CN113567746B - Ldmos导通电阻的测量方法 - Google Patents

Ldmos导通电阻的测量方法 Download PDF

Info

Publication number
CN113567746B
CN113567746B CN202110843732.7A CN202110843732A CN113567746B CN 113567746 B CN113567746 B CN 113567746B CN 202110843732 A CN202110843732 A CN 202110843732A CN 113567746 B CN113567746 B CN 113567746B
Authority
CN
China
Prior art keywords
current
points
voltage
point set
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110843732.7A
Other languages
English (en)
Other versions
CN113567746A (zh
Inventor
梁友谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Changgong Microelectronics Co Ltd
Original Assignee
Dongguan Changgong Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Changgong Microelectronics Co Ltd filed Critical Dongguan Changgong Microelectronics Co Ltd
Priority to CN202110843732.7A priority Critical patent/CN113567746B/zh
Publication of CN113567746A publication Critical patent/CN113567746A/zh
Application granted granted Critical
Publication of CN113567746B publication Critical patent/CN113567746B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2637Circuits therefor for testing other individual devices
    • G01R31/2639Circuits therefor for testing other individual devices for testing field-effect devices, e.g. of MOS-capacitors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本申请公开了一种LDMOS导通电阻的测量方法,涉及电子器件检测技术领域。LDMOS导通电阻的测量方法,包括:获取待测的LDMOS器件;其中,LDMOS器件设置有漏极框架和源极框架;根据漏极框架和源极框架,构建第一电流回路和第二电流回路;在第一电流回路中加载第一电流,在第二电流回路中加载第二电流;测量第一电流回路中的漏极框架和源极框架之间的电压,得到第一电压;测量第二电流回路中的漏极框架和源极框架之间的电压,得到第二电压;其中,第二电压和第一电压之间的差值满足预设范围;根据第一电流、第二电流、第一电压、第二电压,得到导通电阻。本申请的测量方法,能够实现导通电阻的精确测量。

Description

LDMOS导通电阻的测量方法
技术领域
本申请涉及电子器件检测技术领域,尤其涉及一种LDMOS导通电阻的测量方法。
背景技术
相关技术中,LDMOS(横向扩散金属氧化物半导体)器件通常具有耐高压、容易进行控制等优点而被广泛采用。而在LDMOS器件的各类参数中,导通电阻是对LDMOS器件进行控制的重要参数,因此,导通电阻的准确测量尤为重要。目前,LDMOS器件的导通电阻测量方法,通常是在LDMOS器件上加载电流,再采用测试设备测量LDMOS器件D极和S极两端之间的电压,再计算出导通电阻,但是此种方法,在测量时,仅是测量LDMOS器件D极和S极的一个电流回路中的电压,测量方式粗糙,计算得出的导通电阻与LDMOS器件实际工作时,D极和S极的多个电流回路中所产生的导通电阻有较大差异,并不能准确测量出整个LDMOS器件D极和S极之间的导通电阻。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种LDMOS导通电阻的测量方法,能够实现导通电阻的精确测量。
根据本申请的实施例的LDMOS导通电阻的测量方法,包括:
获取待测的LDMOS器件;其中,所述LDMOS器件设置有漏极框架和源极框架;
根据所述漏极框架和所述源极框架,构建第一电流回路和第二电流回路;
在所述第一电流回路中加载第一电流,在所述第二电流回路中加载第二电流;
测量所述第一电流回路中的所述漏极框架和所述源极框架之间的电压,得到第一电压;测量所述第二电流回路中的所述漏极框架和所述源极框架之间的电压,得到第二电压;其中,所述第二电压和所述第一电压之间的差值满足预设范围;
根据所述第一电流、所述第二电流、所述第一电压和所述第二电压,得到所述LDMOS器件对应的导通电阻。
根据本申请实施例的LDMOS导通电阻的测量方法,至少具有如下有益效果:首先,通过在LDMOS器件的漏极框架和源极框架上分别构建第一电流回路和第二电流回路;然后,通过在第一电流回路上加载第一电流,并测量第一电流回路中的漏极框架和源极框架之间的第一电压,通过在第二电流回路上加载第二电流,并测量第二电流回路中的漏极框架和源极框架之间的第二电压,并且第二电压和第一电压之间的差值满足预设范围,最后就可以通过第一电流、第二电流,以及测量得到的第一电压、第二电压,精确的计算出LDMOS器件的导通电阻。因此,本申请的LDMOS导通电阻的测量方法,能够实现对LDMOS器件导通电阻的精确测量。
根据本申请的一些实施例,在所述根据所述漏极框架和所述源极框架,构建第一电流回路和第二电流回路之前,包括:
在所述漏极框架上设置第一点集、第二点集;
在所述源极框架上设置第三点集、第四点集;其中,所述第一点集、所述第二点集、所述第三点集、所述第四点集均包括测试点和电流点,且所述测试点位于所述漏极框架或所述源极框架的两端,所述电流点位于所述漏极框架或所述源极框架的两端之间;所述第一点集和所述第三点集的电流点,构建所述第一电流回路;所述第二点集和所述第四点集的电流点用于构建所述第二电流回路;所述第一点集和所述第三点集的测试点用于测量所述第一电流回路上的第一电压,所述第二点集和所述第四点集的测试点用于测量所述第二电流回路上的第二电压。
根据本申请的一些实施例,所述LDMOS器件还设置有LDMOS连接结构,所述LDMOS连接结构的一端与所述漏极框架电连接,所述LDMOS连接结构的另一端与所述源极框架电连接;
所述根据所述漏极框架和所述源极框架,构建第一电流回路和第二电流回路,包括:
将第一电流源的正极与所述第一点集的电流点电连接,将所述第一电流源的负极与所述第三点集的电流点电连接;
根据所述第一电流源、所述漏极框架、所述源极框架和所述LDMOS连接结构,构建所述第一电流回路;
将第二电流源的正极与所述第二点集的电流点电连接,将所述第二电流源的负极与所述第四点集的电流点电连接;
根据所述第二电流源、所述漏极框架、所述源极框架和所述LDMOS连接结构,构建所述第二电流回路。
根据本申请的一些实施例,所述在所述第一电流回路中加载第一电流,在所述第二电流回路中加载第二电流,包括:
通过所述第一电流源向所述第一电流回路加载所述第一电流;
通过所述第二电流源向所述第二电流回路加载所述第二电流。
根据本申请的一些实施例,所述测量所述第一电流回路中的所述漏极框架和所述源极框架之间的电压,得到第一电压;测量所述第二电流回路中的所述漏极框架和所述源极框架之间的电压,得到第二电压,包括:
测量所述第一点集的测试点和所述第三点集的测试点之间的电压,得到所述第一电压;
测量所述第二点集的测试点和所述第四点集的测试点之间的电压,得到所述第二电压。
根据本申请的一些实施例,所述LDMOS连接结构包括晶粒、第一铜柱结构、第二铜柱结构、MOS单元结构,所述第一铜柱结构的一端与所述漏极框架电连接,所述第一铜柱结构的另一端与所述晶粒的一端电连接,所述晶粒的另一端与所述第二铜柱结构的一端电连接,所述第二铜柱结构的另一端与所述源极框架电连接,所述MOS单元结构设置在所述晶粒上并通过所述晶粒分别与述第一铜柱结构和所述第二铜柱结构电连接;
所述在所述漏极框架上设置第一点集、第二点集,包括:
将所述第一点集的所述测试点和所述第二点集的所述测试点分别设置在所述第一铜柱结构的两侧;
将所述第一点集的所述电流点、所述第二点集的所述电流点设置在所述第一点集的所述测试点和所述第二点集的所述测试点之间;
其中,所述第一点集的电流点和测试点相邻设置,所述第二点集的电流点和测试点相邻设置;
所述在所述源极框架上设置第三点集、第四点集,包括:
将所述第三点集的所述测试点和所述第四点集的所述测试点分别设置在所述第二铜柱结构的两侧;
将所述第三点集的所述电流点、所述第四点集的所述电流点设置在所述第三点集的所述测试点和所述第四点集的所述测试点之间;
其中,所述第三点集的电流点和测试点相邻设置,所述第四点集的电流点和测试点相邻设置。
根据本申请的一些实施例,所述根据所述第一电流、所述第二电流、所述第一电压和所述第二电压,得到所述LDMOS器件对应的导通电阻,包括:
对所述第一电压、所述第二电压进行求和并取平均,得到平均电压;
对所述第一电流、所述第二电流进行求和,得到总电流;
根据所述总电流、所述平均电压和欧姆定律,得到所述导通电阻。
根据本申请的一些实施例,所述预设范围为小于50微伏。
根据本申请的一些实施例,所述第一电压和所述第二电压通过10微伏或以上精度的测试设备进行测量。
根据本申请的一些实施例,所述第一电流和所述第二电流均小于或等于1安培。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
下面结合附图和实施例对本申请做进一步的说明,其中:
图1为本申请实施例所提供的LDMOS导通电阻的测量方法的流程示意图;
图2为本申请一个实施例所提供的LDMOS器件的底部结构示意图;
图3为本申请一个实施例所提供的LDMOS器件的结构剖视图;
图4为本申请另一个实施例所提供的LDMOS器件的结构剖视图;
图5为本申请一个实施例所提供的LDMOS器件的等效电路原理图;
图6为本申请另一个实施例所提供的LDMOS器件的等效电路原理图;
图7为本申请一个实施例所提供的LDMOS器件的顶部结构示意图。
附图标记:
漏极框架100、源极框架200、晶粒300、第一铜柱结构400、第一铜柱410、第二铜柱结构500、第二铜柱510、第一电流源600、第二电流源700、MOS单元结构800。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
相关技术中,DMOS与CMOS器件结构类似,也有源、漏、栅等电极,但是漏端击穿电压高。DMOS主要有两种类型,垂直双扩散金属氧化物半导体场效应管VDMOSFET和横向双扩散金属氧化物半导体场效应管LDMOSFET。
DMOS器件是由成百上千的单一结构的DMOS 单元所组成的。这些单元的数目是根据一个芯片所需要的驱动能力所决定的,DMOS的性能直接决定了芯片的驱动能力和芯片面积。对于一个由多个基本单元结构组成的LDMOS器件,其中一个最主要的考察参数是导通电阻,用Rds或 Ron表示。导通电阻是指在器件工作时,从D极到S极的电阻。
下面参照图1描述根据本申请实施例的LDMOS导通电阻的测量方法。
可以理解的是,如图1所示,LDMOS导通电阻的测量方法,包括:
步骤S100,获取待测的LDMOS器件;其中,LDMOS器件设置有漏极框架100和源极框架200;
步骤S200,根据漏极框架100和源极框架200,构建第一电流回路和第二电流回路;
步骤S300,在第一电流回路中加载第一电流,在第二电流回路中加载第二电流;
步骤S400,测量第一电流回路中的漏极框架100和源极框架200之间的电压,得到第一电压;测量第二电流回路中的漏极框架100和源极框架200之间的电压,得到第二电压;其中,第二电压和第一电压之间的差值满足预设范围;
步骤S500,根据第一电流、第二电流、第一电压和第二电压,得到LDMOS器件对应的导通电阻。
首先,通过在LDMOS器件的漏极框架100和源极框架200上分别构建第一电流回路和第二电流回路;然后,通过在第一电流回路上加载第一电流,并测量第一电流回路中的漏极框架100和源极框架200之间的第一电压,通过在第二电流回路上加载第二电流,并测量第二电流回路中的漏极框架100和源极框架200之间的第二电压,并且第二电压和第一电压之间的差值满足预设范围,最后就可以通过第一电流、第二电流,以及测量得到的第一电压、第二电压,精确的计算出LDMOS器件的导通电阻。因此,本申请的LDMOS导通电阻的测量方法,能够实现对LDMOS器件导通电阻的精确测量。
可以理解的是,如图2所示,在根据漏极框架100和源极框架200,构建第一电流回路和第二电流回路之前,包括:
在漏极框架100上设置第一点集、第二点集;
在源极框架200上设置第三点集、第四点集;其中,第一点集、第二点集、第三点集、第四点集均包括测试点和电流点,且测试点位于漏极框架100或源极框架200的两端,电流点位于漏极框架100或源极框架200的两端之间;第一点集和第三点集的电流点,构建第一电流回路;第二点集和第四点集的电流点用于构建第二电流回路;第一点集和第三点集的测试点用于测量第一电流回路上的第一电压,第二点集和第四点集的测试点用于测量第二电流回路上的第二电压。
可以理解的是,如图2、图3和图4所示,LDMOS器件还设置有LDMOS连接结构,LDMOS连接结构的一端与漏极框架100电连接,LDMOS连接结构的另一端与源极框架200电连接;
根据漏极框架100和源极框架200,构建第一电流回路和第二电流回路,还包括:
将第一电流源600的正极与第一点集的电流点电连接,将第一电流源600的负极与第三点集的电流点电连接;
根据第一电流源600、漏极框架100、源极框架200和LDMOS连接结构,构建第一电流回路;
将第二电流源700的正极与第二点集的电流点电连接,将第二电流源700的负极与第四点集的电流点电连接;
根据第二电流源700、漏极框架100、源极框架200和LDMOS连接结构,构建第二电流回路。
可以理解的是,如图2所示,在第一电流回路中加载第一电流,在第二电流回路中加载第二电流,包括:
通过第一电流源600向第一电流回路加载第一电流;
通过第二电流源700向第二电流回路加载第二电流。
可以理解的是,如图2所示,测量第一电流回路中的漏极框架100和源极框架200之间的电压,得到第一电压;测量第二电流回路中的漏极框架100和源极框架200之间的电压,得到第二电压,包括:
测量第一点集的测试点和第三点集的测试点之间的电压,得到第一电压;
测量第二点集的测试点和第四点集的测试点之间的电压,得到第二电压。
可以理解的是,如图2、图3、图4和图5所示,LDMOS连接结构包括晶粒300、第一铜柱结构400、第二铜柱结构500、MOS单元结构800,第一铜柱结构400的一端与漏极框架100电连接,第一铜柱结构400的另一端与晶粒300的一端电连接,晶粒300的另一端与第二铜柱结构500的一端电连接,第二铜柱结构500的另一端与源极框架200电连接,MOS单元结构800设置在晶粒300上并通过晶粒300分别与述第一铜柱结构400和第二铜柱结构500电连接;
在漏极框架100上设置第一点集、第二点集,包括:
将第一点集的测试点和第二点集的测试点分别设置在第一铜柱结构400的两侧;
将第一点集的电流点、第二点集的电流点设置在第一点集的测试点和第二点集的测试点之间;
其中,第一点集的电流点和测试点相邻设置,第二点集的电流点和测试点相邻设置;
在源极框架200上设置第三点集、第四点集,包括:
将第三点集的测试点和第四点集的测试点分别设置在第二铜柱结构500的两侧;
将第三点集的电流点、第四点集的电流点设置在第三点集的测试点和第四点集的测试点之间;
其中,第三点集的电流点和测试点相邻设置,第四点集的电流点和测试点相邻设置。
可以理解的是,如图2所示,为LDMOS器件的底部结构示意图。第一点集包括第一测试点和第一电流点,第二点集包括第二测试点和第二电流点,第三点集包括第三测试点和第三电流点,第四点集包括第四测试点和第四电流点,且第一测试点、第二测试点、第三测试点、第四测试点分别为S1、S2、S3、S4,第一电流点、第二电流点、第三电流点、第四电流点分别为F1、F2、F3、F4。如图2所示的LDMOS器件结构,采用Flip-Chip QFN封装,其中,Flip-Chip为倒装芯片,是一种无引脚结构;QFN(Quad Flat No-leads Package),方形扁平无引脚封装,表面贴装型封装之一。实际应用时,漏极框架100和源极框架200的两端都有电流通过,通过设置F1、F2、F3、F4四个电流点以及S1、S2、S3、S4四个测试点,并且加载第一电流时,第一电流从F1流至F3,加载第二电流时,第二电流从F2流至F4,能够更加符合实际应用,测量更加准确。
可以理解的是,如图2和图3所示,第一铜柱结构400包括若干第一铜柱410,第二铜柱结构500包括若干第二铜柱510;若干第一铜柱410的一端连接漏极框架100,另一端连接晶粒300;若干第二铜柱510的一端连接源极框架200,另一端连接晶粒300。
可以理解的是,如图2和图3所示,LDMOS器件设置有若干第一铜柱410,漏极框架100和晶粒300之间通过若干第一铜柱410连接,且若干第一铜柱410成排设置,第一测试点可以设置在漏极框架100一侧的端部和同侧的第一个第一铜柱410之间,第二测试点可以设置在漏极框架100另一侧的端部和同侧的第一个第一铜柱410之间。具体地,与漏极框架100一侧的端部同侧的第一个第一铜柱410,位于若干第一铜柱410的一端;与漏极框架100另一侧的端部同侧的第一个第一铜柱410,位于若干第一铜柱410的另一端。并且,对于第一电流点和第二电流点的位置并没有特殊要求,只要在第一测试点和第二测试点之间便可。
可以理解的是,如图2和图4所示,LDMOS器件还设置有若干第二铜柱510,源极框架200和晶粒300之间通过若干第二铜柱500连接,且第二铜柱510成排设置,第三测试点可以设置在源极框架200一侧的端部和同侧的第一个第二铜柱510之间,第四测试点可以设置在源极框架200另一侧的端部和同侧的第一个第二铜柱510之间。具体地,与源极框架200一侧的端部同侧的第一个第二铜柱510,位于若干第二铜柱510的一端;与源极框架200另一侧的端部同侧的第一个第二铜柱510,位于若干第二铜柱510的另一端。并且,对于第三电流点和第四电流点的位置并没有特殊要求,只要在第三测试点和第四测试点之间便可。
可以理解的是,如图3和图4所示,测试设备在和F1、F2、F3、F4接触时,会产生接触电阻R2、R3、R11、R12,电流源在和S1、S2、S3、S4接触时,会产生接触电阻R1、R4、R10、R13,而第一电流回路和第二电流回路构成两组开尔文测试环路,通过构建开尔文测试环路,可以降低接触电阻对测试精度带来的影响。
可以理解的是,如图3和图4所示,漏极框架100、源极框架200设置在LDMOS器件的底部,晶粒300设置在LDMOS器件的顶部。
可以理解的是,还可以将如图3和图4所示的结构进行倒扣封装。具体地,漏极框架100、源极框架200所处位置和晶粒300所处位置相互替换。进一步地,漏极框架100、源极框架200设置在LDMOS器件的顶部,晶粒300设置在LDMOS器件的底部。
可以理解的是,如图5所示,第一电流根据预设电流值进行加载。
可以理解的是,如图5所示,为LDMOS器件的等效电路原理图。D极上的漏极框架100的电阻值等效为R19,S极上的源极框架200的电阻值等效为R20,D极和S极之间通过MOS单元结构800电连接,MOS单元结构800包括若干MOS单元,D极和S极通过若干MOS单元连接,若干MOS单元形成并联结构。
可以理解的是,如图5所示,第一MOS单元为M1,第二MOS单元为M2,第一电流从F1流经M1至F3,第二电流从F2流经M2至F4。
可以理解的是,如图6所示,第一MOS单元为M3,第二MOS单元为Mn,第一电流从F1流经M1至F3,第二电流从F2流经Mn至F4。
可以理解的是,如图5所示,根据第一电流、第二电流、第一电压和第二电压,得到LDMOS器件对应的导通电阻,包括:
对第一电压、第二电压进行求和并取平均,得到平均电压;
对第一电流、第二电流进行求和,得到总电流;
根据总电流、平均电压和欧姆定律,得到导通电阻。
可以理解的是,如图5所示,F1到F3之间的第一电流为I13,第一电压为VRON1,F2到F4之间的第二电流为I24,第二电压为VRON2,导通电阻为Ron,则导通电阻的计算公式为:Ron=(VRON1+ VRON2)/2/(I13+ I24)。
可以理解的是,预设范围为小于50微伏。
可以理解的是,第一电压和第二电压通过10微伏或以上精度的测试设备进行测量。
可以理解的是,测试设备为六位半高精度数字万用表。
可以理解的是,六位半高精度数字万用表为安捷伦34401A。安捷伦34401A在量程100毫伏时,测量精度为3微伏,能够满足10微伏及以上测量精度的要求。
可以理解的是,第一电流和第二电流均小于或等于1安培。
下面参照图5描述根据本申请实施例的LDMOS导通电阻的测量方法。
可以理解的是,如图5所示,若干MOS单元为IS6606电源管理芯片中的基本结构,漏极框架100和源极框架200的等效电阻通过计算可以得到,因框架所采用的材料已知,为铜,且根据芯片的设计图纸,漏极框架100和源极框架200的长度、宽度、厚度都是根据设计数据已知的,根据以下公式:
R=ρL/S;
ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积。
根据计算得出的框架电阻,以及测量设备的测量精度,进而可以对需要加载的第一电流进行预设。
如图5所示,通过第一电流源600在F1电流点和F3电流点之间加载第一电流I13至0.5安培电流后保持,电流走向为从F1到M1,再从M1到F3,之后,通过第二电流源700在在F2电流点和F3电流点之间缓慢加电流至第二电流I24,电流走向为从F2到M2,再从M2到F4,通过六位半高精度数字万用表测量S1测试点和S3测试点之间的第一导通电压VRON1,通过六位半高精度数字万用表测量S2测试点和S4测试点之间的第二导通电压VRON2,通过加电流使VRON1=VRON2,是为了使框架电阻没有电流流过,假设现在VRON1=VRON2=0.009伏,I13=0.5安培,I24=0.3安培,则:Ron=0.009/(0.5+0.3)=0.01125欧姆=11.25毫欧姆。
下面参照图6描述根据本申请实施例的LDMOS导通电阻的测量方法。
可以理解的是,如图6所示,若干MOS单元为IS6608电源管理芯片中的基本结构,且MOS单元的数量为大于两个,同理,根据计算得出的框架电阻,以及测量设备的测量精度,可以对需要加载的第一电流进行预设。
如图6所示,通过第一电流源600在F1电流点和F3电流点之间加载第一电流I13至0.5安培电流后保持,电流走向为从F1到M3,再从M3到F3,之后,通过第二电流源700在F2电流点和F4电流点之间缓慢加电流至第二电流I24,电流走向为从F2到Mn,再从Mn到F4,通过六位半高精度数字万用表测量S1测试点和S3测试点之间的第一导通电压VRON1,通过六位半高精度数字万用表测量S2测试点和S4测试点之间的第二导通电压VRON2,通过加电流使VRON1=VRON2,是为了框架电阻没有电流流过,假设现在VRON1=VRON2=0.0012伏,I13=0.5安培,I24=0.5安培,则:Ron=0.0012/(0.5+0.5)=0.0012欧姆=1.2毫欧姆。
如图7所示,漏极框架100为两个,属于D极;源极框架200为一个,属于S极;两个漏极框架100分别设置在源极框架200的两侧,一个漏极框架100的一端设置有F1和S1,另一个漏极框架100的一端设置有F2和S2,F1、S1、F2、S2位于LDMOS器件的同一侧,源极框架200的一端设置有F3和S3,此结构,F3和F4重合,S3和S4重合,第一电流加载于F1和F3之间,第二电流加载于F2和F3之间,调整第二电流,直至测量的S1和S3之间的第一电压等于测量的S2和S3之间的第二电压,进而计算出导通电阻。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (9)

1.LDMOS导通电阻的测量方法,其特征在于,包括:
获取待测的LDMOS器件;其中,所述LDMOS器件设置有漏极框架和源极框架,所述漏极框架表示构建所述LDMOS器件漏极的框架结构,所述源极框架表示构建所述LDMOS器件源极的框架结构;
根据所述漏极框架和所述源极框架,构建第一电流回路和第二电流回路;其中,所述漏极框架上设置有第一点集、第二点集,所述源极框架上设置有第三点集、第四点集,所述第一点集、所述第二点集、所述第三点集、所述第四点集均包括电流点,所述电流点位于所述漏极框架或所述源极框架的两端之间,所述第一点集和所述第三点集的电流点,构建所述第一电流回路;所述第二点集和所述第四点集的电流点用于构建所述第二电流回路;
在所述第一电流回路中加载第一电流,在所述第二电流回路中加载第二电流;其中,所述第一电流表示从所述第一点集的电流点流向所述第三点集的电流点;所述第二电流表示从所述第二点集的电流点流向所述第四点集的电流点;
测量所述第一电流回路中的所述漏极框架和所述源极框架之间的电压,得到第一电压;测量所述第二电流回路中的所述漏极框架和所述源极框架之间的电压,得到第二电压;其中,所述第二电压和所述第一电压之间的差值满足预设范围;
根据所述第一电流、所述第二电流、所述第一电压和所述第二电压,得到所述LDMOS器件对应的导通电阻;
所述LDMOS器件还设置有LDMOS连接结构,所述LDMOS连接结构的一端与所述漏极框架电连接,所述LDMOS连接结构的另一端与所述源极框架电连接;
所述根据所述漏极框架和所述源极框架,构建第一电流回路和第二电流回路,包括:
将第一电流源的正极与所述第一点集的电流点电连接,将所述第一电流源的负极与所述第三点集的电流点电连接;
根据所述第一电流源、所述漏极框架、所述源极框架和所述LDMOS连接结构,构建所述第一电流回路;
将第二电流源的正极与所述第二点集的电流点电连接,将所述第二电流源的负极与所述第四点集的电流点电连接;
根据所述第二电流源、所述漏极框架、所述源极框架和所述LDMOS连接结构,构建所述第二电流回路。
2.根据权利要求1所述的LDMOS导通电阻的测量方法,其特征在于,所述第一点集、所述第二点集、所述第三点集、所述第四点集均包括测试点,且所述测试点位于所述漏极框架或所述源极框架的两端;所述第一点集和所述第三点集的测试点用于测量所述第一电流回路上的第一电压,所述第二点集和所述第四点集的测试点用于测量所述第二电流回路上的第二电压。
3.根据权利要求1所述的LDMOS导通电阻的测量方法,其特征在于,所述在所述第一电流回路中加载第一电流,在所述第二电流回路中加载第二电流,包括:
通过所述第一电流源向所述第一电流回路加载所述第一电流;
通过所述第二电流源向所述第二电流回路加载所述第二电流。
4.根据权利要求2所述的LDMOS导通电阻的测量方法,其特征在于,所述测量所述第一电流回路中的所述漏极框架和所述源极框架之间的电压,得到第一电压;测量所述第二电流回路中的所述漏极框架和所述源极框架之间的电压,得到第二电压,包括:
测量所述第一点集的测试点和所述第三点集的测试点之间的电压,得到所述第一电压;
测量所述第二点集的测试点和所述第四点集的测试点之间的电压,得到所述第二电压。
5.根据权利要求4所述的LDMOS导通电阻的测量方法,其特征在于,所述LDMOS连接结构包括晶粒、第一铜柱结构、第二铜柱结构、MOS单元结构,所述第一铜柱结构的一端与所述漏极框架电连接,所述第一铜柱结构的另一端与所述晶粒的一端电连接,所述晶粒的另一端与所述第二铜柱结构的一端电连接,所述第二铜柱结构的另一端与所述源极框架电连接,所述MOS单元结构设置在所述晶粒上并通过所述晶粒分别与述第一铜柱结构和所述第二铜柱结构电连接;
所述在所述漏极框架上设置第一点集、第二点集,包括:
将所述第一点集的所述测试点和所述第二点集的所述测试点分别设置在所述第一铜柱结构的两侧;
将所述第一点集的所述电流点、所述第二点集的所述电流点设置在所述第一点集的所述测试点和所述第二点集的所述测试点之间;
其中,所述第一点集的电流点和测试点相邻设置,所述第二点集的电流点和测试点相邻设置;
所述在所述源极框架上设置第三点集、第四点集,包括:
将所述第三点集的所述测试点和所述第四点集的所述测试点分别设置在所述第二铜柱结构的两侧;
将所述第三点集的所述电流点、所述第四点集的所述电流点设置在所述第三点集的所述测试点和所述第四点集的所述测试点之间;
其中,所述第三点集的电流点和测试点相邻设置,所述第四点集的电流点和测试点相邻设置。
6.根据权利要求1所述的LDMOS导通电阻的测量方法,其特征在于,所述根据所述第一电流、所述第二电流、所述第一电压和所述第二电压,得到所述LDMOS器件对应的导通电阻,包括:
对所述第一电压、所述第二电压进行求和并取平均,得到平均电压;
对所述第一电流、所述第二电流进行求和,得到总电流;
根据所述总电流、所述平均电压和欧姆定律,得到所述导通电阻。
7.根据权利要求1所述的LDMOS导通电阻的测量方法,其特征在于,所述预设范围为小于50微伏。
8.根据权利要求1所述的LDMOS导通电阻的测量方法,其特征在于,所述第一电压和所述第二电压通过10微伏或以上精度的测试设备进行测量。
9.根据权利要求1所述的LDMOS导通电阻的测量方法,其特征在于,所述第一电流和所述第二电流均小于或等于1安培。
CN202110843732.7A 2021-07-26 2021-07-26 Ldmos导通电阻的测量方法 Active CN113567746B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110843732.7A CN113567746B (zh) 2021-07-26 2021-07-26 Ldmos导通电阻的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110843732.7A CN113567746B (zh) 2021-07-26 2021-07-26 Ldmos导通电阻的测量方法

Publications (2)

Publication Number Publication Date
CN113567746A CN113567746A (zh) 2021-10-29
CN113567746B true CN113567746B (zh) 2023-10-13

Family

ID=78167320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110843732.7A Active CN113567746B (zh) 2021-07-26 2021-07-26 Ldmos导通电阻的测量方法

Country Status (1)

Country Link
CN (1) CN113567746B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500399A (zh) * 2022-01-18 2023-07-28 长鑫存储技术有限公司 半导体结构的检测方法、装置、设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587148A (zh) * 2008-05-20 2009-11-25 中芯国际集成电路制造(上海)有限公司 一种减小mos器件导通电阻测试值的方法
JP2009302182A (ja) * 2008-06-11 2009-12-24 Denso Corp 半導体装置
CN103207303A (zh) * 2012-01-13 2013-07-17 英飞凌科技奥地利有限公司 功率晶体管中的电流测量
CN103308772A (zh) * 2012-03-16 2013-09-18 中芯国际集成电路制造(上海)有限公司 半导体检测电路及检测方法
CN103633082A (zh) * 2012-08-13 2014-03-12 上海华虹宏力半导体制造有限公司 Ldmos功率晶体管阵列结构及其版图实现方法
CN204649917U (zh) * 2015-04-02 2015-09-16 北京华峰测控技术有限公司 一种mosfet晶圆导通电阻的测量装置
CN106960802A (zh) * 2016-01-11 2017-07-18 北大方正集团有限公司 一种半导体静态电流的测试器件及测试方法
CN107015133A (zh) * 2017-04-14 2017-08-04 上海华虹宏力半导体制造有限公司 Mos管导通电阻的测试结构及方法
CN110060995A (zh) * 2018-01-16 2019-07-26 英飞凌科技奥地利有限公司 具有负载晶体管和感测晶体管的晶体管装置
CN113064041A (zh) * 2019-12-31 2021-07-02 圣邦微电子(北京)股份有限公司 场效应晶体管的导通电阻测量方法及测量装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940415B1 (ko) * 2007-12-03 2010-02-02 주식회사 동부하이텍 배면 드레인 구조 웨이퍼의 온저항 측정방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587148A (zh) * 2008-05-20 2009-11-25 中芯国际集成电路制造(上海)有限公司 一种减小mos器件导通电阻测试值的方法
JP2009302182A (ja) * 2008-06-11 2009-12-24 Denso Corp 半導体装置
CN103207303A (zh) * 2012-01-13 2013-07-17 英飞凌科技奥地利有限公司 功率晶体管中的电流测量
CN103308772A (zh) * 2012-03-16 2013-09-18 中芯国际集成电路制造(上海)有限公司 半导体检测电路及检测方法
CN103633082A (zh) * 2012-08-13 2014-03-12 上海华虹宏力半导体制造有限公司 Ldmos功率晶体管阵列结构及其版图实现方法
CN204649917U (zh) * 2015-04-02 2015-09-16 北京华峰测控技术有限公司 一种mosfet晶圆导通电阻的测量装置
CN106960802A (zh) * 2016-01-11 2017-07-18 北大方正集团有限公司 一种半导体静态电流的测试器件及测试方法
CN107015133A (zh) * 2017-04-14 2017-08-04 上海华虹宏力半导体制造有限公司 Mos管导通电阻的测试结构及方法
CN110060995A (zh) * 2018-01-16 2019-07-26 英飞凌科技奥地利有限公司 具有负载晶体管和感测晶体管的晶体管装置
CN113064041A (zh) * 2019-12-31 2021-07-02 圣邦微电子(北京)股份有限公司 场效应晶体管的导通电阻测量方法及测量装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LDMOS器件性能研究与综述;赵婉婉 等;《科技创新与应用》(第09期);第164-166页 *
The analysis and modeling of on-resistance in high-voltage LDMOS;Dao-Ming Ke et al.;《2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings》;第1-3页 *

Also Published As

Publication number Publication date
CN113567746A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
JP5267053B2 (ja) 半導体試験装置
CN113567746B (zh) Ldmos导通电阻的测量方法
CN101865971B (zh) 半导体场效应晶体管的测试方法及测试结构
DE102008023216A1 (de) Verfahren zur Betriebstemperaturmessung eines MOS-gesteuerten Halbleiterleistungsbauelementes und Bauelement zur Ausführung des Verfahrens
CN106898562A (zh) 半导体结构以及测试栅极氧化层的击穿电压的方法
CN110168328B (zh) 用于确定至少一个电子开关元件的温度的方法和电子组件
US9880229B2 (en) Measurement of bonding resistances
CN102841300B (zh) 测试mos器件温度特性的结构及方法
CN215641511U (zh) Ldmos导通电阻的测量电路
US10816589B2 (en) Structure and method for testing semiconductor device
US20210156902A1 (en) Semiconductor chip and circuit and method for electrically testing semiconductor chip
CN114740327B (zh) Igbt模块状态监测方法及装置
JPH07245401A (ja) 縦型半導体装置の特性測定方法
CN103426866B (zh) 围栏间隔的设计规则测试电路
CN103837809A (zh) 测试mosfet匹配性的ic布局及测试方法
CN107015133B (zh) Mos管导通电阻的测试结构及方法
US7439582B2 (en) Semiconductor device with sense structure
CN101673673B (zh) 外延片形成方法及使用该方法形成的外延片
US20160139180A1 (en) Testing semiconductor devices
US11063146B2 (en) Back-to-back power field-effect transistors with associated current sensors
WO2008046904A1 (de) Halbleiterkörper und verfahren zum testen eines halbleiterkörpers
CN104459272A (zh) 半导体装置的测定装置
TW541426B (en) Monitoring resistor element and measuring method of relative preciseness of resistor elements
JPH06201761A (ja) 絶縁膜の経時絶縁破壊特性測定方法
CN115032517B (zh) 监测igbt器件工作状态的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant