CN113584444A - 一种超硬疏水自清洁薄膜的制备方法 - Google Patents

一种超硬疏水自清洁薄膜的制备方法 Download PDF

Info

Publication number
CN113584444A
CN113584444A CN202110757174.2A CN202110757174A CN113584444A CN 113584444 A CN113584444 A CN 113584444A CN 202110757174 A CN202110757174 A CN 202110757174A CN 113584444 A CN113584444 A CN 113584444A
Authority
CN
China
Prior art keywords
layer
film
superhard
hydrophobic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110757174.2A
Other languages
English (en)
Other versions
CN113584444B (zh
Inventor
张颢曦
许崇南
詹非凡
王杰
许胤曦
李海涛
陈宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202110757174.2A priority Critical patent/CN113584444B/zh
Publication of CN113584444A publication Critical patent/CN113584444A/zh
Application granted granted Critical
Publication of CN113584444B publication Critical patent/CN113584444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种超硬疏水自清洁薄膜的制备方法。方法包括:一、基体前处理;二、镀膜前准备;三、制备Cr/CrN周期膜;四、等离子刻蚀;五、Al2O3颗粒表面改性;六、有机溶液修饰制备疏水膜,得到致密均匀‑超硬‑疏水‑耐蚀的复合薄膜。本方法将物理的沉积方法和化学浸饰的方法结合,相互取长补短,充分发挥各自的优势,磁控溅射持续稳定,制备的薄膜致密均匀,周期膜可大幅度提高复合膜层的硬度,释放应力,增加韧性。有机溶液修饰可降低表面能,提高表面的疏水性能,而且Al2O3颗粒表面改性后掺杂有机溶液中修饰可二次提高薄膜的硬度,效果显著。本发明用于制备超硬疏水自清洁的复合薄膜。

Description

一种超硬疏水自清洁薄膜的制备方法
技术领域
本发明涉及自清洁薄膜技术领域,具体涉及一种超硬疏水自清洁薄膜的制备方法。
背景技术
眼镜、汽车风挡玻璃以及观测镜等在寒冷的冬天遇水蒸气会在其表面结冰结霜,严重阻碍视线,影响交通出行,增加了事故的概率。目前眼镜和汽车车窗等材料多为树脂或玻璃,如在其表面制备超硬疏水的薄膜,一来可以减少结冰结霜现象,二来可以减少表面的刮擦和磨损。针对海上和河流中航行的轮船,底部经常会由于礁石等发生磨损,而且海水中氯离子的存在,在船底埋弧焊焊接接头的位置还容易发生腐蚀,存在潜在的危险并影响航行寿命。如果在船底制备超硬疏水的薄膜,一来可以对船底形成很好的保护,二来疏水薄膜可以减少轮船航行时的阻力。因此,本发明在生活和生产中具有十分重要的意义,不仅可起到防腐耐磨的保护效果,而且自清洁和疏水性能可以提高人们生活质量,给生活带来方便,避免事故,降低经济损失。
发明内容
本发明所要解决的问题是:提供一种超硬疏水自清洁薄膜的制备方法,能够解决材料表面不耐磨、易腐蚀、结冰结霜等问题。
本发明为解决上述问题所提供的技术方案为:一种超硬疏水自清洁薄膜的制备方法,所述方法包括以下步骤:
一、基体前处理:将基体在KOH和NaHCO3混合液中去油,稀HCl冲洗中和,再经金相砂纸逐级打磨和抛光后,分别在丙酮和无水乙醇中超声清洗,冷风吹干;
二、镀膜前准备:将步骤一清洗后的基体放入磁控溅射的真空室内,通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,溅射清洗并刻蚀基体,然后对Cr靶材进行预溅射;
三、制备Cr/CrN周期层:采用高功率脉冲+偏压的混合磁控溅射方法,首先通入Ar气在基体表面溅射Cr靶制备打底Cr,然后再通入高纯氮气反应溅射Cr靶在Cr打底层上制备CrN层,如此交替重复,循环10次,在基体上制备Cr/CrN周期薄膜;
四、等离子刻蚀:通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,在步骤三制备的Cr/CrN周期薄膜表面进行离子刻蚀,制备表面粗糙结构的微凸起;
五、Al2O3颗粒表面改性:首先在双氧水和浓硫酸的混合液中对Al2O3颗粒进行表面羟基化处理。其次在乙醇中分别加入环氧丙氧基丙基三甲氧基硅烷(KH-560)和氨丙基三乙氧基硅烷(KH-550),超声震荡一定时间,使其充分水解。然后向其中加入Al2O3颗粒,超声振荡,使其充分分散。最后搅拌一定时间得到环氧基和胺基改性的Al2O3
六、疏水膜的制备:将步骤四所得的表面浸入环氧基改性后的Al2O3乙醇溶液在一定温度下反应一定时间,再浸入胺基改性后的Al2O3乙醇溶液一定温度下反应一定时间,如此交替重复10次。最后将层层组装后的表面浸入到十三氟辛基三乙氧基硅烷的乙醇溶液中,在一定温度下反应一定时间,之后再加热处理一定时间。
优选的,步骤一中KOH浓度为10~50g/L,NaHCO3浓度20~80g/L,稀HCl浓度3~8mol/L,超声时间10~30min。
优选的,步骤二中氩气流量20~100sccm,氖气流量10~50sccm,氢气流量5~30sccm,工作气压0.5~1.5Pa。高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,刻蚀基体10~30min。
优选的,步骤三中高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,氩气流量20~100sccm,氮气流量2~50sccm。Cr层厚度50~300nm,CrN层沉积时间10~30min。
优选的,步骤四中高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,氩气流量20~100sccm,氖气气流量10~50sccm,氢气流量5~30sccm,工作气压0.5~1.5Pa,刻蚀时间10~30min。
优选的,步骤五中所述的双氧水浓度10%~50%,双氧水与浓硫酸体积比为1比2~1比5,处理时间5~20min。
优选的,步骤五是在200ml乙醇中分别加入环氧丙氧基丙基三甲氧基硅烷(KH-560)和氨丙基三乙氧基硅烷(KH-550)0.1~0.5g,超声震荡5~20min,使其充分水解。
优选的,步骤五中加入Al2O3颗粒,超声振荡10~30min,使其充分分散。最后搅拌5~15h得到环氧基和胺基改性的Al2O3
优选的,步骤六中所述的将步骤四所得的表面浸入环氧基改性后的Al2O3乙醇溶液中,在60~120℃下反应5~20min,再浸入胺基改性后的Al2O3乙醇溶液中,在60~120℃下反应5~20min,如此交替重复10次;最后将层层组装后的表面浸入到十三氟辛基三乙氧基硅烷的乙醇溶液中,在60~120℃下反应15~40min,之后再在90~150℃下加热1~3h。
优选的,步骤六中所述的Al2O3粒度为50nm~1μm。
与现有技术相比,本发明的优点是:
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1所制备的薄膜的层结构示意图;
图2为实施例1中所制备的薄膜的表面形貌;
图3为实施例1中所制备薄膜的接触角测试结果;
图4为实施例1中所制备的薄膜摩擦系数曲线
图5为实施例1中所制备的薄膜在碱液和盐溶液中的极化曲线;
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
具体实施方式一:本实施方式为一种超硬疏水自清洁薄膜的制备方法,包括以下步骤:
一、基体前处理:将Q235钢基体在KOH和NaHCO3混合液中去油,然后稀HCl冲洗中和,再经过金相砂纸逐级打磨和抛光后,分别在丙酮、无水乙醇中超声清洗,冷风吹干;
二、镀膜前准备:将步骤一清洗后的基体放入磁控溅射的真空室内,通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,溅射清洗并刻蚀基体,然后对Cr靶材进行预溅射;
三、制备Cr/CrN周期层:采用高功率脉冲+偏压的混合磁控溅射方法,首先通入Ar气通过溅射Cr靶在基体表面制备打底Cr层,然后再通入高纯氮气反应溅射在Cr打底层上制备CrN层,如此交替重复,循环10次,在基体上制备Cr/CrN周期薄膜;
四、等离子刻蚀:通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,在步骤三制备的Cr/CrN周期薄膜表面进行离子刻蚀,制备表面粗糙结构的微凸起;
五、Al2O3颗粒表面改性:首先在双氧水和浓硫酸的混合液中对Al2O3颗粒进行表面羟基化处理。其次在200ml乙醇中分别加入环氧丙氧基丙基三甲氧基硅烷(KH-560)和氨丙基三乙氧基硅烷(KH-550),超声震荡一定时间,使其充分水解。然后向其中加入Al2O3颗粒,超声振荡,使其充分分散。最后搅拌一定时间得到环氧基和胺基改性的Al2O3
六、疏水膜的制备:将步骤四所得的表面浸入环氧基改性后的Al2O3乙醇溶液中在一定温度下反应一定时间,再浸入胺基改性后的Al2O3乙醇溶液中在一定温度下反应一定时间,如此交替重复10次。最后将层层组装后的表面浸入到十三氟辛基三乙氧基硅烷的乙醇溶液中,在一定温度下反应一定时间,之后再加热处理一定时间。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述的KOH浓度为10~50g/L,NaHCO3浓度20~80g/L,稀HCl浓度3~8mol/L。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中所述打磨依次采用500#、800#、1000#、1500#和2000#的金相砂纸打磨,打磨后的基体在Al2O3抛光膏的作用下抛光处理0.5~3h,超声功率为100~200W,超声时间10~30min。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中所述的氩气、氖气和氢气的流量分别为20~100sccm、10~50sccm、5~30sccm,工作气压0.5~1.5Pa。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中所述的高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,刻蚀基体的时间为10~30min,Cr靶预溅射时间10~30min。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三中所述的高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,氩气流量20~100sccm,打底Cr层厚度50nm~300nm。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤三中所述的氮气流量2~50sccm,CrN层沉积时间10~30min。Cr层和CrN层交替重复沉积,循环10次。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四中所述的等离子刻蚀中氩气流量20~100sccm,氖气气流量10~50sccm,氢气流量5~30sccm,工作气压0.5~1.5Pa,高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,刻蚀时间10~30min。其它与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤五中所述的双氧水浓度10%~50%,双氧水与浓硫酸体积比为1:2~1:5,处理时间5~20min。200ml乙醇中加入环氧丙氧基丙基三甲氧基硅烷(KH-560)和氨丙基三乙氧基硅烷(KH-550)的质量为0.1~0.5g,超声震荡5~20min。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤五中所述的Al2O3颗粒的尺寸为50nm~1μm,超声振荡10~30min。最后搅拌的时间为5~15h。其它与具体实施方式一至九之一相同。
具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是:步骤六中环氧基改性后的Al2O3乙醇溶液中反应温度为60~120℃,反应时间5~20min。胺基改性后的Al2O3乙醇溶液中反应温度为60~120℃,反应时间5~20min。如此交替重复10次。其它与具体实施方式一至十之一相同。
具体实施方式十二:本实施方式与具体实施方式一至十一之一不同的是:步骤六中所述的十三氟辛基三乙氧基硅烷的乙醇溶液中反应温度为60~120℃,反应时间15~40min,之后再在90~150℃下加热1~3h。其它与具体实施方式一至十一之一相同。
下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
本实施例一种超硬疏水自清洁薄膜的制备方法,包括以下步骤:
一、基体的前处理:将尺寸为30mm×30mm×3mm的Q235钢基体在30g/L的KOH和50g/L的NaHCO3混合液中去油,然后用3mol/L的稀HCl冲洗中和,再采用500#、800#、1000#、1500#和2000#的金相砂纸逐级打磨并对打磨后的基体在Al2O3抛光膏的作用下抛光,得到表面光洁的基体,随后将基体分别在丙酮、无水乙醇中超声清洗,超声清洗的时间为20min,超声功率为200W。然后冷风吹干放入磁控溅射的真空室内。
二、镀膜前的准备:将Cr靶安装好,将清洗过的基片固定在样品架上,调节靶材与样品架的距离,而后关闭真空室并检查气密性。开启机械泵抽真空,当真空度低于10Pa时,开启分子泵进一步抽真空,直至真空室内的真空度小于1×10-3Pa。通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,溅射清洗并刻蚀基体,这样可增加薄膜与基体的结合性能,同时,刻蚀后的基体对于形成疏水的薄膜也十分有利。而后,为了保证靶材表面的洁净,避免杂质沉积在基体表面污染薄膜,在镀膜前还要对靶材进行预溅射,靶材预溅射时,开启挡板,使预溅射下来的粒子沉积在挡板上,避免污染基体。
三、制备Cr/CrN周期层:采用高功率脉冲+偏压的混合磁控溅射方法,首先通入Ar气在基体表面溅射Cr靶制备打底Cr,然后再通入高纯氮气反应溅射Cr靶在Cr打底层上制备CrN层,如此交替重复,循环10次,在基体上制备Cr/CrN周期薄膜,得到Cr/CrN周期薄膜—基体;
四、等离子刻蚀:通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,在步骤三制备的Cr/CrN周期薄膜表面进行离子刻蚀,制备表面粗糙结构的微凸起,得到离子刻蚀层—Cr/CrN周期薄膜—基体;
五、Al2O3颗粒表面改性:首先在双氧水和浓硫酸的混合液中对Al2O3颗粒进行表面羟基化处理。其次在200ml乙醇中分别加入环氧丙氧基丙基三甲氧基硅烷(KH-560)和氨丙基三乙氧基硅烷(KH-550)0.4g,超声震荡15min,使其充分水解。然后向其中加入Al2O3颗粒,超声振荡15min,使其充分分散。最后搅拌10h得到环氧基和胺基改性的Al2O3
六、疏水膜的制备:将步骤四所得的表面浸入环氧基改性后的Al2O3乙醇溶液在90℃下反应10min,再浸入胺基改性后的Al2O3乙醇溶液在90℃下反应10min,如此交替重复10次。最后将层层组装后的表面浸入到十三氟辛基三乙氧基硅烷的乙醇溶液中,在120℃下反应30min,之后再加热处理一定时间,最终得到十三氟辛基三乙氧基硅烷修饰层—环氧基/胺基层层组装周期层—离子刻蚀层—Cr/CrN周期薄膜—基体,即完成在Q235钢表面复合薄膜的制备。
步骤一所述抛光时间为1.5h。
步骤二中所述的氩气流量为50sccm,氖气流量为20sccm,氢气流量为20sccm,工作气压1Pa,高功率脉冲电源功率为15KW,脉宽1000μs,偏压为-1000V,刻蚀基体20min。Cr靶预溅射参数为:高功率脉冲电源功率为15KW,脉宽1000μs,偏压为-1000V,工作气压1Pa,氩气流量50sccm,氖气流量20sccm,氢气流量20sccm,预溅射时间10min,得到纯净的靶材。
步骤三所述的高功率脉冲电源功率为15KW,脉宽1000μs,偏压为-1000V,氩气流量50sccm,打底Cr层厚度为100nm,氮气流量10sccm,CrN层溅射时间20min。
步骤四所述的等离子刻蚀中氩气流量50sccm,氖气气流量20sccm,氢气流量20sccm,工作气压1Pa,高功率脉冲电源功率为15KW,脉宽1000μs,偏压为-1000V,刻蚀时间30min。
步骤五所述的双氧水浓度为20%,双氧水与浓硫酸体积比为1:2,处理时间10min。加入Al2O3颗粒的尺寸为200nm。
步骤六所述的之后再加热处理的温度为120℃,处理2h。
本实施例得到的复合薄膜的层结构示意图如图1所示,从下至上依次为:基体、Cr/CrN周期层、离子刻蚀层、环氧基/胺基改性层、十三氟辛基三乙氧基硅烷修饰层、加热处理层。
本方法采用高功率脉冲和偏压复合的磁控溅射技术,真空室内通入氩气+氖气+氢气的混合气氛,薄膜的制备效率高,解决了直流溅射过程靶材容易中毒的现象以及沉积粒子在基体上形核和生长能量低的问题。物理气相沉积周期膜层和化学改性层层组装层的联合运用,解决了基体和薄膜材料由于热物性参数不同带来的应力大和结合差的问题,而且此种超晶格周期层的设计大大提高了复合薄膜的硬度和耐磨性。采用Cr作为打底缓冲层,不仅能起到释放应力提高膜/基结合性能的效果,而且可以作为后续薄膜的沉积时的衬底,起到很好的连接作用,Cr与大多数衬底都有较好的附着强度。磁控溅射周期层和化学层层改性周期层之间采用离子刻蚀层作为连接,一方面为疏水的表面构建了微凸结构,二来在两者之间起到了很好的过渡和连接作用。层层组装改性层以及十三氟辛基三乙氧基硅烷修饰层降低了表面自由能,对于增加薄膜的疏水性能十分有益。疏水薄膜使得薄膜在与腐蚀溶液接触时不容易润湿,对于薄膜的防腐蚀性能的提高很有帮助。
如图2所示,通过场发射扫描电镜观察得知,本方法制备的复合薄膜表面呈现类似菜花形状的结构,团聚在一起的圆形颗粒大小均匀,此种表面微凸结构可以增加薄膜的疏水性能,对基体具有十分好的保护作用。
图3为复合薄膜的接触角测试结果。2000Ci型静滴接触角测量仪测量薄膜的接触角,得知本方法制备薄膜的接触角为122.5°,远大于90°,因此本实施例得到的复合薄膜表现出良好的疏水性能。
图4为复合薄膜的摩擦系数曲线。图4中可知,该方法制备的复合薄膜具有良好的耐磨性能,在与GCr15摩擦副(HRC 62)接触200S后,摩擦过程平稳,摩擦系数平均为0.09,小于0.1。
图5为复合薄膜在NaOH碱溶液和NaCl盐溶液中的电化学极化曲线,图中显示无论是在碱溶液还是盐溶液中,复合薄膜都具有良好的耐蚀性能,腐蚀电位高于-0.93V,腐蚀电流密度为10-6数量级。
经过上述实验验证可知,本发明是一种较好的制备高硬-疏水-具有自清洁效果的薄膜制备方法。
以上仅就本发明的最佳实施例作了说明,但不能理解为是对权利要求的限制。本发明不仅局限于以上实施例,其具体结构允许有变化。凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明保护范围内。

Claims (10)

1.一种超硬疏水自清洁薄膜的制备方法,其特征在于:所述方法包括以下步骤:
一、基体前处理:将基体在KOH和NaHCO3混合液中去油,稀HCl冲洗中和,再经金相砂纸逐级打磨和抛光后,分别在丙酮和无水乙醇中超声清洗,冷风吹干;
二、镀膜前准备:将步骤一清洗后的基体放入磁控溅射的真空室内,通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,溅射清洗并刻蚀基体,然后对Cr靶材进行预溅射;
三、制备Cr/CrN周期层:采用高功率脉冲+偏压的混合磁控溅射方法,首先通入Ar气在基体表面溅射Cr靶制备打底Cr,然后再通入高纯氮气反应溅射Cr靶在Cr打底层上制备CrN层,如此交替重复,循环10次,在基体上制备Cr/CrN周期薄膜;
四、等离子刻蚀:通入氩气+氖气+氢气混合气体并调节真空室内气压,开启高功率脉冲电源及偏压电源,在步骤三制备的Cr/CrN周期薄膜表面进行离子刻蚀,制备表面粗糙结构的微凸起;
五、Al2O3颗粒表面改性:首先在双氧水和浓硫酸的混合液中对Al2O3颗粒进行表面羟基化处理;其次在乙醇中分别加入环氧丙氧基丙基三甲氧基硅烷和氨丙基三乙氧基硅烷,超声震荡一定时间,使其充分水解;然后向其中加入Al2O3颗粒,超声振荡,使其充分分散;最后搅拌一定时间得到环氧基和胺基改性的Al2O3
六、疏水膜的制备:将步骤四所得的表面浸入环氧基改性后的Al2O3乙醇溶液在一定温度下反应一定时间,再浸入胺基改性后的Al2O3乙醇溶液一定温度下反应一定时间,如此交替重复10次;最后将层层组装后的表面浸入到十三氟辛基三乙氧基硅烷的乙醇溶液中,在一定温度下反应一定时间,之后再加热处理一定时间。
2.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤一中KOH浓度为10~50g/L,NaHCO3浓度20~80g/L,稀HCl浓度3~8mol/L,超声时间10~30min。
3.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤二中氩气流量20~100sccm,氖气流量10~50sccm,氢气流量5~30sccm,工作气压0.5~1.5Pa;高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,刻蚀基体10~30min。
4.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤三中高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,氩气流量20~100sccm,氮气流量2~50sccm;Cr层厚度50~300nm,CrN层沉积时间10~30min。
5.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤四中高功率脉冲电源功率为5~20KW,脉宽200~2500μs,偏压为-300~-1500V,氩气流量20~100sccm,氖气气流量10~50sccm,氢气流量5~30sccm,工作气压0.5~1.5Pa,刻蚀时间10~30min。
6.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤五中所述的双氧水浓度10%~50%,双氧水与浓硫酸体积比为1比2~1比5,处理时间5~20min。
7.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤五是在200ml乙醇中分别加入环氧丙氧基丙基三甲氧基硅烷和氨丙基三乙氧基硅烷0.1~0.5g,超声震荡5~20min,使其充分水解。
8.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤五中加入Al2O3颗粒,超声振荡10~30min,使其充分分散;最后搅拌5~15h得到环氧基和胺基改性的Al2O3
9.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤六中将步骤四所得的表面浸入环氧基改性后的Al2O3乙醇溶液中,在60~120℃下反应5~20min,再浸入胺基改性后的Al2O3乙醇溶液中,在60~120℃下反应5~20min,如此交替重复10次;最后将层层组装后的表面浸入到十三氟辛基三乙氧基硅烷的乙醇溶液中,在60~120℃下反应15~40min,之后再在90~150℃下加热1~3h。
10.根据权利要求1所述的一种超硬疏水自清洁薄膜的制备方法,其特征在于:步骤六中所述的Al2O3粒度为50nm~1μm。
CN202110757174.2A 2021-07-05 2021-07-05 一种超硬疏水自清洁薄膜的制备方法 Active CN113584444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110757174.2A CN113584444B (zh) 2021-07-05 2021-07-05 一种超硬疏水自清洁薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110757174.2A CN113584444B (zh) 2021-07-05 2021-07-05 一种超硬疏水自清洁薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN113584444A true CN113584444A (zh) 2021-11-02
CN113584444B CN113584444B (zh) 2023-04-18

Family

ID=78245938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110757174.2A Active CN113584444B (zh) 2021-07-05 2021-07-05 一种超硬疏水自清洁薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN113584444B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214597A (zh) * 2021-12-14 2022-03-22 国网天津市电力公司电力科学研究院 一种超疏水纳米结构有机薄膜的定向生长调控方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195508A (zh) * 2014-09-15 2014-12-10 佳木斯大学 不锈钢手术器械表面制备Cr/CrN/Cu-TiN薄膜的方法
CN109295416A (zh) * 2018-10-29 2019-02-01 北京机械工业自动化研究所 一种超疏水复合涂层及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195508A (zh) * 2014-09-15 2014-12-10 佳木斯大学 不锈钢手术器械表面制备Cr/CrN/Cu-TiN薄膜的方法
CN109295416A (zh) * 2018-10-29 2019-02-01 北京机械工业自动化研究所 一种超疏水复合涂层及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪海平等: "硅烷偶联剂对纳米氧化铝的疏水改性综合实验" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214597A (zh) * 2021-12-14 2022-03-22 国网天津市电力公司电力科学研究院 一种超疏水纳米结构有机薄膜的定向生长调控方法

Also Published As

Publication number Publication date
CN113584444B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN111074224B (zh) 一种耐腐蚀高熵合金氮化物涂层、其制备方法及应用
KR101117800B1 (ko) 마그네슘 합금 부재의 표면 처리 방법 및 이를 이용하여 처리된 마그네슘 합금 부재
US20010051273A1 (en) Hydrophobic coating including DLC on substrate
WO2001081261A1 (en) Hydrophobic coating including dlc on substrate
Dai et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo 0.3 high-entropy alloy coating fabricated by magnetron sputtering
CN113584444B (zh) 一种超硬疏水自清洁薄膜的制备方法
CN111321380B (zh) 超疏水类金刚石复合层结构及其制备方法
TWI496917B (zh) 殼體及其製作方法
CN113636760B (zh) 一种防雾自清洁玻璃及其制备方法
Madaoui et al. Effect of argon-oxygen mixing gas during magnetron sputtering on TiO 2 coatings
CN109487213A (zh) 一种基于不锈钢的耐蚀防污薄膜及其制备方法
CN110117774A (zh) 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
CN113046703A (zh) 一种高硬度纳米复合涂层及其制备方法与应用
KR20150114891A (ko) 고경도 박막형 투명 박판 글라스, 이의 제조 방법, 고경도 박막형 투명 박판 도전성 글라스 및 이를 포함하는 터치 패널
WO2023201766A1 (zh) 一种增材制造金属零件表面防腐防污复合处理方法
CN109913826A (zh) 一种新型银引入氮化铪膜高疏水耐久材料
CN101045610A (zh) 自清洁薄膜材料及制备方法
JP2006347827A (ja) アモルファスSiO2膜被覆部材および、その形成方法
CN113981395B (zh) 一种深海环境耐腐蚀涂层及其制备方法
AU2011336173A1 (en) Surface coating with perfluorinated compounds as antifouling
CN114807845B (zh) 氮含量梯度递增的氮化钛铜涂层
CN112359319B (zh) 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN101096771B (zh) 铝表面超疏水薄膜的制备方法
CN102400097A (zh) 壳体及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant