CN113566495A - 一种玻璃窑炉用低能耗氮氧制取工艺 - Google Patents

一种玻璃窑炉用低能耗氮氧制取工艺 Download PDF

Info

Publication number
CN113566495A
CN113566495A CN202110858748.5A CN202110858748A CN113566495A CN 113566495 A CN113566495 A CN 113566495A CN 202110858748 A CN202110858748 A CN 202110858748A CN 113566495 A CN113566495 A CN 113566495A
Authority
CN
China
Prior art keywords
nitrogen
rectifying tower
liquid
oxygen
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110858748.5A
Other languages
English (en)
Other versions
CN113566495B (zh
Inventor
何森林
郭磊
周优珍
杨正军
韦霆
朱航
张云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Turning Energy Technology Development Co ltd
Original Assignee
Hangzhou Turning Energy Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Turning Energy Technology Development Co ltd filed Critical Hangzhou Turning Energy Technology Development Co ltd
Priority to CN202110858748.5A priority Critical patent/CN113566495B/zh
Publication of CN113566495A publication Critical patent/CN113566495A/zh
Application granted granted Critical
Publication of CN113566495B publication Critical patent/CN113566495B/zh
Priority to US17/839,476 priority patent/US11629914B2/en
Priority to JP2022099742A priority patent/JP7154670B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明提供了一种玻璃窑炉用低能耗氮氧制取工艺,制取时所需装置,包括过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、电加热器、主换热器、精馏塔I、主冷凝蒸发器I、精馏塔II、主冷凝蒸发器II、精馏塔III、主冷凝蒸发器III、过冷器、膨胀机I和膨胀机II。本发明采用三塔精馏,同时制取低压氮气产品和带一定压力的氧气产品,带一定压力的氧气产品用作玻璃窑炉富氧燃烧,低压氮气产品用作锡槽保护气。

Description

一种玻璃窑炉用低能耗氮氧制取工艺
技术领域
本发明涉及空气分离技术领域,具体涉及一种玻璃窑炉用低能耗氮氧制取工艺。
背景技术
玻璃窑炉是高能耗设备,其能耗占玻璃生产能耗的70%左右。富氧燃烧技术是一项节能型技术,向传统的玻璃窑炉内供入氧气进行助燃,使特定区域的氧含量增高,可以加快燃烧反应速度,扩宽燃烧极限,从而提高燃烧效率、火焰温度和传热效率,明显提高玻璃融化率,相应减少废气排放量和烟气带走的热损失,降低NOx排放量,最终达到提高玻璃的产量和质量、节约能源和减少环境污染的目的,同时玻璃窑炉生产中需要制备一定压力的氮气作为锡槽保护气。
由于氧气和氮气制备需要消耗电力,会一定程度增加玻璃制取成本,如何制取适合玻璃窑炉工艺需求的低能耗氧气、压力氮气成为富氧燃烧技术推广应用的关键。
发明内容
本发明的目的是提供一种玻璃窑炉用低能耗氮氧制取工艺,以解决现有技术的不足。
本发明采用以下技术方案:
一种玻璃窑炉用低能耗氮氧制取工艺,制取时所需装置,包括过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、电加热器、主换热器、精馏塔I、主冷凝蒸发器I、精馏塔II、主冷凝蒸发器II、精馏塔III、主冷凝蒸发器III、过冷器、膨胀机I和膨胀机II;
过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、电加热器设于冷箱外,主换热器、精馏塔I、主冷凝蒸发器I、精馏塔II、主冷凝蒸发器II、精馏塔III、主冷凝蒸发器III、过冷器、膨胀机I、膨胀机II设于冷箱内,主冷凝蒸发器I设于精馏塔I之上,主冷凝蒸发器II设于精馏塔II之上,主冷凝蒸发器III设于精馏塔III底部;
过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、主换热器依次连接,主换热器和精馏塔I底部的原料空气进口连接;
精馏塔I底部的液空出口和过冷器连接,过冷器和主冷凝蒸发器I连接,过冷器和主冷凝蒸发器I的连接管路上设有节流阀,主冷凝蒸发器I的富氧空气出口和精馏塔II底部连接,主冷凝蒸发器I的液空出口和主冷凝蒸发器II连接;
精馏塔I顶部的压力氮气出口分别和主冷凝蒸发器I、主冷凝蒸发器III、主换热器的压力氮气复热/部分复热进口连接,主冷凝蒸发器I的液氮出口和液氮缓冲罐连接,液氮缓冲罐分别和精馏塔I顶部、精馏塔II顶部、液氮产品供应管道连接,液氮缓冲罐和精馏塔II顶部的连接管路上设有节流阀;主换热器的压力氮气复热出口、压力氮气部分复热出口分别和高压氮气产品供应管道、膨胀机I连接,膨胀机I和主换热器的低压氮气复热进口连接,主换热器的低压氮气复热出口和低压氮气产品供应管道连接;
精馏塔II底部的富氧液空出口分别和主冷凝蒸发器II、精馏塔III顶部连接,精馏塔II底部的富氧液空出口和主冷凝蒸发器II、精馏塔III顶部连接的连接管路上均设有节流阀;主冷凝蒸发器II的污氮气出口和过冷器连接,过冷器和主换热器的污氮气复热进口连接,主换热器的污氮气复热出口分别和放空管道、电加热器连接,电加热器和交替使用的分子筛吸附器连接;
精馏塔II顶部的低压氮气出口分别和主冷凝蒸发器II、主换热器的低压氮气复热进口连接,主冷凝蒸发器II的液氮出口和精馏塔II顶部连接;
主冷凝蒸发器III位于精馏塔III底部,精馏塔III的氧气出口和主换热器连接,主换热器和氧气产品供应管道连接,主冷凝蒸发器III的液氮出口和液氮缓冲罐连接,精馏塔III的液氧出口和液氧产品供应管道连接;
精馏塔III顶部的带压污氮气和过冷器连接,过冷器和主换热器的带压污氮气部分复热进口连接,主换热器的带压污氮气部分复热出口和膨胀机II连接,膨胀机II再连至主换热器的污氮气复热进口;
制取时包括如下步骤:
步骤一、将原料空气经过滤器过滤掉灰尘和机械杂质后,进入透平空气压缩机将空气压缩到设定压力;之后经空气预冷机组预冷后进入交替使用的分子筛吸附器中纯化;
步骤二、纯化后的原料空气部分用于仪表空气,其余部分进入主换热器冷却至饱和温度并带有一定的含湿后进入精馏塔I底部参与精馏;
步骤三、空气经精馏塔I精馏后分离为液空和压力氮气,液空经过冷器过冷、节流阀节流后进入主冷凝蒸发器I作为冷源和压力氮气换热,液空被汽化为富氧空气,富氧空气引入精馏塔II底部参与精馏,同时从主冷凝蒸发器I引出部分液空进入主冷凝蒸发器II作为冷源;压力氮气部分引入主冷凝蒸发器I作为热源和液空换热,压力氮气被液化为液氮,液氮和主冷凝蒸发器III引出的液氮汇流,部分液氮引入精馏塔I顶部作为回流液,部分液氮经节流阀节流后引入精馏塔II顶部参与精馏,其余作为液氮产品引出;部分压力氮气引入主冷凝蒸发器III作为热源,部分压力氮气经主换热器复热后出冷箱作为高压氮气产品,其余压力氮气经主换热器部分复热后引入膨胀机I膨胀,膨胀后经主换热器复热后出冷箱作为低压氮气产品;
步骤四、液氮和富氧空气经精馏塔II精馏后从精馏塔II底部获得富氧液空,精馏塔II顶部获得低压氮气;引出部分富氧液空经节流阀节流后进入主冷凝蒸发器II作为冷源和低压氮气换热,富氧液空被汽化为污氮气,污氮气经过冷器、主换热器复热后出冷箱,部分污氮气作为交替使用的分子筛吸附器再生气,其余放空,其余富氧液空经节流阀节流后引入精馏塔III顶部参与精馏;部分低压氮气引入主冷凝蒸发器II作为热源和富氧液空换热,低压氮气被液化为液氮,液氮引入精馏塔II顶部作为回流液,其余低压氮气经主换热器复热后作为低压氮气产品;
步骤五、富氧液空经精馏塔III精馏后分离为液氧和带压污氮气,液氧作为主冷凝蒸发器III的冷源,和从精馏塔I引入的压力氮气换热,液氧被汽化为氧气,引出部分氧气经主换热器复热后出冷箱作为氧气产品,其余氧气作为精馏塔III的上升气体;压力氮气被液化为液氮,液氮和主冷凝蒸发器I引出的液氮汇流,部分液氮引入精馏塔I顶部作为回流液,部分液氮经节流阀节流后引入精馏塔II顶部参与精馏,其余作为液氮产品引出,同时可从精馏塔III底部引出部分液氧作为液氧产品;带压污氮气经过冷器复热、主换热器部分复热后进入膨胀机II膨胀,之后经主换热器复热后出冷箱,部分作为交替使用的分子筛吸附器再生气,其余放空。
进一步地,步骤一空气经透平空气压缩机压缩到0.75-1.0MPa。
进一步地,步骤一空气经空气预冷机组预冷至5-8℃。
进一步地,步骤三压力氮气压力为0.68-0.95MpaG。
进一步地,步骤三高压氮气产品纯度为小于3ppmO2,压力为0.68-0.95MpaG。
进一步地,步骤四低压氮气压力为0.3-0.5MpaG。
进一步地,步骤三和步骤四低压氮气产品纯度为小于3ppmO2,压力为0.3-0.5MpaG。
进一步地,步骤五氧气产品纯度为90-99.6%,压力为0.1-0.3MpaG。
本发明的有益效果:
1、本发明采用三塔精馏,同时制取低压氮气产品(小于3ppmO2,0.3-0.5MpaG)和带一定压力的氧气产品(90-99.6%,0.1-0.3MpaG),带一定压力的氧气产品用于玻璃窑炉富氧燃烧,低压氮气产品用于锡槽保护气,在需要时同时还可提供高压氮气产品。
2、本发明低压氮气产品提取率高,可用低压氮气产品作为锡槽保护气。
3、本发明从精馏塔II底部引出部分富氧液空进入精馏塔III精馏,因精馏塔II底部富氧液空含氧量较高,可降低精馏塔III分离功,可以减少精馏塔板数,提高精馏塔III提取效率,增加氧气产量。
4、本发明采用压力氮气膨胀及带压污氮气返流膨胀,充分利用高低压系统压力能,提高装置产冷量,在满足装置冷损的情况下,可以产部分液氧和液氮产品。
5、本发明在满足精馏塔II和主冷凝蒸发器II最低换热温度的情况下,因进主冷凝蒸发器I中液空的含氧量较精馏塔II富氧液空的含氧量低,可以降低进精馏塔I空气的压力,进而降低空压机的排气压力,降低装置的整体能耗。
附图说明
图1为本发明制取工艺制取时所需装置结构示意图。
具体实施方式
下面结合实施例和附图对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。
一种玻璃窑炉用低能耗氮氧制取工艺,其是利用图1所示装置进行制取。
所示装置包括过滤器1、透平空气压缩机2、空气预冷机组3、交替使用的分子筛吸附器4、电加热器5、主换热器6、精馏塔I9、主冷凝蒸发器I10、精馏塔II12、主冷凝蒸发器II13、精馏塔III14、主冷凝蒸发器III15、过冷器11、膨胀机I7和膨胀机II8;
过滤器1、透平空气压缩机2、空气预冷机组3、交替使用的分子筛吸附器4、电加热器5设于冷箱外,主换热器6、精馏塔I9、主冷凝蒸发器I10、精馏塔II12、主冷凝蒸发器II13、精馏塔III14、主冷凝蒸发器III15、过冷器11、膨胀机I7、膨胀机II8设于冷箱内,主冷凝蒸发器I10设于精馏塔I9之上,主冷凝蒸发器II13设于精馏塔II12之上,主冷凝蒸发器III15设于精馏塔III14底部;
过滤器1、透平空气压缩机2、空气预冷机组3、交替使用的分子筛吸附器4、主换热器6依次连接,主换热器6和精馏塔I9底部的原料空气进口连接;
精馏塔I9底部的液空出口和过冷器11连接,过冷器11和主冷凝蒸发器I10连接,过冷器11和主冷凝蒸发器I10的连接管路上设有节流阀,主冷凝蒸发器I10的富氧空气出口和精馏塔II12底部连接,主冷凝蒸发器I10的液空出口和主冷凝蒸发器II13连接;
精馏塔I9顶部的压力氮气出口分别和主冷凝蒸发器I10、主冷凝蒸发器III15、主换热器6的压力氮气复热/部分复热进口连接,主冷凝蒸发器I10的液氮出口和液氮缓冲罐(图1中未示意出液氮缓冲罐)连接,液氮缓冲罐分别和精馏塔I9顶部、精馏塔II12顶部、液氮产品供应管道连接,液氮缓冲罐和精馏塔II12顶部的连接管路上设有节流阀;主换热器6的压力氮气复热出口、压力氮气部分复热出口分别和高压氮气产品供应管道、膨胀机I7连接,膨胀机I7和主换热器6的低压氮气复热进口连接,主换热器6的低压氮气复热出口和低压氮气产品供应管道连接;
精馏塔II12底部的富氧液空出口分别和主冷凝蒸发器II13、精馏塔III14顶部连接,精馏塔II12底部的富氧液空出口和主冷凝蒸发器II13、精馏塔III14顶部连接的连接管路上均设有节流阀;主冷凝蒸发器II10的污氮气出口和过冷器11连接,过冷器11和主换热器6的污氮气复热进口连接,主换热器6的污氮气复热出口分别和放空管道、电加热器5连接,电加热器5和交替使用的分子筛吸附器4连接;
精馏塔II12顶部的低压氮气出口分别和主冷凝蒸发器II13、主换热器6的低压氮气复热进口连接,主冷凝蒸发器II13的液氮出口和精馏塔II12顶部连接;
主冷凝蒸发器III15位于精馏塔III14底部,精馏塔III14的氧气出口和主换热器6连接,主换热器6和氧气产品供应管道连接,主冷凝蒸发器III15的液氮出口和液氮缓冲罐连接,精馏塔III14的液氧出口和液氧产品供应管道连接;
精馏塔III14顶部的带压污氮气和过冷器11连接,过冷器11和主换热器6的带压污氮气部分复热进口连接,主换热器6的带压污氮气部分复热出口和膨胀机II8连接,膨胀机II8再连至主换热器6的污氮气复热进口。
上述各部件的功能如下:
过滤器1,用于过滤原料空气中的灰尘和机械杂质;
透平空气压缩机2,用于将过滤后的原料空气压缩到设定压力;
空气预冷机组3,用于将过滤、压缩后的原料空气预冷;
交替使用的分子筛吸附器4,用于将过滤、压缩、预冷后的原料空气纯化,去除水分、CO2、C2H2等物质;
电加热器5,用于加热污氮气以再生交替使用的分子筛吸附器4;
主换热器6,用于将纯化后的原料空气冷却,用于将压力氮气、带压污氮气部分复热,用于将压力氮气、压力氮气经膨胀后的氮气、污氮气、低压氮气、氧气、带压污氮气经膨胀后的污氮气复热;
精馏塔I9,用于将原料空气精馏而分离为液空和压力氮气;
主冷凝蒸发器I10,用于液空和压力氮气换热,液空被汽化为富氧空气,压力氮气被液化为液氮;
精馏塔II12,用于将液氮和富氧空气精馏而分离为低压氮气和富氧液空;
主冷凝蒸发器II13,用于富氧液空和低压氮气换热,富氧液空被汽化为污氮气,低压氮气被液化为液氮;
精馏塔III14,用于将富氧液空精馏而分离为液氧和带压污氮气;
主冷凝蒸发器III15,用于液氧和压力氮气换热,液氧被汽化为氧气,压力氮气被液化为液氮;
过冷器11,用于将液空过冷,用于将污氮气、带压污氮气过热;
膨胀机I7,用于将经主换热器6部分复热后的压力氮气膨胀,制取冷量;
膨胀机II8,用于将经主换热器6部分复热后的带压污氮气膨胀,制取冷量。
制取时包括如下步骤:
步骤一、将原料空气经过滤器1过滤掉灰尘和机械杂质后,进入透平空气压缩机2将空气压缩到设定压力0.75-1.0MPa;之后经空气预冷机组3预冷至5-8℃后进入交替使用的分子筛吸附器4中纯化,去除水分、CO2、C2H2等物质;
步骤二、纯化后的原料空气部分用于仪表空气(图中未示意出),其余部分进入主换热器6冷却至饱和温度并带有一定的含湿后进入精馏塔I9底部参与精馏;
步骤三、空气经精馏塔I9精馏后分离为液空和压力氮气(压力为0.68-0.95MpaG),液空经过冷器11过冷、节流阀节流后进入主冷凝蒸发器I10作为冷源和压力氮气换热,液空被汽化为富氧空气,富氧空气引入精馏塔II12底部参与精馏,同时从主冷凝蒸发器I10引出部分液空进入主冷凝蒸发器II13作为冷源;压力氮气部分引入主冷凝蒸发器I10作为热源和液空换热,压力氮气被液化为液氮,液氮和主冷凝蒸发器III15引出的液氮汇流,部分液氮引入精馏塔I9顶部作为回流液,部分液氮经节流阀节流后引入精馏塔II12顶部参与精馏,其余作为液氮产品引出;部分压力氮气引入主冷凝蒸发器III15作为热源,部分压力氮气经主换热器6复热后出冷箱作为高压氮气产品(纯度为小于3ppmO2,压力为0.68-0.95MpaG),其余压力氮气经主换热器6部分复热后引入膨胀机I7膨胀,膨胀后经主换热器6复热后出冷箱作为低压氮气产品(纯度为小于3ppmO2,压力为0.3-0.5MpaG);
步骤四、液氮和富氧空气经精馏塔II12精馏后从精馏塔II12底部获得富氧液空,精馏塔II12顶部获得低压氮气(压力为0.3-0.5MpaG);引出部分富氧液空经节流阀节流后进入主冷凝蒸发器II13作为冷源和低压氮气换热,富氧液空被汽化为污氮气,污氮气经过冷器11、主换热器6复热后出冷箱,部分污氮气作为交替使用的分子筛吸附器4再生气,其余放空,其余富氧液空经节流阀节流后引入精馏塔III14顶部参与精馏;部分低压氮气引入主冷凝蒸发器II13作为热源和富氧液空换热,低压氮气被液化为液氮,液氮引入精馏塔II12顶部作为回流液,其余低压氮气经主换热器6复热后作为低压氮气产品(纯度为小于3ppmO2,压力为0.3-0.5MpaG);
步骤五、富氧液空经精馏塔III14精馏后分离为液氧和带压污氮气,液氧作为主冷凝蒸发器III15的冷源,和从精馏塔I9引入的压力氮气换热,液氧被汽化为氧气,引出部分氧气经主换热器6复热后出冷箱作为氧气产品(纯度为90-99.6%,压力为0.1-0.3MpaG),其余氧气作为精馏塔III14的上升气体;压力氮气被液化为液氮,液氮和主冷凝蒸发器I10引出的液氮汇流,部分液氮引入精馏塔I10顶部作为回流液,部分液氮经节流阀节流后引入精馏塔II12顶部参与精馏,其余作为液氮产品引出,同时可从主精馏塔III14底部引出部分液氧作为液氧产品;带压污氮气经过冷器11复热、主换热器6部分复热后进入膨胀机II8膨胀,之后经主换热器6复热后出冷箱,部分作为交替使用的分子筛吸附器4再生气,其余放空。

Claims (8)

1.一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,制取时所需装置,包括过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、电加热器、主换热器、精馏塔I、主冷凝蒸发器I、精馏塔II、主冷凝蒸发器II、精馏塔III、主冷凝蒸发器III、过冷器、膨胀机I和膨胀机II;
过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、电加热器设于冷箱外,主换热器、精馏塔I、主冷凝蒸发器I、精馏塔II、主冷凝蒸发器II、精馏塔III、主冷凝蒸发器III、过冷器、膨胀机I、膨胀机II设于冷箱内,主冷凝蒸发器I设于精馏塔I之上,主冷凝蒸发器II设于精馏塔II之上,主冷凝蒸发器III设于精馏塔III底部;
过滤器、透平空气压缩机、空气预冷机组、交替使用的分子筛吸附器、主换热器依次连接,主换热器和精馏塔I底部的原料空气进口连接;
精馏塔I底部的液空出口和过冷器连接,过冷器和主冷凝蒸发器I连接,过冷器和主冷凝蒸发器I的连接管路上设有节流阀,主冷凝蒸发器I的富氧空气出口和精馏塔II底部连接,主冷凝蒸发器I的液空出口和主冷凝蒸发器II连接;
精馏塔I顶部的压力氮气出口分别和主冷凝蒸发器I、主冷凝蒸发器III、主换热器的压力氮气复热/部分复热进口连接,主冷凝蒸发器I的液氮出口和液氮缓冲罐连接,液氮缓冲罐分别和精馏塔I顶部、精馏塔II顶部、液氮产品供应管道连接,液氮缓冲罐和精馏塔II顶部的连接管路上设有节流阀;主换热器的压力氮气复热出口、压力氮气部分复热出口分别和高压氮气产品供应管道、膨胀机I连接,膨胀机I和主换热器的低压氮气复热进口连接,主换热器的低压氮气复热出口和低压氮气产品供应管道连接;
精馏塔II底部的富氧液空出口分别和主冷凝蒸发器II、精馏塔III顶部连接,精馏塔II底部的富氧液空出口和主冷凝蒸发器II、精馏塔III顶部连接的连接管路上均设有节流阀;主冷凝蒸发器II的污氮气出口和过冷器连接,过冷器和主换热器的污氮气复热进口连接,主换热器的污氮气复热出口分别和放空管道、电加热器连接,电加热器和交替使用的分子筛吸附器连接;
精馏塔II顶部的低压氮气出口分别和主冷凝蒸发器II、主换热器的低压氮气复热进口连接,主冷凝蒸发器II的液氮出口和精馏塔II顶部连接;
主冷凝蒸发器III位于精馏塔III底部,精馏塔III的氧气出口和主换热器连接,主换热器和氧气产品供应管道连接,主冷凝蒸发器III的液氮出口和液氮缓冲罐连接,精馏塔III的液氧出口和液氧产品供应管道连接;
精馏塔III顶部的带压污氮气和过冷器连接,过冷器和主换热器的带压污氮气部分复热进口连接,主换热器的带压污氮气部分复热出口和膨胀机II连接,膨胀机II再连至主换热器的污氮气复热进口;
制取时包括如下步骤:
步骤一、将原料空气经过滤器过滤掉灰尘和机械杂质后,进入透平空气压缩机将空气压缩到设定压力;之后经空气预冷机组预冷后进入交替使用的分子筛吸附器中纯化;
步骤二、纯化后的原料空气部分用于仪表空气,其余部分进入主换热器冷却至饱和温度并带有一定的含湿后进入精馏塔I底部参与精馏;
步骤三、空气经精馏塔I精馏后分离为液空和压力氮气,液空经过冷器过冷、节流阀节流后进入主冷凝蒸发器I作为冷源和压力氮气换热,液空被汽化为富氧空气,富氧空气引入精馏塔II底部参与精馏,同时从主冷凝蒸发器I引出部分液空进入主冷凝蒸发器II作为冷源;压力氮气部分引入主冷凝蒸发器I作为热源和液空换热,压力氮气被液化为液氮,液氮和主冷凝蒸发器III引出的液氮汇流,部分液氮引入精馏塔I顶部作为回流液,部分液氮经节流阀节流后引入精馏塔II顶部参与精馏,其余作为液氮产品引出;部分压力氮气引入主冷凝蒸发器III作为热源,部分压力氮气经主换热器复热后出冷箱作为高压氮气产品,其余压力氮气经主换热器部分复热后引入膨胀机I膨胀,膨胀后经主换热器复热后出冷箱作为低压氮气产品;
步骤四、液氮和富氧空气经精馏塔II精馏后从精馏塔II底部获得富氧液空,精馏塔II顶部获得低压氮气;引出部分富氧液空经节流阀节流后进入主冷凝蒸发器II作为冷源和低压氮气换热,富氧液空被汽化为污氮气,污氮气经过冷器、主换热器复热后出冷箱,部分污氮气作为交替使用的分子筛吸附器再生气,其余放空,其余富氧液空经节流阀节流后引入精馏塔III顶部参与精馏;部分低压氮气引入主冷凝蒸发器II作为热源和富氧液空换热,低压氮气被液化为液氮,液氮引入精馏塔II顶部作为回流液,其余低压氮气经主换热器复热后作为低压氮气产品;
步骤五、富氧液空经精馏塔III精馏后分离为液氧和带压污氮气,液氧作为主冷凝蒸发器III的冷源,和从精馏塔I引入的压力氮气换热,液氧被汽化为氧气,引出部分氧气经主换热器复热后出冷箱作为氧气产品,其余氧气作为精馏塔III的上升气体;压力氮气被液化为液氮,液氮和主冷凝蒸发器I引出的液氮汇流,部分液氮引入精馏塔I顶部作为回流液,部分液氮经节流阀节流后引入精馏塔II顶部参与精馏,其余作为液氮产品引出,同时可从精馏塔III底部引出部分液氧作为液氧产品;带压污氮气经过冷器复热、主换热器部分复热后进入膨胀机II膨胀,之后经主换热器复热后出冷箱,部分作为交替使用的分子筛吸附器再生气,其余放空。
2.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤一空气经透平空气压缩机压缩到0.75-1.0MPa。
3.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤一空气经空气预冷机组预冷至5-8℃。
4.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤三压力氮气压力为0.68-0.95MpaG。
5.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤三高压氮气产品纯度为小于3ppmO2,压力为0.68-0.95MpaG。
6.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤四低压氮气压力为0.3-0.5MpaG。
7.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤三和步骤四低压氮气产品纯度为小于3ppmO2,压力为0.3-0.5MpaG。
8.根据权利要求1所述的一种玻璃窑炉用低能耗氮氧制取工艺,其特征在于,步骤五氧气产品纯度为90-99.6%,压力为0.1-0.3MpaG。
CN202110858748.5A 2021-07-28 2021-07-28 一种玻璃窑炉用低能耗氮氧制取工艺 Active CN113566495B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110858748.5A CN113566495B (zh) 2021-07-28 2021-07-28 一种玻璃窑炉用低能耗氮氧制取工艺
US17/839,476 US11629914B2 (en) 2021-07-28 2022-06-13 Energy-efficient process for preparing nitrogen and oxygen for glass melting furnace
JP2022099742A JP7154670B1 (ja) 2021-07-28 2022-06-21 ガラス窯炉用の低エネルギー消費の窒素及び酸素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110858748.5A CN113566495B (zh) 2021-07-28 2021-07-28 一种玻璃窑炉用低能耗氮氧制取工艺

Publications (2)

Publication Number Publication Date
CN113566495A true CN113566495A (zh) 2021-10-29
CN113566495B CN113566495B (zh) 2022-04-26

Family

ID=78168589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110858748.5A Active CN113566495B (zh) 2021-07-28 2021-07-28 一种玻璃窑炉用低能耗氮氧制取工艺

Country Status (3)

Country Link
US (1) US11629914B2 (zh)
JP (1) JP7154670B1 (zh)
CN (1) CN113566495B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440553A (zh) * 2022-02-18 2022-05-06 杭州制氧机集团股份有限公司 一种低能耗氮气膨胀制冷的双塔纯氮制取装置及使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538397A (zh) * 2012-01-18 2012-07-04 开封黄河空分集团有限公司 一种由空气分离制取氮气或制取氮气同时附产氧气的工艺
CN104807291A (zh) * 2015-05-21 2015-07-29 西亚特工业气体工程(杭州)有限公司 一体化制备浮法玻璃窑炉氮气保护和全氧燃烧用氮气和氧气的装置和方法
CN108061428A (zh) * 2018-01-12 2018-05-22 杭州特盈能源技术发展有限公司 一种纯氮制取装置和工艺
CN207716722U (zh) * 2018-01-12 2018-08-10 杭州特盈能源技术发展有限公司 一种新式带液氮泵低纯度富氧制取装置
CN207865821U (zh) * 2018-01-12 2018-09-14 杭州特盈能源技术发展有限公司 一种低能耗双塔纯氮制取装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966999B2 (ja) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 超高純度窒素・酸素製造装置
US5402647A (en) * 1994-03-25 1995-04-04 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure nitrogen
US5918482A (en) * 1998-02-17 1999-07-06 Praxair Technology, Inc. Cryogenic rectification system for producing ultra-high purity nitrogen and ultra-high purity oxygen
US6460373B1 (en) * 2001-12-04 2002-10-08 Praxair Technology, Inc. Cryogenic rectification system for producing high purity oxygen
CN111141110B (zh) * 2020-01-19 2021-05-07 杭州特盈能源技术发展有限公司 一种低能耗中压氮气制取工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538397A (zh) * 2012-01-18 2012-07-04 开封黄河空分集团有限公司 一种由空气分离制取氮气或制取氮气同时附产氧气的工艺
CN104807291A (zh) * 2015-05-21 2015-07-29 西亚特工业气体工程(杭州)有限公司 一体化制备浮法玻璃窑炉氮气保护和全氧燃烧用氮气和氧气的装置和方法
CN108061428A (zh) * 2018-01-12 2018-05-22 杭州特盈能源技术发展有限公司 一种纯氮制取装置和工艺
CN207716722U (zh) * 2018-01-12 2018-08-10 杭州特盈能源技术发展有限公司 一种新式带液氮泵低纯度富氧制取装置
CN207865821U (zh) * 2018-01-12 2018-09-14 杭州特盈能源技术发展有限公司 一种低能耗双塔纯氮制取装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440553A (zh) * 2022-02-18 2022-05-06 杭州制氧机集团股份有限公司 一种低能耗氮气膨胀制冷的双塔纯氮制取装置及使用方法

Also Published As

Publication number Publication date
CN113566495B (zh) 2022-04-26
US20230034371A1 (en) 2023-02-02
JP7154670B1 (ja) 2022-10-18
US11629914B2 (en) 2023-04-18
JP2023020907A (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
CN109838975B (zh) 一种低能耗液氮制取装置及工艺
CN108061428B (zh) 一种纯氮制取装置和工艺
CN111141110B (zh) 一种低能耗中压氮气制取工艺
CN201281522Y (zh) 氧气自增压空分装置
CN109442867B (zh) 一种外增压内液化纯氮制取装置及方法
CN108106327B (zh) 一种低纯度富氧制取装置和方法
CN210399702U (zh) 一种空气分离系统
CN109084528B (zh) 一种新增制氮塔的深冷空分系统
CN113566495B (zh) 一种玻璃窑炉用低能耗氮氧制取工艺
CN215676070U (zh) 一种玻璃窑炉用低能耗氮氧制取装置
CN111412724B (zh) 一种新型窑炉用低能耗压力富氧制取工艺
CN109357475B (zh) 一种梯级利用lng冷能制取液氧液氮的系统
CN207123117U (zh) 一种新型双塔氮气制取装置
CN111412725B (zh) 一种供窑炉专有富氧系统分梯度冷能回收预冷方法
CN107270655B (zh) 一种单塔制氮半负荷工况增产液氮制取装置和方法
CN216159654U (zh) 一种水泥窑炉烟气循环用碳基富氧燃烧系统
CN114440553A (zh) 一种低能耗氮气膨胀制冷的双塔纯氮制取装置及使用方法
CN215676071U (zh) 一种水泥窑炉烟气循环用低能耗三塔氮氧制取装置
CN113566494B (zh) 一种水泥窑炉烟气循环用低能耗三塔氮氧制取工艺
CN114777415B (zh) 一种低能耗双塔双过冷正流膨胀制氮工艺
CN111707054A (zh) 空分冷能回收系统
CN114777416B (zh) 一种绿电高效转化低能耗空分储能工艺
CN211953429U (zh) 一种供窑炉专有富氧系统分梯度冷能回收预冷模块
CN212030021U (zh) 一种新型窑炉用低能耗压力富氧制取装置
CN114812097B (zh) 一种跨流程高契合度耦合低能耗高氮制取工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant