CN113582147B - 一种超细球形硝酸肼镍的制备方法 - Google Patents

一种超细球形硝酸肼镍的制备方法 Download PDF

Info

Publication number
CN113582147B
CN113582147B CN202010361002.9A CN202010361002A CN113582147B CN 113582147 B CN113582147 B CN 113582147B CN 202010361002 A CN202010361002 A CN 202010361002A CN 113582147 B CN113582147 B CN 113582147B
Authority
CN
China
Prior art keywords
nickel
solution
nitrate
hydrazine
hydrazine nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010361002.9A
Other languages
English (en)
Other versions
CN113582147A (zh
Inventor
朱顺官
陈世勇
张琳
李燕
易镇鑫
袁彬
李晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202010361002.9A priority Critical patent/CN113582147B/zh
Publication of CN113582147A publication Critical patent/CN113582147A/zh
Application granted granted Critical
Publication of CN113582147B publication Critical patent/CN113582147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/16Hydrazine; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种超细球形硝酸肼镍的方法,属于化学合成材料技术领域,该方法将氨水引入到硝酸肼镍的合成中,通过在一定温度反应初始的底液中加入氨水后,将配置好的硝酸镍溶液和水合肼溶液在规定的时间内按照一定的速度进行双管滴加进料,在一定的反应温度下进行充分的反应,加料完毕后继续保温反应,最后进行冷却抽滤烘干即可得到超细球形硝酸肼镍。本发明提出的制备方法不仅能够得到超细的硝酸肼镍,其直径为5μm左右,同时制备出的硝酸肼镍由传统方法的聚晶状态转变为单晶颗粒的球形状态。本发明的制备工艺简单易于控制,得到的产品性能同传统工艺得到的聚晶硝酸肼镍在一定方面得到很大的改善。

Description

一种超细球形硝酸肼镍的制备方法
技术领域
本发明涉及一种超细球形硝酸肼镍的制备方法,属于化学合成技术材料领域。
背景技术
硝酸肼镍是一种配合物起爆药,其具有良好的相容性、真空安定性,撞击感度要优于叠氮化铅和斯蒂芬酸铅,火焰感度相当于斯蒂芬酸铅,并且制备工艺简单,母液能够循环利用,废水污染少,已经在军事和民用上得到了广泛的应用。不仅可以进行雷管装药和用作点火头药剂,而且也是一种良好的镍催化剂。
相比较于叠氮化铅起爆药,硝酸肼镍一是存在着摩擦感度较高的问题,这些问题可能跟晶体呈聚晶状态有很大关系,因为聚晶状态下的普通硝酸肼镍还是类球形的硝酸肼镍,晶体颗粒表面粗糙不光滑,晶体表面缺陷比较多,这会导致晶体受到摩擦等刺激时,更容易积累热量,此外硝酸肼镍相极限药量比较大,威力较小,作为雷管装药时,所需的药量较大。
针对硝酸肼镍存在的问题,一是可以通过球形化的方法,通过对硝酸肼镍进行球形化,形成表面光滑的球形颗粒,可以降低摩擦感度,但目前报道的关于硝酸肼镍球形化的文献来看,通过引入超声波来结晶得到的晶体颗粒虽然晶体比较均一,但球形化程度不高,晶体表面依旧比较粗糙。除此之外了,还可以通过细化的方式对存在的问题进行改善,实验已经证明,超细的火工药剂具有燃烧速率提高、输出性能高、感度发生变化、爆轰机理转变、爆轰波传播更快等特点,在爆炸逻辑网络、推进剂以及激光起爆等领域都有重要应用,目前为止,还没有对硝酸肼镍进行过这方面的研究。
发明内容
本发明的目的在于提出一种超细的球形硝酸肼镍制备方法。
本发明实现的技术解决方案为:
一种超细球形硝酸肼镍制备工艺,
具体步骤为:将配置好的一定浓度底液加入化合器中升温到反应要求的温度时,在搅拌状态下加入硝酸镍和水合肼溶液,然后经过保温、冷却、出料、洗涤、脱水、干燥,最后可得球状的超细硝酸肼镍。
进一步的,一定浓度的底液为3.2%~6.2%的氨水溶液,底液升温速率要快,减少氨水的挥发。
进一步的,将底液温度升至40℃~50℃时,将硝酸镍溶液和水合肼溶液采用双管滴加的方式进行进料,硝酸镍先进料1min~2min后,两种溶液同时进料。
进一步的,整个反应过程的温度应该控制40℃~50℃且硝酸镍溶液和水合肼溶液的进料时间应该控制在30min~35min,且硝酸镍溶液先进料完毕为宜。
进一步的,硝酸镍溶液的配置方法为将硝酸镍的固体溶入到溶剂中,配置成浓度为4%~7%(质量)的水溶液。
进一步的,水合肼溶液的配置方法为将水合肼的液体溶入到去离子水中,配置成浓度为3%~6%(质量)的水溶液。
进一步的,加料完毕后,继续保温反应时间为20min左右。
本发明的制备方法同现有的硝酸肼镍合成方法相比,具有显著优点如下:
1、本发明中利用了氨水作为络合剂的特点,通过先与硝酸镍形成镍氨络合物,使得析晶的整个过程速度减缓,从而得到了单晶状态球形超细硝酸肼镍,直径为5μm;2、制备的超细球形硝酸肼镍摩擦感度和静电感度得到了很大的改善,工艺简单易于控制。
附图说明
图1是本发明的超细球形硝酸肼镍的制备方法流程示意图。
图2是现有硝酸肼镍制备方法得到的聚晶状态的硝酸肼镍晶体。
图3是本发明所制备的超细球形硝酸肼镍晶体图。
具体实施方式
下面通过结合附图1和实施例对本发明作进一步详细说明。
实施例1
(1)量取4ml的25%-28%含量的氨水加入到100ml去离子水中,搅拌均匀后注入化合器中。
(2)称取4g的六水合硝酸镍溶于60ml的去离子水中配成6.25%硝酸镍溶液;量取浓度为85%的水合肼4ml溶于60ml去离子水中配成5.2%水合肼溶液。
(3)采用两台蠕动泵分别标定好硝酸镍溶液和水合肼溶液的进料速度。硝酸镍:2ml/min,水合肼:1.8ml/min。
(4)打开水浴加热装置和搅拌器,将底液快速升温至40℃后开始进料,硝酸镍先进料1min后两者同时进料。
(5)水浴加热使得整个反应过程温度控制在40℃-50℃,加料完毕后继续保温反应20min,然后冷却、抽滤水洗、烘干,即可得到超细球形硝酸肼镍。
实施例2
(1)量取4ml的25%-28%含量的氨水加入到100ml去离子水中,搅拌均匀后注入化合器中。
(2)称取4g的六水合硝酸镍溶于100ml的去离子水中配成3.85%硝酸镍溶液;量取浓度为80%的水合肼6ml溶100ml去离子水中配成4.4%水合肼溶液。
(3)采用两台蠕动泵分别标定好硝酸镍溶液和水合肼溶液的进料速度。硝酸镍:3.3ml/min,水合肼:3.3ml/min。
(4)打开水浴加热装置和搅拌器,将底液快速升温至40℃后开始进料,硝酸镍先进料2min后两者同时进料。
(5)水浴加热使得整个反应过程温度控制在40℃-50℃,加料完毕后继续保温反应20min,然后冷却、抽滤水洗、烘干,即可得到超细球形硝酸肼镍。
测试
本发明的制备方法不仅能够得到直径为5μm左右的超细硝酸肼镍,而且晶体形貌呈球形状。此外所得到的晶体由常规方法得到的聚晶态转变为单晶态,很好的改善了药剂摩擦感度较高问题,增大了比表面积,改善燃烧快速性,可用于含能材料燃速调节、点火药以及冷焰烟火装药等。
测试结果如下:
(1)碳膜桥点火头测试:选取9.5Ω-10.5Ω的碳膜桥共40发,分别拿超细的球形硝酸肼镍和普通的聚晶硝酸肼镍各蘸20发点火头,在9V-68μF的点火条件进行点火,超细球形硝酸肼镍做点火头药剂时全发火,常规硝酸肼镍做为点火头药剂时,只有一半处于发火。
(2)激光感度测试:分别选取超细球形硝酸肼镍和常规硝酸肼镍作为激光点火药剂,在1.06um波长的激光下,常规硝酸肼镍在同等条件下30发样品中将近一半不能发火,且发火的样品要经过多次激光点火才能点燃;超细球形硝酸肼镍基本都可以通过一次激光点火进行发火。

Claims (4)

1.一种超细球形硝酸肼镍的制备方法,其特征在于,将硝酸镍溶液和水合肼溶液分别滴入含有氨水且保持一定温度的底液中,然后经过保温、冷却、出料、洗涤、脱水、干燥;在合成的过程中,底液加入了氨水,通过氨水先与硝酸镍反应生成镍氨络合物,然后在强碱水合肼的作用下,将镍离子解离出来并与水合肼反应得到单晶颗粒的超细球形硝酸肼镍;
所述底液为重量百分比为3.2%~6.2%的氨水溶液;所述底液温度为40℃~50℃;
所述硝酸镍溶液和水合肼溶液采取硝酸镍先进料1min~2min,然后同时进料的方式滴入。
2.根据权利要求1所述的硝酸肼镍制备方法,其特征在于,所述硝酸镍溶液和水合肼溶液的加料时间为30min~35min,而且硝酸镍溶液先进料完毕。
3.根据权利要求1所述的硝酸肼镍制备方法,其特征在于,硝酸镍溶液的质量浓度为4%~7%,水合肼溶液的质量浓度为3%~6%。
4.根据权利要求1所述的硝酸肼镍制备方法,其特征在于,加料完毕后,继续保持反应20 min,保证反应的充分进行。
CN202010361002.9A 2020-04-30 2020-04-30 一种超细球形硝酸肼镍的制备方法 Active CN113582147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010361002.9A CN113582147B (zh) 2020-04-30 2020-04-30 一种超细球形硝酸肼镍的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010361002.9A CN113582147B (zh) 2020-04-30 2020-04-30 一种超细球形硝酸肼镍的制备方法

Publications (2)

Publication Number Publication Date
CN113582147A CN113582147A (zh) 2021-11-02
CN113582147B true CN113582147B (zh) 2024-05-17

Family

ID=78236982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010361002.9A Active CN113582147B (zh) 2020-04-30 2020-04-30 一种超细球形硝酸肼镍的制备方法

Country Status (1)

Country Link
CN (1) CN113582147B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768691A (zh) * 2023-07-10 2023-09-19 南京理工大学 含有镍基含能催化剂的固体推进剂及其制造方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133818A (zh) * 1995-04-21 1996-10-23 南京理工大学 硝酸肼镍制备工艺
CN102179521A (zh) * 2011-04-20 2011-09-14 北京科技大学 一种超细球形镍包钛复合粉末的制备方法
CN110790319A (zh) * 2018-08-01 2020-02-14 西安雷晶新材料科技有限公司 一种硝酸肼镍的制备方法及其产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133818A (zh) * 1995-04-21 1996-10-23 南京理工大学 硝酸肼镍制备工艺
CN102179521A (zh) * 2011-04-20 2011-09-14 北京科技大学 一种超细球形镍包钛复合粉末的制备方法
CN110790319A (zh) * 2018-08-01 2020-02-14 西安雷晶新材料科技有限公司 一种硝酸肼镍的制备方法及其产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Michael Cartwrigt et al..Investigation of Preparation, Solubility and StabilityProperties of Nickel Hydrazine Nitrate (NiHN).《Propellants,Explosives,Pyrotechnics》.2018,第43卷(第12期),1270-1276. *

Also Published As

Publication number Publication date
CN113582147A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN101570459A (zh) 乙二胺高氯酸盐·三乙烯二胺高氯酸盐共晶起爆炸药及其制备方法
CN113582147B (zh) 一种超细球形硝酸肼镍的制备方法
CN111875456B (zh) 一种mtnp/tnaz低共熔物的制备方法
CN105152824A (zh) 一种安全点火药及制备方法
Yu et al. Enhanced stability and combustion performance of AlH3 in combination with commonly used oxidizers
Wang et al. Decomposition and combustion of HTPB-based composite propellants containing intercalated HMX crystals with desired high energy but low burn rate
US4008110A (en) Water gel explosives
CN108456126A (zh) 一种气体发生器的传火药及其制备方法和一种汽车安全气囊用气体发生器
CN108976176A (zh) 3,3’-二氨基-4, 4’-氧化偶氮呋咱炸药晶体的细化方法
CN112194625B (zh) 1,4-二硝胺基-3,5-二硝基吡唑草酰二肼硝酸盐、制备方法及其应用
CN112125766A (zh) 耐低温水胶炸药及其制备方法
CN104944422A (zh) 一种点火药及制备方法
US3419443A (en) Hydrazine containing explosive compositions
CN115677435B (zh) 一种微纳球形高能钝感cl-20/rdx共晶炸药及其制备方法
CN105566244A (zh) 一种合成3-(4-氨基呋咱-3-基)-4-(4-硝基呋咱-3-基)呋咱的方法
CN112280055A (zh) 一种由1064nm激光直接起爆的镉基含能金属有机框架、制备方法及应用
CN113416112A (zh) 一种高储存稳定性的高温快速化学敏化乳化炸药的制备方法
Zbarsky et al. Kinetics of the Synthesis of NTO in Nitric Acid
Yi et al. Properties and Application of Nitrogen‐Rich Compound BTATz in Low‐Signature Propellants
Berger et al. Alkali dinitramide salts. Part 1: synthesis and characterization
Zhu et al. Thermal decomposition kinetics of hexanitrohexaazaisowurtzitane/ammonium perchlorate
Li et al. Scaled-up production and quality controlling techniques of energetic cocrystals: challenges and prospects
Wang et al. Improved pressure discharge property of surface modified Al/Bi 2 O 3 composites
NL2032474B1 (en) Preparation method of perdeuterated 1,5-diaminotetrazole
CN110698350A (zh) 超声波辅助制备球状1,1-二氨基-2,2-二硝基乙烯晶体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant