CN111412725B - 一种供窑炉专有富氧系统分梯度冷能回收预冷方法 - Google Patents

一种供窑炉专有富氧系统分梯度冷能回收预冷方法 Download PDF

Info

Publication number
CN111412725B
CN111412725B CN202010359277.9A CN202010359277A CN111412725B CN 111412725 B CN111412725 B CN 111412725B CN 202010359277 A CN202010359277 A CN 202010359277A CN 111412725 B CN111412725 B CN 111412725B
Authority
CN
China
Prior art keywords
temperature
pressure
air
oxygen
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010359277.9A
Other languages
English (en)
Other versions
CN111412725A (zh
Inventor
韦霆
何森林
于莎莎
杨正军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Turning Energy Technology Development Co ltd
Original Assignee
Hangzhou Turning Energy Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Turning Energy Technology Development Co ltd filed Critical Hangzhou Turning Energy Technology Development Co ltd
Priority to CN202010359277.9A priority Critical patent/CN111412725B/zh
Publication of CN111412725A publication Critical patent/CN111412725A/zh
Application granted granted Critical
Publication of CN111412725B publication Critical patent/CN111412725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/006Fuel distribution and transport systems for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/008Feeding devices for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/20Feeding/conveying devices
    • F23K2203/201Feeding/conveying devices using pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明公开一种供窑炉专有富氧系统分梯度冷能回收预冷方法,利用精馏模块的冷能对压缩后的原料空气进行预冷,提高了能量利用率,降低了能耗,减少投资成本;同时也回收了压缩后的原料空气的热能,以获得高温高压富氧产品、高温低压富氧产品,降低水泥窑炉生产煤耗,节约费用,同时减少废气排放。本发明还公开了一种供窑炉专有富氧的制备方法,可同时生产三股不同类型的富氧产品,一股为低温中压富氧产品,用于水泥窑炉送煤风;另两股为高温低压富氧产品、高温高压富氧产品,分别用于水泥窑炉富氧燃烧器的旋流风、水泥窑炉富氧燃烧器的轴流风。

Description

一种供窑炉专有富氧系统分梯度冷能回收预冷方法
技术领域
本发明涉及富氧燃烧技术领域,具体涉及一种供窑炉专有富氧系统分梯度冷能回收预冷方法及一种供窑炉专有富氧的制备方法。
背景技术
富氧燃烧就是一种高效燃烧技术,富氧燃烧加大了助燃空气中的氧含量,可以极大地改善燃烧条件,提高燃烧效率,降低污染排放。目前,我国主要是应用于玻璃熔窑和金属冶炼,尤其在高温、高煤耗的水泥工业窑炉行业也得以应用和推广,并取得了较好的有益效果,同时也碰到了很多问题亟待解决。
根据水泥窑炉系统热工工艺及水泥窑炉专有富氧燃烧器结构,为保证煤粉输送的安全及有效燃烧,需要提供一定压力的低温富氧气体,为保证煤粉燃烧的热量能更好地被水泥熟料吸收利用,需要提供一定压力的高温富氧气体。同时,对于富氧系统,传统工艺会应用到压缩机和预冷机,压缩后的气体需要用水冷却器和预冷机预冷,由于水泥厂生料制备、熟料煅烧及粉磨、水泥粉磨等过程会产生大量的粉尘颗粒,分布于大气及循环水中,会对富氧系统的压缩机的叶轮及水冷却器、预冷机的冷却器等造成损坏和堵塞、造成富氧系统停机,影响水泥厂正常生产,因此应尽量减少循环水的应用。
发明内容
本发明的目的是提供一种供窑炉专有富氧系统分梯度冷能回收预冷方法及一种供窑炉专有富氧的制备方法,以解决现有技术的不足。
本发明采用以下技术方案:
一种供窑炉专有富氧系统分梯度冷能回收预冷方法,包括如下步骤:
步骤一、经压缩模块过滤、压缩后的原料空气进入分梯度冷能回收预冷模块的高温热能回收器,和来自分梯度冷能回收预冷模块的低温冷能回收器中的常温中压富氧、常温常压氮气及精馏模块的高压富氧进行换热,原料空气被冷却;常温中压富氧被加热,再经节流阀节流,作为高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风;高压富氧被加热,作为高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风;常温常压氮气被加热后放空;
步骤二、冷却后的原料空气进入分梯度冷能回收预冷模块的水冷却器继续冷却,之后进入低温冷能回收器,和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,原料空气被进一步冷却以完成预冷,再进入纯化模块、精馏模块进行后续的纯化、精馏工序;第一低温中压富氧被加热以常温中压富氧进入步骤一高温热能回收器换热,低温常压氮气被加热以常温常压氮气进入步骤一高温热能回收器换热。
进一步地,精馏模块的第一低温中压富氧、高压富氧、低温常压氮气由如下步骤制备得到:
步骤一、经纯化模块的分子筛吸附器纯化后的原料空气部分用于仪表空气,其余部分进入精馏模块的主换热器冷却至饱和并带有一定含湿后进入精馏模块的精馏塔底部参与精馏;
步骤二、空气经精馏塔精馏后分离为富氧液空和带压氮气,富氧液空经精馏模块的过冷器过冷、节流阀节流后进入精馏模块的冷凝蒸发器和带压氮气换热,富氧液空被汽化为富氧空气,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热后作为第二低温中压富氧产品用于水泥窑炉送煤风,另一股部分复热后以第一低温中压富氧分成两部分,一部分依次进入低温冷能回收器、高温热能回收器换热,另一部分由精馏模块的增压透平膨胀机的增压端增压后以高压富氧进入高温热能回收器换热;
步骤三、一部分带压氮气进入冷凝蒸发器和富氧液空换热,带压氮气被冷凝为液氮,液氮一部分作为液氮产品出精馏箱,另一部分引入精馏塔顶部作为回流液;另一部分带压氮气进入主换热器部分复热后引入增压透平膨胀机膨胀制冷,膨胀后的常压氮气经过冷器、主换热器复热后以低温常压氮气分成两部分,一部分作为再生气由纯化模块的电加热器加热后引入分子筛吸附器,另一部分依次进入低温冷能回收器、高温热能回收器换热。
进一步地,原料空气经压缩模块的过滤器过滤掉灰尘和机械杂质后,进入压缩模块的透平空气压缩机,原料空气压缩到0.35-0.4MPa。
进一步地,原料空气经高温热能回收器由100-125℃冷却至65-75℃,再由水冷却器继续冷却至40℃,之后经低温冷能回收器进一步冷却至15-20℃,完成预冷。
进一步地,精馏模块的第一低温中压富氧含25%-50%O2,温度为5-10℃,压力为60-80KPa,一部分经低温冷能回收器换热,被加热后以常温中压富氧进入高温热能回收器换热,被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品,含25%-50%O2,温度为90-115℃,压力为20-35KPa,用于水泥窑炉富氧燃烧器的旋流风;另一部分经增压透平膨胀机的增压端增压,以高压富氧经高温热能回收器换热,被加热后作为高温高压富氧产品,含25%-50%O2,温度为90-115℃,压力为80-100KPa,用于水泥窑炉富氧燃烧器的轴流风。
进一步地,富氧液空被汽化为富氧空气,含25%-50%O2,压力为60-80KPa,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热至16-20℃作为第二低温中压富氧产品,含25%-50%O2,温度为16-20℃,压力为60-80KPa,用于水泥窑炉送煤风;另一股部分复热至5-10℃以第一低温中压富氧分成两部分,一部分进入低温冷能回收器换热,另一部分由增压透平膨胀机的增压端增压至高压富氧,压力为80-100KPa,温度为60-70℃,后进入高温热能回收器换热。
一种供窑炉专有富氧的制备方法,包括如下步骤:
步骤一、原料空气经压缩模块的过滤器过滤掉灰尘和机械杂质后,进入压缩模块的透平空气压缩机,原料空气压缩到设定压力;
步骤二、压缩后的原料空气进入分梯度冷能回收预冷模块的高温热能回收器,和来自分梯度冷能回收预冷模块的低温冷能回收器中的常温中压富氧、常温常压氮气及精馏模块的高压富氧换热,常温中压富氧被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风,高压富氧被加热后作为高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风,常温常压氮气加热后放空,原料空气被冷却;冷却后的原料空气进入分梯度冷能回收预冷模块的水冷却器继续冷却,之后进入低温冷能回收器,和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,第一低温中压富氧被加热后以常温中压富氧进入高温热能回收器换热,低温常压氮气被加热后以常温常压氮气进入高温热能回收器换热,原料空气被进一步冷却,完成预冷;
步骤三、预冷后的原料空气进入纯化模块的分子筛吸附器纯化,纯化后的原料空气部分用于仪表空气,其余部分进入精馏模块的主换热器冷却至饱和并带有一定含湿后进入精馏模块的精馏塔底部参与精馏;
步骤四、空气经精馏塔精馏后分离为富氧液空和带压氮气,富氧液空经精馏模块的过冷器过冷、节流阀节流后进入精馏模块的冷凝蒸发器和带压氮气换热,富氧液空被汽化为富氧空气,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热后作为第二低温中压富氧产品用于水泥窑炉送煤风,另一股部分复热后以第一低温中压富氧分成两部分,一部分依次进入低温冷能回收器、高温热能回收器换热;另一部分由精馏模块的增压透平膨胀机的增压端增压后以高压富氧进入高温热能回收器换热;
步骤五、一部分带压氮气进入冷凝蒸发器和富氧液空换热,带压氮气被冷凝为液氮,液氮一部分作为液氮产品出精馏箱,另一部分引入精馏塔顶部作为回流液;另一部分带压氮气进入主换热器部分复热后引入增压透平膨胀机膨胀制冷,膨胀后的常压氮气经过冷器、主换热器复热后以低温常压氮气分成两部分,一部分作为再生气由纯化模块的电加热器加热后引入分子筛吸附器,另一部分依次进入低温冷能回收器、高温热能回收器换热。
进一步地,透平空气压缩机将原料空气压缩到0.35-0.4MPa,压缩后的原料空气经高温热能回收器由100-125℃冷却至65-75℃,再由水冷却器冷却至40℃,之后经低温冷能回收器进一步冷却至15-20℃,完成预冷。
进一步地,带压氮气压力为18-25KPa。
进一步地,富氧液空被汽化为富氧空气,含25%-50%O2,压力为60-80KPa,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热至16-20℃作为第二低温中压富氧产品,含25%-50%O2,温度为16-20℃,压力为60-80KPa,用于水泥窑炉送煤风;另一股部分复热至5-10℃以第一低温中压富氧分成两部分,一部分进入低温冷能回收器换热,被加热后以常温中压富氧进入高温热能回收器换热,被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品,含25%-50%O2,温度为90-115℃,压力为20-35KPa,用于水泥窑炉富氧燃烧器的旋流风;另一部分由增压透平膨胀机的增压端增压以高压富氧进入高温热能回收器换热,被加热后作为高温高压富氧产品,含25%-50%O2,温度为90-115℃,压力为80-100KPa,用于水泥窑炉富氧燃烧器的轴流风。
本发明的有益效果:
1、本发明利用分梯度冷能回收预冷模块替代了传统的空气预冷机组,其利用精馏模块的冷能对压缩后的原料空气进行预冷,提高了能量利用率,降低了能耗,减少投资成本。同时取消空气预冷机组,减少了循环水的利用,降低了在高粉尘颗粒水泥厂环境条件下极易堵塞和损坏而造成水泥厂减产、停产的风险。
2、本发明利用分梯度冷能回收预冷模块对压缩后的原料空气进行预冷,另一方面也回收了压缩后的原料空气的热能,获得的高温高压富氧产品、高温低压富氧产品分别用于水泥窑炉富氧燃烧器的轴流风、旋流风,极大降低水泥窑炉煤粉用量,降低水泥窑炉生产煤耗,节约费用,同时减少废气排放。
3、本发明富氧制备方法可同时生产三股不同类型的富氧产品,一股为低温中压富氧产品,用于水泥窑炉送煤风,该股富氧产品温度低,利于煤粉安全输送;另两股为高温低压富氧产品、高温高压富氧产品,分别用于水泥窑炉富氧燃烧器的旋流风、轴流风,这两股富氧产品温度高,可以增加窑炉系统热值,降低水泥窑炉生产煤耗,节约费用,同时减少废气排放。本发明还可提供部分液氮副产品。
4、本发明富氧制备方法中利用分梯度冷能回收预冷模块替代传统的空气预冷机组,利用精馏模块的冷能对压缩后的原料空气进行预冷,提高了能量利用率,降低了能耗,减少投资成本;同时也回收了压缩后的原料空气的热能,以获得高温高压富氧产品、高温低压富氧产品,降低水泥窑炉生产煤耗,节约费用,同时减少废气排放。
5、本发明富氧制备方法中高压富氧的高压力是利用增压透平膨胀机膨胀功增压获得的,提高了能量利用率,节约能耗,同时温度升高,可以增加水泥窑炉系统热值,减少煤粉消耗。
6、本发明富氧制备方法中高压富氧的高压力是利用增压透平膨胀机膨胀功增压获得的,富氧产品压力降低,极大降低了所用富氧系统的系统压力,降低了透平空气压缩机排压,从而大大降低能耗。
附图说明
图1为本发明分梯度冷能回收预冷及富氧制备所用装置的结构示意图。
过滤器1、透平空气压缩机2、高温热能回收器3、水冷却器4、低温冷能回收器5、分子筛吸附器6、电加热器7、主换热器8、精馏塔9、冷凝蒸发器10、过冷器11、增压透平膨胀机12。
具体实施方式
下面结合实施例和附图对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。
一种供窑炉专有富氧系统分梯度冷能回收预冷方法,利用如图1所示的分梯度冷能回收预冷模块进行预冷。所示分梯度冷能回收预冷模块包括高温热能回收器3、水冷却器4、低温冷能回收器5。高温热能回收器3、水冷却器4、低温冷能回收器5设于精馏箱外。
高温热能回收器3,用于将过滤、压缩后的原料空气和低温冷能回收器5的常温中压富氧、常温常压氮气及精馏模块的高压富氧进行换热,原料空气被冷却;常温中压富氧被加热,再经节流阀节流,作为高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风;高压富氧被加热,作为高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风;常温常压氮气被加热后放空;
水冷却器4,用于将经高温热能回收器3冷却后的原料空气继续冷却;
低温冷能回收器5,用于将经水冷却器4继续冷却后的原料空气和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,原料空气被进一步冷却以完成预冷,再进入纯化模块、精馏模块进行后续的纯化、精馏工序;第一低温中压富氧被加热以常温中压富氧进入高温热能回收器3换热,低温常压氮气被加热以常温常压氮气进入高温热能回收器3换热。
具体分梯度冷能回收预冷时,包括如下步骤:
步骤一、原料空气经压缩模块的过滤器1过滤掉灰尘和机械杂质后,进入压缩模块的透平空气压缩机2,原料空气压缩到0.35-0.4MPa;压缩后的原料空气进入高温热能回收器3,和低温冷能回收器5中的常温中压富氧、常温常压氮气及精馏模块的高压富氧进行换热,原料空气由100-125℃冷却至65-75℃;常温中压富氧被加热,再经节流阀节流,作为高温低压富氧产品,含25%-50%O2,温度为90-115℃,压力为20-35KPa,用于水泥窑炉富氧燃烧器的旋流风;高压富氧被加热,作为高温高压富氧产品,含25%-50%O2,温度为90-115℃,压力为80-100KPa,用于水泥窑炉富氧燃烧器的轴流风;常温常压氮气被加热后放空;
步骤二、冷却后的原料空气进入水冷却器4继续冷却至40℃左右,之后进入低温冷能回收器5,和精馏模块的部分第一低温中压富氧(含25%-50%O2,温度为5-10℃,压力为60-80KPa)、部分低温常压氮气换热,原料空气被进一步冷却至15-20℃以完成预冷,再进入纯化模块、精馏模块进行后续的纯化、精馏工序;第一低温中压富氧被加热以常温中压富氧进入步骤一高温热能回收器3换热,低温常压氮气被加热以常温常压氮气进入步骤一高温热能回收器3换热。
上述精馏模块的第一低温中压富氧、高压富氧、低温常压氮气由如图1所示的精馏模块制备得到。所示精馏模块包括主换热器8、精馏塔9、冷凝蒸发器10、过冷器11、增压透平膨胀机12。主换热器8、精馏塔9、冷凝蒸发器10、过冷器11、增压透平膨胀机12设于精馏箱内,增压透平膨胀机12的增压端设于精馏箱外,冷凝蒸发器10设于精馏塔9之上。
主换热器8,用于将过滤、压缩、预冷、纯化后的原料空气冷却,用于将经过冷器11复热后的富氧空气复热及部分复热,用于将部分带压氮气部分复热,用于将经过冷器11复热后的常压氮气复热;
精馏塔9,用于将过滤、压缩、预冷、纯化、冷却后的原料空气精馏分离为富氧液空和带压氮气;
冷凝蒸发器10,用于将富氧液空和部分带压氮气换热,富氧液空被汽化为富氧空气,带压氮气被液化为液氮;
过冷器11,用于将富氧液空过冷,用于将富氧空气复热,用于将膨胀后的常压氮气复热;
增压透平膨胀机12,用于将部分复热后的带压氮气膨胀制冷;增压端将部分经主换热器8部分复热的富氧空气增压。
具体制备包括如下步骤:
步骤一、经纯化模块的分子筛吸附器6纯化后的原料空气部分用于仪表空气,其余部分进入主换热器8冷却至饱和并带有一定含湿后进入精馏塔9底部参与精馏;
步骤二、空气经精馏塔9精馏后分离为富氧液空和带压氮气,富氧液空经过冷器11过冷、节流阀节流后进入冷凝蒸发器10和带压氮气换热,富氧液空被汽化为富氧空气,从精馏塔塔顶抽出含25%-50%O2,压力为60-80KPa的富氧空气,经过冷器11复热后,进入主换热器8,分成两股,一股复热至16-20℃后作为第二低温中压富氧产品,含25%-50%O2,温度为16-20℃,压力为60-80KPa,用于水泥窑炉送煤风;另一股部分复热至5-10℃后以第一低温中压富氧分成两部分,一部分依次进入低温冷能回收器5、高温热能回收器3换热;另一部分由增压透平膨胀机12的增压端增压至压力为80-100KPa,温度为60-70℃,以高压富氧进入高温热能回收器3换热;
步骤三、一部分带压氮气进入冷凝蒸发器10和富氧液空换热,带压氮气被冷凝为液氮,液氮一部分作为液氮产品出精馏箱,另一部分引入精馏塔9顶部作为回流液;另一部分带压氮气进入主换热器8部分复热后引入增压透平膨胀机12膨胀制冷,膨胀后的常压氮气经过冷器11、主换热器8复热后以低温常压氮气分成两部分,一部分作为再生气由纯化模块的电加热器7加热后引入分子筛吸附器6,另一部分依次进入低温冷能回收器5、高温热能回收器3换热。
一种供窑炉专有富氧的制备方法,由如图1所示的富氧系统制备。所示富氧系统包括压缩模块、分梯度冷能回收预冷模块、纯化模块、精馏模块。
压缩模块包括过滤器1、透平空气压缩机2。
分梯度冷能回收预冷模块包括高温热能回收器3、水冷却器4、低温冷能回收器5。
纯化模块包括分子筛吸附器6、电加热器7。
精馏模块包括主换热器8、精馏塔9、冷凝蒸发器10、过冷器11、增压透平膨胀机12。
过滤器1、透平空气压缩机2、高温热能回收器3、水冷却器4、低温冷能回收器5、分子筛吸附器6、电加热器7、增压透平膨胀机12的增压端设于精馏箱外,主换热器8、精馏塔9、冷凝蒸发器10、过冷器11、增压透平膨胀机12设于精馏箱内,冷凝蒸发器10设于精馏塔9之上。
过滤器1、透平空气压缩机2、高温热能回收器3、水冷却器4、低温冷能回收器5、分子筛吸附器6、主换热器8依次连接,主换热器8和精馏塔9底部的原料空气进口连接;
精馏塔9底部的富氧液空出口和过冷器11连接,过冷器11和冷凝蒸发器10连接,过冷器11和冷凝蒸发器10的连接管路上设有节流阀,冷凝蒸发器10的富氧空气出口和过冷器11连接,过冷器1和主换热器8连接,主换热器8的富氧空气复热出口提供第二低温中压富氧产品用于水泥窑炉送煤风;主换热器8的富氧空气部分复热出口提供第一低温中压富氧,分别连至低温冷能回收器5、增压透平膨胀机12的增压端,低温冷能回收器5和高温热能回收器3连接,再和节流阀连接,以提供高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风;增压透平膨胀机12的增压端和高温热能回收器3连接,以提供高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风;
精馏塔9顶部的带压氮气出口分别和冷凝蒸发器10、主换热器8连接,冷凝蒸发器10的液氮出口分别和外部液氮产品储罐、精馏塔9顶部连接,冷凝蒸发器10的液氮出口和外部液氮产品储罐连接管路上设有节流阀;主换热器8的带压氮气部分复热出口和增压透平膨胀机12连接,增压透平膨胀机12和过冷器11连接,过冷器11和主换热器8连接,主换热器8提供低温常压氮气,分别和电加热器7、低温冷能回收器5连接,电加热器7和分子筛吸附器6连接;低温冷能回收器5和高温热能回收器3连接,高温热能回收器3和外部放空管道连接。
上述各部件的功能如下:
过滤器1,用于过滤原料空气中的灰尘和机械杂质;
透平空气压缩机2,用于将过滤后的原料空气压缩到设定压力。
高温热能回收器3,用于将过滤、压缩后的原料空气和低温冷能回收器5的常温中压富氧、常温常压氮气及精馏模块的高压富氧进行换热,原料空气被冷却;常温中压富氧被加热,再经节流阀节流,作为高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风;高压富氧被加热,作为高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风;常温常压氮气被加热后放空;
水冷却器4,用于将经高温热能回收器3冷却后的原料空气继续冷却;
低温冷能回收器5,用于将经水冷却器4继续冷却后的原料空气和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,原料空气被进一步冷却以完成预冷,再进入纯化模块、精馏模块进行后续的纯化、精馏工序;第一低温中压富氧被加热以常温中压富氧进入高温热能回收器3换热,低温常压氮气被加热以常温常压氮气进入高温热能回收器3换热。
分子筛吸附器6,用于将过滤、压缩、预冷后的原料空气纯化,去除水分、CO2、C2H2等物质;
电加热器7,用于加热复热后的常压氮气以再生分子筛吸附器6。
主换热器8,用于将过滤、压缩、预冷、纯化后的原料空气冷却,用于将经过冷器11复热后的富氧空气复热及部分复热,用于将部分带压氮气部分复热,用于将经过冷器11复热后的常压氮气复热;
精馏塔9,用于将过滤、压缩、预冷、纯化、冷却后的原料空气精馏分离为富氧液空和带压氮气;
冷凝蒸发器10,用于将富氧液空和部分带压氮气换热,富氧液空被汽化为富氧空气,带压氮气被液化为液氮;
过冷器11,用于将富氧液空过冷,用于将富氧空气复热,用于将膨胀后的常压氮气复热;
增压透平膨胀机12,用于将部分复热后的带压氮气膨胀制冷;增压端将部分经主换热器8部分复热的富氧空气增压。
具体制备时,包括如下步骤:
步骤一、原料空气经过滤器1过滤掉灰尘和机械杂质后,进入透平空气压缩机2,原料空气压缩到0.35-0.4MPa;
步骤二、压缩后的原料空气进入高温热能回收器3,和来自低温冷能回收器5中的常温中压富氧、常温常压氮气及精馏模块的高压富氧换热,常温中压富氧被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品,含25%-50%O2,温度为90-115℃,压力为20-35KPa,用于水泥窑炉富氧燃烧器的旋流风;高压富氧被加热后作为高温高压富氧产品,含25%-50%O2,温度为90-115℃,压力为80-100KPa,用于水泥窑炉富氧燃烧器的轴流风;常温常压氮气被加热后放空,原料空气由100-125℃冷却至65-75℃;冷却后的原料空气进入水冷却器4继续冷却至40℃左右,之后进入低温冷能回收器5,和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,第一低温中压富氧被加热后以常温中压富氧进入高温热能回收器3换热,低温常压氮气被加热后以常温常压氮气进入高温热能回收器3换热,原料空气进一步冷却至15-20℃,完成预冷;
步骤三、预冷后的原料空气进入分子筛吸附器6纯化,去除水分、CO2、C2H2等物质,纯化后的原料空气部分用于仪表空气,其余部分进入主换热器8冷却至饱和并带有一定含湿后进入精馏塔9底部参与精馏;
步骤四、空气经精馏塔9精馏后分离为富氧液空和带压氮气(18-25KPa),富氧液空经过冷器11过冷、节流阀节流后进入冷凝蒸发器10和带压氮气换热,富氧液空被汽化为富氧空气,从精馏塔9塔顶抽出含25%-50%O2,压力为60-80KPa的富氧空气,经过冷器11复热后,进入主换热器8,分成两股,一股复热至16-20℃后作为第二低温中压富氧产品,含25%-50%O2,温度为16-20℃,压力为60-80KPa,用于水泥窑炉送煤风;另一股部分复热至5-10℃后以第一低温中压富氧分成两部分,一部分依次进入低温冷能回收器5、高温热能回收器3换热;另一部分由增压透平膨胀机12的增压端增压至压力为80-100KPa,温度为60-70℃,以高压富氧进入高温热能回收器3换热;
步骤五、一部分带压氮气进入冷凝蒸发器10和富氧液空换热,带压氮气被冷凝为液氮,液氮一部分作为液氮产品出精馏箱,另一部分引入精馏塔9顶部作为回流液;另一部分带压氮气进入主换热器8部分复热后引入增压透平膨胀机12膨胀制冷,膨胀后的常压氮气经过冷器11、主换热器8复热后以低温常压氮气分成两部分,一部分作为再生气由纯化模块的电加热器7加热后引入分子筛吸附器6,另一部分依次进入低温冷能回收器5、高温热能回收器3换热。

Claims (10)

1.一种供窑炉专有富氧系统分梯度冷能回收预冷方法,其特征在于,包括如下步骤:
步骤一、经压缩模块过滤、压缩后的原料空气进入分梯度冷能回收预冷模块的高温热能回收器,和来自分梯度冷能回收预冷模块的低温冷能回收器中的常温中压富氧、常温常压氮气及精馏模块的高压富氧进行换热,原料空气被冷却;常温中压富氧被加热,再经节流阀节流,作为高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风;高压富氧被加热,作为高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风;常温常压氮气被加热后放空;
步骤二、冷却后的原料空气进入分梯度冷能回收预冷模块的水冷却器继续冷却,之后进入低温冷能回收器,和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,原料空气被进一步冷却以完成预冷,再进入纯化模块、精馏模块进行后续的纯化、精馏工序;第一低温中压富氧被加热以常温中压富氧进入步骤一高温热能回收器换热,低温常压氮气被加热以常温常压氮气进入步骤一高温热能回收器换热。
2.根据权利要求1所述的供窑炉专有富氧系统分梯度冷能回收预冷方法,其特征在于,精馏模块的第一低温中压富氧、高压富氧、低温常压氮气由如下步骤制备得到:
步骤一、经纯化模块的分子筛吸附器纯化后的原料空气部分用于仪表空气,其余部分进入精馏模块的主换热器冷却至饱和并带有一定含湿后进入精馏模块的精馏塔底部参与精馏;
步骤二、空气经精馏塔精馏后分离为富氧液空和带压氮气,富氧液空经精馏模块的过冷器过冷、节流阀节流后进入精馏模块的冷凝蒸发器和带压氮气换热,富氧液空被汽化为富氧空气,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热后作为第二低温中压富氧产品用于水泥窑炉送煤风,另一股部分复热后以第一低温中压富氧分成两部分,一部分依次进入低温冷能回收器、高温热能回收器换热,另一部分由精馏模块的增压透平膨胀机的增压端增压后以高压富氧进入高温热能回收器换热;
步骤三、一部分带压氮气进入冷凝蒸发器和富氧液空换热,带压氮气被冷凝为液氮,液氮一部分作为液氮产品出精馏箱,另一部分引入精馏塔顶部作为回流液;另一部分带压氮气进入主换热器部分复热后引入增压透平膨胀机膨胀制冷,膨胀后的常压氮气经过冷器、主换热器复热后以低温常压氮气分成两部分,一部分作为再生气由纯化模块的电加热器加热后引入分子筛吸附器,另一部分依次进入低温冷能回收器、高温热能回收器换热。
3.根据权利要求1所述的供窑炉专有富氧系统分梯度冷能回收预冷方法,其特征在于,原料空气经压缩模块的过滤器过滤掉灰尘和机械杂质后,进入压缩模块的透平空气压缩机,原料空气压缩到0.35-0.4MPa。
4.根据权利要求1所述的供窑炉专有富氧系统分梯度冷能回收预冷方法,其特征在于,原料空气经高温热能回收器由100-125℃冷却至65-75℃,再由水冷却器继续冷却至40℃,之后经低温冷能回收器进一步冷却至15-20℃,完成预冷。
5.根据权利要求1所述的供窑炉专有富氧系统分梯度冷能回收预冷方法,其特征在于,精馏模块的第一低温中压富氧含25%-50%O2,温度为5-10℃,压力为60-80KPa,一部分经低温冷能回收器换热,被加热后以常温中压富氧进入高温热能回收器换热,被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品,含25%-50%O2,温度为90-115℃,压力为20-35KPa,用于水泥窑炉富氧燃烧器的旋流风;另一部分经增压透平膨胀机的增压端增压,以高压富氧经高温热能回收器换热,被加热后作为高温高压富氧产品,含25%-50%O2,温度为90-115℃,压力为80-100KPa,用于水泥窑炉富氧燃烧器的轴流风。
6.根据权利要求2所述的供窑炉专有富氧系统分梯度冷能回收预冷方法,其特征在于,富氧液空被汽化为富氧空气,含25%-50%O2,压力为60-80KPa,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热至16-20℃作为第二低温中压富氧产品,含25%-50%O2,温度为16-20℃,压力为60-80KPa,用于水泥窑炉送煤风;另一股部分复热至5-10℃以第一低温中压富氧分成两部分,一部分进入低温冷能回收器换热,另一部分由增压透平膨胀机的增压端增压至高压富氧,压力为80-100KPa,温度为60-70℃,后进入高温热能回收器换热。
7.一种供窑炉专有富氧的制备方法,其特征在于,包括如下步骤:
步骤一、原料空气经压缩模块的过滤器过滤掉灰尘和机械杂质后,进入压缩模块的透平空气压缩机,原料空气压缩到设定压力;
步骤二、压缩后的原料空气进入分梯度冷能回收预冷模块的高温热能回收器,和来自分梯度冷能回收预冷模块的低温冷能回收器中的常温中压富氧、常温常压氮气及精馏模块的高压富氧换热,常温中压富氧被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品用于水泥窑炉富氧燃烧器的旋流风,高压富氧被加热后作为高温高压富氧产品用于水泥窑炉富氧燃烧器的轴流风,常温常压氮气加热后放空,原料空气被冷却;冷却后的原料空气进入分梯度冷能回收预冷模块的水冷却器继续冷却,之后进入低温冷能回收器,和精馏模块的部分第一低温中压富氧、部分低温常压氮气换热,第一低温中压富氧被加热后以常温中压富氧进入高温热能回收器换热,低温常压氮气被加热后以常温常压氮气进入高温热能回收器换热,原料空气被进一步冷却,完成预冷;
步骤三、预冷后的原料空气进入纯化模块的分子筛吸附器纯化,纯化后的原料空气部分用于仪表空气,其余部分进入精馏模块的主换热器冷却至饱和并带有一定含湿后进入精馏模块的精馏塔底部参与精馏;
步骤四、空气经精馏塔精馏后分离为富氧液空和带压氮气,富氧液空经精馏模块的过冷器过冷、节流阀节流后进入精馏模块的冷凝蒸发器和带压氮气换热,富氧液空被汽化为富氧空气,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热后作为第二低温中压富氧产品用于水泥窑炉送煤风,另一股部分复热后以第一低温中压富氧分成两部分,一部分依次进入低温冷能回收器、高温热能回收器换热;另一部分由精馏模块的增压透平膨胀机的增压端增压后以高压富氧进入高温热能回收器换热;
步骤五、一部分带压氮气进入冷凝蒸发器和富氧液空换热,带压氮气被冷凝为液氮,液氮一部分作为液氮产品出精馏箱,另一部分引入精馏塔顶部作为回流液;另一部分带压氮气进入主换热器部分复热后引入增压透平膨胀机膨胀制冷,膨胀后的常压氮气经过冷器、主换热器复热后以低温常压氮气分成两部分,一部分作为再生气由纯化模块的电加热器加热后引入分子筛吸附器,另一部分依次进入低温冷能回收器、高温热能回收器换热。
8.根据权利要求7所述的供窑炉专有富氧的制备方法,其特征在于,透平空气压缩机将原料空气压缩到0.35-0.4MPa,压缩后的原料空气经高温热能回收器由100-125℃冷却至65-75℃,再由水冷却器冷却至40℃,之后经低温冷能回收器进一步冷却至15-20℃,完成预冷。
9.根据权利要求7所述的供窑炉专有富氧的制备方法,其特征在于,带压氮气压力为18-25KPa。
10.根据权利要求7所述的供窑炉专有富氧的制备方法,其特征在于,富氧液空被汽化为富氧空气,含25%-50%O2,压力为60-80KPa,富氧空气经过冷器复热后,进入主换热器,分成两股,一股复热至16-20℃作为第二低温中压富氧产品,含25%-50%O2,温度为16-20℃,压力为60-80KPa,用于水泥窑炉送煤风;另一股部分复热至5-10℃以第一低温中压富氧分成两部分,一部分进入低温冷能回收器换热,被加热后以常温中压富氧进入高温热能回收器换热,被加热后以高温中压富氧经节流阀节流,作为高温低压富氧产品,含25%-50%O2,温度为90-115℃,压力为20-35KPa,用于水泥窑炉富氧燃烧器的旋流风;另一部分由增压透平膨胀机的增压端增压以高压富氧进入高温热能回收器换热,被加热后作为高温高压富氧产品,含25%-50%O2,温度为90-115℃,压力为80-100KPa,用于水泥窑炉富氧燃烧器的轴流风。
CN202010359277.9A 2020-04-29 2020-04-29 一种供窑炉专有富氧系统分梯度冷能回收预冷方法 Active CN111412725B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010359277.9A CN111412725B (zh) 2020-04-29 2020-04-29 一种供窑炉专有富氧系统分梯度冷能回收预冷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010359277.9A CN111412725B (zh) 2020-04-29 2020-04-29 一种供窑炉专有富氧系统分梯度冷能回收预冷方法

Publications (2)

Publication Number Publication Date
CN111412725A CN111412725A (zh) 2020-07-14
CN111412725B true CN111412725B (zh) 2020-10-23

Family

ID=71490139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010359277.9A Active CN111412725B (zh) 2020-04-29 2020-04-29 一种供窑炉专有富氧系统分梯度冷能回收预冷方法

Country Status (1)

Country Link
CN (1) CN111412725B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566494B (zh) * 2021-07-28 2022-12-30 杭州特盈能源技术发展有限公司 一种水泥窑炉烟气循环用低能耗三塔氮氧制取工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
US4707994A (en) * 1986-03-10 1987-11-24 Air Products And Chemicals, Inc. Gas separation process with single distillation column
CN107062801A (zh) * 2017-06-05 2017-08-18 杭州特盈能源技术发展有限公司 一种窑炉用深冷直送低压富氧制取装置和方法
CN208635425U (zh) * 2018-07-12 2019-03-22 北京拓首能源科技股份有限公司 一种利用液化天然气冷能的中间进料焦炉煤气回收系统
CN109838975B (zh) * 2019-03-22 2024-01-16 杭州特盈能源技术发展有限公司 一种低能耗液氮制取装置及工艺

Also Published As

Publication number Publication date
CN111412725A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN109838975B (zh) 一种低能耗液氮制取装置及工艺
CN108061428B (zh) 一种纯氮制取装置和工艺
CN111141110B (zh) 一种低能耗中压氮气制取工艺
CN111521003B (zh) 一种窑炉用智能控制富氧烧成系统及方法
CN108106327B (zh) 一种低纯度富氧制取装置和方法
CN106369935B (zh) 一种利用高压天然气管网压力能的空气分离系统及方法
CA2772146A1 (en) Method and device for treating a carbon dioxide-containing gas stream
CN111412725B (zh) 一种供窑炉专有富氧系统分梯度冷能回收预冷方法
CN101943513B (zh) 降低液体空分能耗的方法
CN111412724B (zh) 一种新型窑炉用低能耗压力富氧制取工艺
JP7154670B1 (ja) ガラス窯炉用の低エネルギー消費の窒素及び酸素製造方法
CN112556313A (zh) 一种利用高温高压蒸汽的供热、空分系统及其应用方法
CN109357475B (zh) 一种梯级利用lng冷能制取液氧液氮的系统
CN211953429U (zh) 一种供窑炉专有富氧系统分梯度冷能回收预冷模块
CN107270655B (zh) 一种单塔制氮半负荷工况增产液氮制取装置和方法
CN114017993B (zh) 一种利用绿电电解水制氢副产氧气的装置及方法
CN216159654U (zh) 一种水泥窑炉烟气循环用碳基富氧燃烧系统
CN212030021U (zh) 一种新型窑炉用低能耗压力富氧制取装置
CN101493277B (zh) 矿井瓦斯气的低温分离方法及设备
CN212538460U (zh) 氮气自增压空分装置
CN215676071U (zh) 一种水泥窑炉烟气循环用低能耗三塔氮氧制取装置
CN113566494B (zh) 一种水泥窑炉烟气循环用低能耗三塔氮氧制取工艺
CN114812097B (zh) 一种跨流程高契合度耦合低能耗高氮制取工艺
CN114777415B (zh) 一种低能耗双塔双过冷正流膨胀制氮工艺
CN201359420Y (zh) 矿井瓦斯气的低温分离设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant