CN113583654B - 一种热致变色薄膜的制备方法及其应用 - Google Patents

一种热致变色薄膜的制备方法及其应用 Download PDF

Info

Publication number
CN113583654B
CN113583654B CN202110861102.2A CN202110861102A CN113583654B CN 113583654 B CN113583654 B CN 113583654B CN 202110861102 A CN202110861102 A CN 202110861102A CN 113583654 B CN113583654 B CN 113583654B
Authority
CN
China
Prior art keywords
film
thermochromic
color
preparation
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110861102.2A
Other languages
English (en)
Other versions
CN113583654A (zh
Inventor
邓先宇
李天昊
王洋洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN202110861102.2A priority Critical patent/CN113583654B/zh
Publication of CN113583654A publication Critical patent/CN113583654A/zh
Application granted granted Critical
Publication of CN113583654B publication Critical patent/CN113583654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明提供一种钙钛矿结构的可逆热致变色薄膜的制备方法。该薄膜是经过溶液旋涂或刮涂再退火得到的,溶液溶质为ABIxBryCl3‑x‑y,其中A为Cs+、CH3NH3 +(MA+)或CH(NH2)2 +(FA+),B为Sn2+,溶剂为由N,N‑二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)的混合液,添加剂为亚磷酸酯类包括亚磷酸三乙酯(TEP)和亚磷酸三苯酯(TPPi),添加量为5%;将溶质和溶剂按照1.0mol/L浓度配制完成后形成的前驱体溶液经旋涂或刮涂再退火后即可获得热致变色薄膜。本方案制备的薄膜在空气中呈现可逆的热致变色现象,根据x、y取值和退火温度的不同,薄膜呈现不同的颜色,且不同颜色薄膜之间在空气中可以发生可逆转变,即低温下的薄膜加热之后其颜色变为高温相的颜色,而在冷却之后又可以转变为原先的颜色,此过程可重复。

Description

一种热致变色薄膜的制备方法及其应用
技术领域
本发明属于热致变色薄膜领域,尤其涉及一种可逆热致变色薄膜的制备方法及应用。
背景技术
热致变色材料是指一些化合物或混合物在受热或冷却时可见吸收光谱发生变化的功能材料,它具有颜色随温度改变而变化的特性,发生颜色变化的温度称为变色温度。这种材料是一种热记忆功能材料,广泛应用于工业、纺织、军事、印刷、医疗保健、诊断、建筑、防伪标记、日用装饰、航空航天等各个领域。
随着研究的深入,热致变色功能薄膜的原料以及制备方法也在不断地发展,目前常用的可逆热致变色薄膜的材料主要分为无机和有机两大类,其中无机类材料主要为金属和金属卤化物、金属氧化物和多种金属氧化物的多晶,有机类材料主要三芳甲烷苯酞类、吲哚啉苯酞类、荧烷类、三苯甲烷类、螺吡喃类、席夫碱类、螺环类、双蒽酮类、α-萘醌衍生物、聚合物类(如聚二炔、聚硅烷、聚锗烷、聚噻吩)、生物大分子类等;相对于材料的两大种类来说,薄膜的制备方法就相对较多,主要有蒸镀法、溅射法、溶胶凝胶法、化学气相沉积法、分子自组装法等,虽然总体上来说,热致变色薄膜材料的种类和制备方法都有其特点,但从一定程度上来说薄膜原材料种类较少且这些制备方法都相对繁杂。
例如CN106711338A涉及一种锡基钙钛矿薄膜、方法及其太阳能电池器件;一种锡基钙钛矿薄膜,由DMF和DMSO中的一种或两种的混合液作为溶剂、钙钛矿和磷酸三苯酯作为溶质组成的溶液经旋涂并热处理后获得。该方法着重于钙钛矿薄膜的光电特性未涉及热致变色相关内容,且制备薄膜工艺范围不准确,薄膜均一性及重复率较差。
因此,寻找更多种类的热致变色材料以及开发更多薄膜制备的方法成为目前研究热致变色薄膜的一个重要方向。
发明内容
本发明的目的在于提供一种新型的热致变色材料以及简单的薄膜制备方法,旨在解决现有薄膜材料种类少且制备方法较为复杂的问题;同时薄膜具有优异的光电转换特性,可用于光电器件的制备。
本发明获得的薄膜颜色会随着ABIxBryCl3-x-y中的x、y值的变化而产生转变,其中x的值越大也就是I的含量越高,高温下薄膜颜色越黑。
本发明通过以下技术方案来实现:
一种热致变色薄膜的制备方法,该方法包括以下步骤:
步骤A:ABIxBryCl3-x-y作为溶质溶解在有机混合溶剂中,再加入液体添加剂制备前驱体溶液;
步骤B:通过旋涂和刮涂的办法将前驱体溶液制备成均匀薄膜;
步骤C:对制备好的薄膜进行热处理即可得到热致变色薄膜。将上述旋涂或刮涂后的薄膜在适当温度下进行退火,可以使热致变色薄膜结晶程度提高,质量变好。
作为本发明的一种优选技术方案,步骤A中所配制的前驱体溶液其溶质为ABIxBryCl3-x-y,其中A为Cs+、CH3NH3 +(MA+)或CH(NH2)2 +(FA+), B为Sn2+,来源于A和B的卤素化合物,选自CsI、FABr、SnCl2等,其中0≤x+y≤3。
作为本发明的一种优选技术方案,步骤A中液体添加剂为亚磷酸酯类包括亚磷酸三乙酯(TEP)和亚磷酸三苯酯(TPPi),其纯度需 95%以上,加入含量为体积比5%。
作为本发明的一种优选技术方案,步骤A中所配制的前驱体溶液其溶剂由与DMF和DMSO混合液组成,DMF和DMSO体积比例为9:1。
作为本发明的一种优选技术方案,步骤A中所述ABIxBryCl3-x-y的浓度为1.0mol/L。
前述步骤A中各材料配比的具体选择依据是热致变色薄膜的质量,经过实验优化将各原料配比以及添加剂含量稳定在固定范围,利于实验现象的重复也利于将来规模化生产;同时,本发明主要强调薄膜的变色特性及其应用范围,并对添加剂种类进行了完善。然而,如果材料组成及比例不在前述选择范围,则薄膜质量差异较大,重复率较低。
作为本发明的一种优选技术方案,所述步骤B中旋涂时转度为 2000-5000rpm,刮涂薄膜的厚度为1-10μm。
作为本发明的一种优选技术方案,所述步骤C中热处理温度为 40-130℃。所述步骤C中热处理时间为5-10分钟。
作为本发明的一种优选技术方案,所述方法包括:采用 ABIxBryCl3-x-y作为溶质;体积比例为9:1的DMF和DMSO的混合液作为溶剂;5%体积比含量的亚磷酸酯类(TEP或TPPi)作为添加剂;将三者充分搅拌混合后组成的前驱体溶液经旋涂或刮涂后获得该薄膜。
具体工艺包括:旋涂工艺,在2000-5000rpm的转速下,旋涂得到热致变色薄膜;刮涂工艺,将溶液或乳液滴加到衬底上,使用刮刀或玻璃棒刮涂出均匀薄膜。
作为本发明的一种优选技术方案,其中前驱体溶液浓度为1.0 mol/L,旋涂制备时转速为2000-5000rpm,加热温度为40-130℃,热处理时间为5-10分钟。
本发明进一步提供了一种可逆的热致变色薄膜,通过所述的热致变色薄膜的制备方法制备得到。
本发明相对于现有技术的有益效果包括:
本发明提供了一种利用新型材料制备热致变色薄膜的方法,不仅增加了一类热致变色原材料还引入了较为简单的制备方法,降低制备时间;其应用还包含各种基于此发明的成膜方法获得热致变色薄膜的器件,如传感器、智能窗、太阳能电池、光探测器等。
本发明采用新型材料制备热致变色薄膜,可以在短时间内获得较高质量的薄膜,为变色薄膜制备增加新的材料选择,同时可用于柔性电子、智能光电设备等的开发及制备。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明中热致变色薄膜成膜方法的流程图。
其中11----加入亚磷酸酯类的N.N-二甲基甲酰胺(DMF)与二甲基亚砜(DMSO)的混合溶液,12----CsX粉末(X为卤素元素), 13----SnX2(X为卤素元素),14----CsSnIxBryCl3-x-y前驱体溶液,15----基于14溶液的热致变色薄膜,16----基于15薄膜冷却后的变色薄膜,17----基于16薄膜加热后的变色薄膜,其中17薄膜恢复到 15薄膜。
图2和3系本发明中实施例1内通过本发明的方法制备的 FASnI0.5Br0.5Cl2热致变色薄膜。
其中图2是FASnI0.5Br0.5Cl2前驱体溶液在40℃下退火形成薄膜后的变色情况,其中,211是薄膜在40℃下退火完成时的颜色状态, 212是211中的薄膜在空气中冷却10分钟后的颜色状态,213是212 的薄膜在40℃条件下加热10分钟后的颜色状态。图3是图2FASnI0.5Br0.5Cl2薄膜在变色前后的可见光吸收光谱,其中,A1是薄膜在40℃下退火完成时的可见光吸收光谱,A2薄膜在空气中冷却10 分钟变色之后的可见吸收光谱,A3是变色后的薄膜在40℃条件下加热10分钟后的可见吸收光谱。
图4和5系本发明中实施例2内通过本发明的方法制备的 MASnIBr0.5Cl1.5热致变色薄膜
其中图4是MASnIBr0.5Cl1.5前驱体溶液在70℃下退火形成薄膜后的变色情况,其中,311是薄膜在70℃下退火完成时的颜色状态, 312是311中的薄膜在空气中冷却10分钟后的颜色状态,313是312 中的薄膜在70℃条件下加热10分钟后的颜色状态。图5是图4MASnIBr0.5Cl1.5薄膜在变色前后的可见光吸收光谱,其中,B1是薄膜在70℃下退火完成时的可见光吸收光谱,B2薄膜在空气中冷却10 分钟变色之后的可见吸收光谱,B3是变色后的薄膜在70℃条件下加热10分钟后的可见吸收光谱。
图6和7系本发明中实施例3内通过本发明的方法制备的 CsSnIBrCl热致变色薄膜
其中图6是CsSnIBrCl前驱体溶液在110℃下退火形成薄膜后的变色情况,411是薄膜在110℃下退火完成时的颜色状态,412 是411中的薄膜在空气中冷却10分钟后的颜色状态,413是412中的薄膜在110℃条件下加热10分钟后的颜色状态。图7是图6中 CsSnIBrCl薄膜在变色前后的可见光吸收光谱,其中,C1是薄膜在 110℃下退火完成时的可见光吸收光谱,C2薄膜在空气中冷却10分钟变色之后的可见吸收光谱,C3是变色后的薄膜在110℃条件下加热10分钟后的可见吸收光谱。
图8和9系本发明中实施例4制备的电池器件结构及电池工作时的J-V曲线示意图。
图10、11和12系本发明中对比实施例1热致变色薄膜形貌示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
参照图1所示,制备FASnIBr0.5Cl1.5变色薄膜:将FAI、SnBr2、 SnCl2按照摩尔比例1:0.25:0.75称取按照1mol/L的浓度溶解在0.9 mL DMF和0.1mL DMSO的混合溶剂中并添加5%TEP(纯度为98%) 经过搅拌获得澄清的前驱体溶液;取50uL前驱体溶液滴在玻璃片上在4000rpm转速下获得均匀薄膜;然后在40℃下退火10分钟即可得到热致变色薄膜,对薄膜加热和冷却状态下分别进行可见光吸收测试,测试结果如图2和图3所示。
实施例2
参照图1所示,制备MASnI0.5Br0.5Cl2变色薄膜:将MAI、SnBr2、 SnCl2按照摩尔比例0.5:0.25:1称取按照1mol/L的浓度溶解在0.9 mL DMF和0.1mL DMSO混合溶剂中并添加5%TPPi(纯度为98%)经过搅拌获得澄清的前驱体溶液;取50uL前驱体溶液滴在玻璃片上在3000rpm转速下获得均匀薄膜;然后在70℃下退火10分钟即可得到热致变色薄膜,对薄膜加热和冷却状态下分别进行可见光吸收测试,测试结果如图4和图5所示。
实施例3
参照图1所示,制备CsSnIBrCl变色薄膜:将CsI、SnBr2、SnCl2按照摩尔比例1:0.5:0.5称取按照1mol/L的浓度溶解在0.9mL DMF 和0.1mL DMSO混合溶剂中并添加5%TPPi(纯度为98%)经过搅拌获得澄清的前驱体溶液;取50uL前驱体溶液滴在玻璃片上在2000 rpm转速下获得均匀薄膜;然后在100℃下退火10分钟即可得到热致变色薄膜,对薄膜加热和冷却状态下分别进行可见光吸收测试,测试结果如图6和图7所示。
实施例4
参照实施例3配方制备基于CsSnIBrCl薄膜的智能变色太阳能电池器件;如图8所示为电池器件结构,其中511层为ITO电极,512 层为空穴传输层PEDOT:PSS,513层为CsSnIBrCl变色薄膜活性层, 514层为电子传输层PCBM+BCP(浴铜灵),515层为银电极;图9所示为电池工作时的J-V曲线,其中D1曲线为高温情况下薄膜为黑色时器件的工作状态,短路电流可以达到22.15mA/cm2,开路电压为 0.544V,效率可达8.55%;D2曲线为低温情况下薄膜为黑色时器件的工作状态,短路电流可以达到3.70mA/cm2,开路电压为0.496V,效率可达1.24%;D3曲线为重新加热后高温情况下薄膜为黑色时器件的工作状态,短路电流可以达到21.68mA/cm2,开路电压为0.582V,效率可达8.83%。这类温度变色太阳能器件可用于智能窗制备,低温下增强室内透光性,高温下可以降低光的透过并同时将光能转化为电能;此外温度与薄膜颜色的相关性还可用于温度及光探测方向。
对比实施例1
参照图1所示,制备CsSnIBrCl变色薄膜:将CsI、SnBr2、SnCl2按照摩尔比例1:0.5:0.5称取按照2.0mol/L的浓度溶解在1mL DMF 溶剂中并添加10%TEP(纯度为98%)经过搅拌获得前驱体溶液;取50uL前驱体溶液在2000rpm转速下获得均匀薄膜;然后在100℃下退火10分钟即可得到热致变色薄膜,薄膜形貌如图10、图11和图12所示,与实施例3相比,对比实施例1(本例)中溶液的浓度由1.0mol/L提高到2.0mol/L,添加剂从5%TPPi变成10%TEP,其他条件不变,薄膜质量从图10中看出高温下薄膜呈现均匀黑色,但低温相(612)呈现非均匀相分布,这与薄膜浓度和添加剂含量息息相关;从图11中可以看到实施例3中的变色薄膜在微观尺度下晶粒分布均匀,而本对比实施例薄膜微观形貌如图12所示,其薄膜覆盖率较差,晶粒分布不均使得薄膜低温相分布较差,影响薄膜整体质量也会进一步影响薄膜的实际应用。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种钙钛矿结构的热致变色薄膜的制备方法,包括以下步骤:
制备CsSnIBrCl变色薄膜:将CsI、SnBr2、SnCl2按照摩尔比例1:0.5:0.5称取按照1mol/L的浓度溶解在0.9mL DMF和0.1mL DMSO混合溶剂中并添加5%TPPi,TPPi纯度为98%,经过搅拌获得澄清的前驱体溶液;取50uL前驱体溶液滴在玻璃片上在2000rpm转速下获得均匀薄膜;然后在100℃下退火10分钟即可得到热致变色薄膜。
CN202110861102.2A 2021-07-29 2021-07-29 一种热致变色薄膜的制备方法及其应用 Active CN113583654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110861102.2A CN113583654B (zh) 2021-07-29 2021-07-29 一种热致变色薄膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110861102.2A CN113583654B (zh) 2021-07-29 2021-07-29 一种热致变色薄膜的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113583654A CN113583654A (zh) 2021-11-02
CN113583654B true CN113583654B (zh) 2023-09-05

Family

ID=78251494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110861102.2A Active CN113583654B (zh) 2021-07-29 2021-07-29 一种热致变色薄膜的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113583654B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524455B (zh) * 2022-01-07 2022-11-22 广东省科学院半导体研究所 一种可逆的热致变色智能材料及其制备方法和应用
CN114835158A (zh) * 2022-04-29 2022-08-02 浙江光储充能源科技有限公司 一种掺杂Cu+/DMF提高全无机锡基钙钛矿材料稳定性的方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711338A (zh) * 2017-02-24 2017-05-24 哈尔滨工业大学深圳研究生院 一种锡基钙钛矿薄膜、制备方法及其太阳能电池器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711338A (zh) * 2017-02-24 2017-05-24 哈尔滨工业大学深圳研究生院 一种锡基钙钛矿薄膜、制备方法及其太阳能电池器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thermochromic halide perovskite solar cells;Jia Lin等;Nature Materials;第17卷;第261–267页 *

Also Published As

Publication number Publication date
CN113583654A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN113583654B (zh) 一种热致变色薄膜的制备方法及其应用
Wang et al. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells
Ren et al. Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating
Li et al. Synergistic effect of caprolactam as Lewis base and interface engineering for efficient and stable planar perovskite solar cells
CN110483745B (zh) 一种两亲性共轭聚合物及其在制备反向钙钛矿太阳能电池中的应用
Huang et al. Highly efficient perovskite solar cells with precursor composition-dependent morphology
CN107482121B (zh) 一种基于磁场调控的钙钛矿薄膜的制备方法
CN109360895B (zh) 一种钙钛矿材料、制备方法及其太阳能电池器件
CN105679944B (zh) 一种基于钙钛矿材料的太阳能电池及其制备方法
CN106746724A (zh) 一种氧化钼电致变色纳米薄膜及其制备方法
Xiao et al. Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells
CN110783467A (zh) 一种高质量二维钙钛矿薄膜的制备方法
CN105609652A (zh) 一种基于钙钛矿材料的发光二极管及其制备方法
CN109874347A (zh) 钙钛矿、其制备方法及包括钙钛矿的太阳能电池
CN109300805A (zh) 真空控制CsPbIxBr3-x钙钛矿生长的方法和光伏器件
Kim et al. Stabilization of 3-D trigonal phase in guanidinium (C (NH2) 3) lead triiodide (GAPbI3) films
CN114907551A (zh) 一种红色电致变色聚合物、制备方法、薄膜及器件
Chen et al. Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells
Qiu et al. Organic-inorganic hybrid electron transport layer of PVP-doped SnO2 for high-efficiency stable perovskite solar cells
Park et al. Synthesis and photovoltaic properties of side‐chain liquid‐crystal click polymers for dye‐sensitized solar‐cells application
CN110911506A (zh) 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法
Rajendran et al. A study on the effect of various plasticizers in poly (vinyl acetate)-poly (methyl methacrylate) based gel electrolytes
CN110176523B (zh) 一种微量Sn掺杂的钙钛矿膜修复制备方法及全无机钙钛矿太阳能电池
Pérez-Gutiérrez et al. Compositional study of mixed halide perovskite films CH3NH3Pb (I1-xBrx) 3 and CH3NH3Pb (I1-xClx) 3 prepared by close space sublimation
Sanchez-Diaz et al. Study of perovskite CH 3 NH 3 PbI 3 thin films under thermal exposure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant