺(AAM)0.2g、N,N’亚甲基双丙烯酰胺0.02g、2-羟基-4’-(2-羟乙氧基)-2-甲基苯丙酮0.005g、聚乙二醇1g为原料,加入1ml去离子水,1mg荧光素-O-甲基丙烯酸酯(作为荧光标记),室温下超声约30min混合均匀,再加入1.6g WC-7Co复合粉末震荡均匀配制成可光固化前体,通过DLP打印机逐层打印出毛坯。将打印后的毛坯置于去离子水中浸泡24h,然后在室温环境中干燥约40h,获得初步致密化的WC-Co坯体。将获得的坯体再经过1390℃低压烧结获得WC-Co硬质合金最终产物。打印过程中各阶段状态荧光显微图片如图2所示。烧结后显微形貌和物相分别如图3和图4所示。产物的显微与物相分析如图5-7所示,当改变AAM与WC-7Co复合粉末的配比时最终致密度如图8所示。可知在最适条件下,平均值密度约为94%,最高致密度可达99-100%。
实施例2:
取丙烯酰胺(AAM)0.2g、N,N’亚甲基双丙烯酰胺0.02g、2-羟基-4’-(2-羟乙氧基)-2-甲基苯丙酮0.005g,加入1ml甘油,1mg荧光素-O-甲基丙烯酸酯(作为荧光标记),室温下超声约30min混合均匀,再加入1.6g WC-7Co复合粉末震荡均匀配制成可光固化前体,通过DLP打印机逐层打印出毛坯。将打印后的毛坯置于去离子水中浸泡24h,然后在室温环境中干燥约40h,获得初步致密化的WC-Co坯体。将获得的坯体再经过1480℃低压烧结获得WC-Co硬质合金最终产物,宏观与微观形貌与实施例1中类似。
对比例1:
取WC-8Co球形复合粉末,粒径在15-50μm,用SLM方式进行打印。打印激光功率60W,扫描速度350mm/s,扫描间隔0.04mm,层厚0.02mm。打印的样品在SEM下可观察到大量明显的缺陷,如图9所示,质量远远低于DLP方式打印的相近Co含量硬质合金(图5)。SLM方法打印的样品分辨率也低于本方法打印的样品,如图10。

Claims (6)

1.一种基于响应性聚合物基质的硬质合金DLP打印方法,其特征在于,包括如下步骤:
(1)按照一定比例混合响应性聚合物单体、交联剂、光引发剂、粘稠剂和溶剂,在室温下超声使各组分混合均匀,再加入硬质合金粉末震荡均匀配制成可光固化前体;
(2)利用DLP打印设备与流程打印步骤(1)可光固化前体;其中打印光源应选择波长不大于405nm的LED光源或在紫光波段具有一定强度的连续光源,光源强度应选择200mW,以保证适当的聚合速率;
(3)将打印后的毛坯置于溶剂中浸泡以脱去粘稠剂;此过程中响应性聚合物膨胀加速粘稠剂脱除,随后毛坯在室温环境中自然干燥,或在真空箱中室温干燥除去溶剂,获得初步致密化的打印坯体;在上述干燥过程中响应性聚合物网络收缩,从而具有对硬质合金粉末进行分子级别的冷压,有效提高坯体致密度;
所述的溶剂为响应性聚合物浸泡其中时能够膨胀且加速粘稠剂脱除,同时脱除粘稠剂与溶剂后膨胀的响应性聚合物能够收缩;(4)将初步致密化的坯体脱蜡烧结,脱蜡烧结可以在真空炉、低压炉或热等静压炉中进行,其中低压炉及热等静压炉烧结应保持还原性或惰性气氛;烧结时应先以小于1℃/min升温至高于有机物组分分解温度50℃左右,保持一段时间,使有机物分解气化完全,再升温至1390-1480℃,进行高温致密化烧结。
2.按照权利要求1所述的一种基于响应性聚合物基质的硬质合金DLP打印方法,其特征在于,步骤(1)中响应性聚合物单体、交联剂、光引发剂、粘稠剂、溶剂、硬质合金粉末的用量关系为:当使用1mL溶剂时,响应性聚合物单体为0.1-0.3g,交联剂为10-40mg,光引发剂为1-5mg,粘稠剂为1g,硬质合金粉末为1-2g。
3.按照权利要求1所述的一种基于响应性聚合物基质的硬质合金DLP打印方法,其特征在于,步骤(1)响应性聚合物单体选自如丙烯酰胺、丙烯酸等;交联剂选自N,N’亚甲基双丙烯酰胺、聚乙二醇二丙烯酸酯等;光引发剂选自Irgacure819、Irgacure2959等;粘稠剂选自聚乙二醇PEG等;溶剂选自水、乙醇、乙二醇、二甲亚砜等。
4.按照权利要求1所述的一种基于响应性聚合物基质的硬质合金DLP打印方法,其特征在于,溶剂选自水、乙醇等进行浸泡干燥。
5.按照权利要求1所述的一种基于响应性聚合物基质的硬质合金DLP打印方法,其特征在于,硬质合金粉末选自WC-Co复合粉末。
6.按照权利要求1所述的一种基于响应性聚合物基质的硬质合金DLP打印方法,其特征在于,在可光固化前体中加入0.1mg/mL的荧光素-O-甲基丙烯酸酯。
CN202111008064.2A 2021-08-30 2021-08-30 利用响应性聚合物基质进行硬质合金光打印的方法 Active CN113600830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111008064.2A CN113600830B (zh) 2021-08-30 2021-08-30 利用响应性聚合物基质进行硬质合金光打印的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111008064.2A CN113600830B (zh) 2021-08-30 2021-08-30 利用响应性聚合物基质进行硬质合金光打印的方法

Publications (2)

Publication Number Publication Date
CN113600830A CN113600830A (zh) 2021-11-05
CN113600830B true CN113600830B (zh) 2022-06-21

Family

ID=78309724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111008064.2A Active CN113600830B (zh) 2021-08-30 2021-08-30 利用响应性聚合物基质进行硬质合金光打印的方法

Country Status (1)

Country Link
CN (1) CN113600830B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817510A (zh) * 2006-03-21 2006-08-16 北京科技大学 一种高孔隙度镍钛基形状记忆合金的凝胶注模成型方法
CN100999017A (zh) * 2006-01-09 2007-07-18 山特维克知识产权股份有限公司 硬质合金体的凝胶浇铸方法
CN104907567A (zh) * 2015-06-29 2015-09-16 北京科技大学 一种制备高密度复杂形状硬质合金零件和刀具的方法
CN105057665A (zh) * 2015-08-17 2015-11-18 王海英 一种3d打印零部件的方法
WO2017178084A1 (en) * 2016-04-15 2017-10-19 Sandvik Intellectual Property Ab Three dimensional printing of cermet or cemented carbide
CN108356260A (zh) * 2018-04-04 2018-08-03 北京工业大学 一种硬质合金异形制品的3d打印制造方法
CN108705086A (zh) * 2018-05-24 2018-10-26 北京科技大学 一种3d凝胶打印制备钢结硬质合金的方法
WO2021004776A1 (en) * 2019-07-05 2021-01-14 Sandvik Machining Solutions Ab Three dimensional printing of cermet or cemented carbide
CN112759399A (zh) * 2020-12-29 2021-05-07 中国科学院长春光学精密机械与物理研究所 铝基碳化硅封装部件材料及其碳化硅预置坯体制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999017A (zh) * 2006-01-09 2007-07-18 山特维克知识产权股份有限公司 硬质合金体的凝胶浇铸方法
CN1817510A (zh) * 2006-03-21 2006-08-16 北京科技大学 一种高孔隙度镍钛基形状记忆合金的凝胶注模成型方法
CN104907567A (zh) * 2015-06-29 2015-09-16 北京科技大学 一种制备高密度复杂形状硬质合金零件和刀具的方法
CN105057665A (zh) * 2015-08-17 2015-11-18 王海英 一种3d打印零部件的方法
WO2017178084A1 (en) * 2016-04-15 2017-10-19 Sandvik Intellectual Property Ab Three dimensional printing of cermet or cemented carbide
CN108356260A (zh) * 2018-04-04 2018-08-03 北京工业大学 一种硬质合金异形制品的3d打印制造方法
CN108705086A (zh) * 2018-05-24 2018-10-26 北京科技大学 一种3d凝胶打印制备钢结硬质合金的方法
WO2021004776A1 (en) * 2019-07-05 2021-01-14 Sandvik Machining Solutions Ab Three dimensional printing of cermet or cemented carbide
CN112759399A (zh) * 2020-12-29 2021-05-07 中国科学院长春光学精密机械与物理研究所 铝基碳化硅封装部件材料及其碳化硅预置坯体制备方法

Also Published As

Publication number Publication date
CN113600830A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
CN111233485B (zh) 基于高固含量硅系浆料3d打印直写成型复杂结构陶瓷的方法
DE102007030096A1 (de) Verfahren zur Gestaltung von Gussformen
US20070072762A1 (en) Method of Making Ceramic Discharge Vessels Using Stereolithography
CN108705086A (zh) 一种3d凝胶打印制备钢结硬质合金的方法
CN109439995B (zh) 高熵非晶合金涂层及其制备方法
CN113880559A (zh) 一种基于光固化成形的难固化陶瓷的制备方法及产品
CN112974836B (zh) 一种镁合金3d增材制造高粘全液相烧结方法
CN113600830B (zh) 利用响应性聚合物基质进行硬质合金光打印的方法
CN115351290A (zh) 一种基于球形喂料打印制备复杂形状金属陶瓷零件的方法
CN109943749B (zh) 一种应用于饰品3d打印首模的铜合金球形粉末材料
CN112222398B (zh) 一种dlp成形形状记忆合金制件的4d打印方法
Ng et al. Machining of novel alumina/cyanoacrylate green ceramic compacts
Guo et al. Spatter-free laser drilling of alumina ceramics based on gelcasting technology
CN113106384B (zh) 一种光固化用航空发动机渗铝料浆及其制备方法与应用
Melentiev et al. High-resolution metal 3D printing via digital light processing
Li et al. Direct ink writing of porous Ti6Al4V alloys via UV light curing
CN1272126C (zh) 金属粉末或者陶瓷粉末的造粒及其制法以及以造粒粉末为原料的烧结材料制造方法
CN110885253A (zh) 一种激光扫描陶瓷打印工艺
RU2790493C1 (ru) Способ изготовления заготовок послойным лазерным сплавлением металлических порошков сплавов на основе титана
CN113441731B (zh) 一种在太空环境中快速制造高精度金属结构的方法
CA2382798A1 (en) Low pressure injection molding of knife blades from metal feedstocks
Yang et al. New Methods and Techniques Based on Gelation
Wang et al. Forming technology of non-heat source binder jetting metal powder and its final treatment process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant