CN113529102B - 一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用 - Google Patents

一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113529102B
CN113529102B CN202110803216.1A CN202110803216A CN113529102B CN 113529102 B CN113529102 B CN 113529102B CN 202110803216 A CN202110803216 A CN 202110803216A CN 113529102 B CN113529102 B CN 113529102B
Authority
CN
China
Prior art keywords
metal
nitrogen
molybdenum carbide
moc
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110803216.1A
Other languages
English (en)
Other versions
CN113529102A (zh
Inventor
王铁军
胡丽华
马宇飞
刘健斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110803216.1A priority Critical patent/CN113529102B/zh
Publication of CN113529102A publication Critical patent/CN113529102A/zh
Application granted granted Critical
Publication of CN113529102B publication Critical patent/CN113529102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用,所述制备方法包括如下步骤:S1.将钼酸盐、4‑氯邻苯二胺、金属盐、溶剂混合得到混合溶液,加入酸调节混合溶液pH为1~6;钼酸盐中的Mo与所述4‑氯邻苯二胺中的NH2的摩尔比为1:(1~5),金属盐中的金属与钼酸铵中的钼的质量比为(1~5):100;S2.将所述混合溶液进行恒温反应,然后过滤得到金属和氮共掺杂前驱体;所述恒温反应温度为40~60℃,时间为2~8h;S3.将所述金属和氮共掺杂前驱体进行热解碳化处理,得到金属与氮共掺杂碳化钼催化剂。本发明通过金属与氮的共同掺杂,调节了MoC表面的电子结构,从而使所述催化剂用于电催化析氢反应时,表现出优异的催化活性及稳定性。

Description

一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用
技术领域
本发明涉及催化剂技术领域,更具体地,涉及一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用。
背景技术
氢能作为一种清洁能源,广泛应用于合成氨、石油精炼、甲醇等,而氢气目前的主要来源依旧是煤、石油、天然气。电解水制氢由于具有反应条件温和,原料来源广,产物无污染,能制取高纯氢等优点,因此具有重要的研究意义。
电解水制氢是由阴极析氢和阳极析氧反应组成,其理论分解电压为1.23V,但由于电极上的极化作用,使得施加电压需高于热力学势值。当施加的过电压过高,不仅会增大能耗,同时,在高电流密度下产氢,将使部分电能以热能形式散发,降低产氢效率。因此,设计一种催化剂以此降低电解水制氢的过电位,是目前电解水制氢领域亟待解决的一个关键问题。
铂基催化剂是催化活性最好的HER(析氢反应)催化剂,工业上使用的HER 催化剂为20%Pt/C,然而由于铂使用量过大且Pt/C催化剂稳定性较差,限制了其广泛应用。碳化钼(MoC)由于具有与贵金属Pt相似的费米能级结构,在诸多催化反应中表现出与贵金属Pt和Pd相似的催化性能,但现有碳化钼催化剂用于电解水析氢反应时,由于比表面积小和活性位点少,催化活性较低。
为解决该问题,中国发明专利CN 110681404 A公开了一种用于电解水阴极析氢反应的片状碳化钼催化剂,该催化剂能克服现有碳化钼催化剂比表面积小和活性位点少,进而导致催化活性低的问题,但该催化剂在碱性介质下,交换电流为10mA·cm-2时,过电位最低仅为216mV。因此,现有用于碱性电解水阴极析氢反应的催化剂的催化活性仍有待进一步提高。
发明内容
本发明的首要目的是克服现有碳化钼催化剂用于碱性电解水阴极析氢反应时催化活性低的问题,提供一种金属与氮共掺杂碳化钼催化剂的制备方法。
本发明的另一目的是提供一种金属与氮共掺杂碳化钼催化剂。
本发明的进一步目的是提供上述金属与氮共掺杂碳化钼催化剂在碱性电解水制氢中的应用。
本发明的上述目的通过以下技术方案实现:
一种金属与氮共掺杂碳化钼催化剂的制备方法,包括如下步骤:
S1.将钼酸盐、4-氯邻苯二胺、金属盐、溶剂混合得到混合溶液,加入酸调节混合溶液pH为1~6;钼酸盐中的Mo与所述4-氯邻苯二胺中的NH2的摩尔比为1:(1~5),金属盐中的金属与钼酸铵中的钼的质量比为(1~5):100;
S2.将所述混合溶液进行恒温反应,然后过滤得到金属和氮共掺杂前驱体;所述恒温反应温度为40~60℃,时间为2~8h。
S3.将所述金属和氮共掺杂前驱体进行热解碳化处理,得到金属与氮共掺杂碳化钼催化剂。
本发明通过直接将钼酸盐、4-氯邻苯二胺、金属盐混合的方式,实现金属与氮的共同掺杂,调节了MoC表面的电子结构,进而加强其水分解能力及减小对氢的过强吸附,调节HER过程的反应能垒,使得当所述催化剂用于电催化析氢反应时,表现出优异的催化活性及稳定性。
本发明中,所述溶剂选自去离子水。
本发明中,所述恒温反应为在油浴锅中进行恒温油浴反应。
所述钼酸盐中的Mo与所述4-氯邻苯二胺中的NH2的摩尔比会影响催化剂的厚度,进而影响催化活性。优选地,步骤S1中,所述钼酸盐中的Mo与所述 4-氯邻苯二胺中的NH2的摩尔比为1:(2~4)。更优选为1:3。
本发明所述金属盐选择本领域常用金属盐即可。优选地,步骤S1中,所述金属盐选自氯铂酸、硝酸钴、硝酸铜中的一种或多种。
优选地,步骤S1中,所述钼酸盐为钼酸铵。
优选地,步骤S1中,加入酸调节混合溶液pH为3~4。
优选地,步骤S1中,所述酸选自盐酸,所述盐酸的浓度为0.5~2mol/L。酸缓慢滴加,使得体系中出现沉淀。
优选地,步骤S2中,所述恒温反应温度为45~55℃,时间为3~5h。
更优选地,步骤S2中,所述恒温反应温度为50℃,时间为4h。
优选地,步骤S2中,所述过滤后还包括洗涤、抽滤和干燥。
具体地,所述过滤后包括采用无水乙醇和去离子水对前驱体洗涤,抽滤后在 50~60℃鼓风干燥箱中干燥12~24h。
优选地,步骤S3中,所述热解碳化处理的温度为650~850℃,时间为3~6h。
优选地,步骤S3中,所述热解碳化处理的气氛为氩气。所述氩气流量为 50~100mL/min。
具体地,所述热解碳化处理为将金属和氮共掺杂前驱体置于管式炉中,在氩气气氛中碳化,氩气流量为50~100mL/min,碳化时间为4~6h,升温速率为2℃ /min,碳化温度为650~850℃。
本发明所述热解碳化处理后,还包括钝化处理。
所述钝化处理的具体步骤为:热解碳化处理结束并降至常温后,通入弱氧化性气氛并保持12h。所述弱氧化性气氛为1%O2/Ar。
一种金属与氮共掺杂碳化钼催化剂,由上述制备方法制得。
本发明所述金属与氮共掺杂碳化钼催化剂用于碱性电解水阴极析氢反应时具有较高的催化活性和催化稳定性,能够用于电解水制氢领域。因此,所述金属与氮共掺杂碳化钼催化剂在碱性电解水制氢中的应用也应该在本发明的保护范围内。
与现有技术相比,本发明的有益效果是:
本发明通过直接将钼酸盐、4-氯邻苯二胺、金属盐混合的方式,实现金属与氮的共同掺杂,调节了MoC表面的电子结构,进而加强其水分解能力及减小对氢的过强吸附,调节HER过程的反应能垒;同时,采用4-氯邻苯二胺为碳源前驱体,通过氨基与钼酸根的络合作用,使得催化剂具有片状结构,且碳化钼以小颗粒形式分散在碳层上,该种结构将为反应的传质和电荷传递提供基础,使得当所述催化剂用于电催化析氢反应时,表现出优异的催化活性及稳定性。
附图说明
图1为本发明实施例1~3制得的N-Pt-MoC、N-Co-MoC及N-Cu-MoC的XRD 图谱;
图2为本发明实施例1制得的N-Pt-MoC的SEM图谱;
图3为本发明实施例1制得的N-Pt-MoC的TEM图谱;
图4为本发明实施例2制得的N-Co-MoC的SEM图谱;
图5为本发明实施例2制得的N-Co-MoC的TEM图谱;
图6为本发明实施例3制得的N-Cu-MoC的SEM图谱;
图7为本发明实施例3制得的N-Cu-MoC的TEM图谱;
图8为本发明实施例1制得的N-Pt-MoC的XPS图谱;
图9为本发明实施例2制得的N-Co-MoC的XPS图谱;
图10为本发明实施例3制得的N-Cu-MoC的XPS图谱;
图11为本发明实施例1~3制得的金属与氮共掺杂碳化钼催化剂的线形扫描伏安LSV曲线;
图12为本发明对比例1~4所述对照产品1~4的线性扫描伏安LSV曲线;
图13为本发明对比例5~7所述对照产品5~7的线性扫描伏安LSV曲线;
图14为本发明实施例1制得的N-Pt-MoC的在1M KOH溶液中稳定性测试恒电压曲线。
具体实施方式
为了更清楚、完整的描述本发明的技术方案,以下通过具体实施例进一步详细说明本发明,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,可以在本发明权利限定的范围内进行各种改变。
实施例1
一种金属与氮共掺杂碳化钼催化剂的制备方法,包括如下步骤:
S1.取2.48g四水合钼酸铵溶于40ml去离子水中,然后按照四水合钼酸铵计算,加入Mo:NH2摩尔比为1:3的4-氯邻苯二胺,搅拌均匀后,加入质量分数3%Pt-MoC所对应的H2PtCl6·6H2O量,搅拌均匀后,逐滴加入1M盐酸至出现明显沉淀,调节pH至3,得到混合溶液;
S2.将混合溶液置于50℃油浴锅恒温搅拌反应4h,降至常温后,用乙醇及去离子水洗涤、抽滤,50℃干燥12h;
S3.将S2所得产物研磨后装载至石英管中,在立式管式炉中做碳化处理,通入50ml/min氩气,常温维持2h后,2℃/min程序升温至700℃并保持5h。待降至常温,通入1%O2/Ar进行钝化处理,并保持12h,得到铂氮共掺杂片状碳化钼(N-Pt-MoC)催化剂。
实施例2
本实施例为本发明的第二实施例,与实施例1不同的是,本实施例S1中加入质量分数3%Co-MoC所对应的Co(NO3)2·6H2O量,S3中得到钴氮共掺杂片状碳化钼(N-Co-MoC)催化剂。
实施例3
本实施例为本发明的第三实施例,与实施例1不同的是,本实施例S1中加入质量分数3%Cu-MoC所对应的Cu(NO3)2·3H2O量,S3中得到铜氮共掺杂片状碳化钼(N-Cu-MoC)催化剂。
实施例4
本实施例为本发明的第四实施例,与实施例1不同的是,本实施例S1中加入Mo:NH2摩尔比为1:4的4-氯邻苯二胺;S3中碳化处理温度为650℃,时间为6h。
实施例5
本实施例为本发明的第五实施例,与实施例1不同的是,本实施例S1中加入Mo:NH2摩尔比为1:2的4-氯邻苯二胺;S3中碳化处理温度为850℃,时间为3h。
实施例6
本实施例为本发明的第六实施例,与实施例1不同的是,本实施例S1中加入Mo:NH2摩尔比为1:1的4-氯邻苯二胺,H2PtCl6·6H2O中的Pt与钼酸铵中的钼的质量比为5:100。
实施例7
本实施例为本发明的第七实施例,与实施例1不同的是,本实施例S1中加入Mo:NH2摩尔比为1:5的4-氯邻苯二胺,H2PtCl6·6H2O中的Pt与钼酸铵中的钼的质量比为1:100。
实施例8
本实施例为本发明的第八实施例,与实施例1不同的是,本实施例S1中加入1M盐酸调节pH为1,S2中将混合溶液置于60℃油浴锅中恒温搅拌反应2h。
实施例9
本实施例为本发明的第九实施例,与实施例1不同的是,本实施例S1中加入1M盐酸调节pH为6,S2中将混合溶液置于40℃油浴锅中恒温搅拌反应8h。
实施例10
本实施例为本发明的第十实施例,与实施例1不同的是,本实施例S2中将混合溶液置于45℃油浴锅中恒温搅拌反应6h。
实施例11
本实施例为本发明的第十一实施例,与实施例1不同的是,本实施例S2中将混合溶液置于55℃油浴锅中恒温搅拌反应3h。
实施例12
本实施例为本发明的第十二实施例,与实施例1不同的是,本实施例S1中加入1M盐酸调节pH为4,S3中通入100mL/min的氩气。
对比例1
本对比例提供第一种对照实验,本对照实验的步骤与实施例1相似,区别仅在于,将实施例1制备得到的N-Pt-MoC在20%CH4/H2气氛中,700℃处理2h,得到除氮的对照产品1(Pt-MoC)。
对比例2
本对比例提供第二种对照试验,本对照试验的步骤与实施例2相似,区别仅在于,将实施例2制备得到的N-Co-MoC在20%CH4/H2气氛中,700℃处理2h,得到除氮的对照产品2(Co-MoC)。
对比例3
本对比例提供第三种对照试验,本对照试验的步骤与实施例3相似,区别仅在于,将实施例2制备得到的N-Cu-MoC在20%CH4/H2气氛中,700℃处理2h,得到除氮的对照产品3(Cu-MoC)。
对比例4
本对比例提供第四种对照实验,本对照试验的步骤与实施例1相似,区别仅在于,在制备前驱体过程中,不加入氯铂酸,且将制备得到的N-MoC在 20%CH4/H2气氛中,700℃处理2h,得到除氮的对照产品4(MoC)。
对比例5
本对比例提供第五种对照试验,本对照试验的步骤与实施例1相似,区别仅在于,在制备前驱体过程中,不加入氯铂酸,且将制备得到的前驱体干燥后分散在乙醇溶液中,加入相应的氯铂酸,常温搅拌两小时后,50℃蒸干,干燥完全后进行碳化步骤,得到对照产品5(Pt/MoC)。
对比例6
本对比例提供第六种对照试验,本对照试验的步骤与实施例2相似,区别仅在于,在制备前驱体过程中,不加入硝酸钴,且将制备得到的前驱体干燥后分散在乙醇溶液中,加入相应的硝酸钴,常温搅拌两小时后,50℃蒸干,干燥完全后进行碳化步骤,得到对照产品6(Co/MoC)。
对比例7
本对比例提供第七种对照试验,本对照试验的步骤与实施例3相似,区别仅在于,在制备前驱体过程中,不加入硝酸铜,且将制备得到的前驱体干燥后分散在乙醇溶液中,加入相应的硝酸铜,常温搅拌两小时后,50℃蒸干,干燥完全后进行碳化步骤,得到对照产品7(Cu/MoC)。
测试表征
图1为本发明实施例1~3制得的N-Pt-MoC、N-Co-MoC及N-Cu-MoC的XRD 图谱。从图1可知,实施例1~3均成功制备金属与氮共掺杂碳化钼催化剂。实施例4~12制得的金属与氮共掺杂碳化钼催化剂的XRD图与实施例1基本一致。
图2为本发明实施例1制得的N-Pt-MoC的SEM图谱。从图2可知,制备得到的N-Pt-MoC为片状形貌,且片以层状结构堆叠而成,厚度为10纳米左右。实施例4~12所述N-Pt-MoC的SEM图谱与实施例1类似,仅厚度有所区别。
图3为本发明实施例1制得的N-Pt-MoC的TEM图谱。从图3中可以看到,碳化钼以小颗粒形式均匀分散在碳层上,颗粒大小为2-3纳米;晶格间距对应 MoC(111),证实MoC制备成功,Mapping出现Pt、N、Mo、C,说明铂及氮成功掺杂进MoC,形成N-Pt-MoC。实施例4~12所述N-Pt-MoC的TEM图谱与实施例1基本一致。
图4为本发明实施例2制得的N-Co-MoC的SEM图谱。从图4可知,制备得到的N-Co-MoC为片状形貌,且片以层状结构堆叠而成,厚度为20纳米左右。
图5为本发明实施例2制得的N-Co-MoC的TEM图谱。从图5中可以看到,碳化钼以小颗粒形式均匀分散在碳层上,颗粒大小为2-3纳米;晶格间距对应 MoC(111),证实MoC制备成功,Mapping出现Co、N、Mo、C,说明钴及氮成功掺杂进MoC,形成N-Co-MoC。
图6为本发明实施例3制得的N-Cu-MoC的SEM图谱。从图6可知,制备得到的N-Cu-MoC为片状形貌,且片以层状结构堆叠而成,厚度为15纳米左右。
图7为本发明实施例3制得的N-Cu-MoC的TEM图谱。从图7中可以看到,碳化钼以小颗粒形式均匀分散在碳层上,颗粒大小为2-3纳米;晶格间距对应 MoC(111),证实MoC制备成功,Mapping出现Cu、N、Mo、C,说明铜及氮成功掺杂进MoC,形成N-Cu-MoC。
图8为本发明实施例1制得的N-Pt-MoC的XPS图谱。图8中的Mo 3d轨道的XPS谱图证实Mo2+(MoC)物种,Pt 4f证实铂的引入,N 1s证实Mo-N键的形成,说明铂及氮成功掺杂进MoC晶格中。实施例4~12所述N-Pt-MoC的XPS 图谱与实施例1基本一致。
图9为本发明实施例2制得的N-Co-MoC的XPS图谱。图9中的Mo 3d轨道的XPS谱图证实Mo2+(MoC)物种,Co 2p证实钴的引入,N 1s证实Mo-N键的形成,说明钴及氮成功掺杂进MoC晶格中。
图10为本发明实施例3制得的N-Cu-MoC的XPS图谱。图10中的Mo 3d轨道的XPS谱图证实Mo2+(MoC)物种,Cu 2p证实铜的引入,N 1s证实Mo-N键的形成,说明铜及氮成功掺杂进MoC晶格中。
对实施例1~3所述催化剂进行性能测试,测试环境为pH=14的碱性体系(1MKOH)。测试体系为三电极体系,即工作电极、参比电极和对电极。选用直径为 5mm玻碳电极为工作电极;Ag/AgCl为参比电极;直径为6mm的碳棒为对电极。所制备催化剂在玻碳电极的负载量恒定为0.5mg/cm2。LSV测试扫描速率为 2mV/s。实施例1~3所得催化剂在碱性体系下的LSV曲线结果见图11。图11 中的LSV曲线表明所制备的金属(铂、钴、铜)与氮共掺杂碳化钼催化剂的电催化析氢活性,在交换电流密度为10mA/cm2时,在碱性溶液中(1M KOH, pH=14),其过电位分别为68mV、177mV及158mV。实施例4~12所得催化剂在碱性体系下的LSV曲线图与图11中实施例1所述催化剂的LSV曲线图基本一致。
相同测试条件下对对比例1~7所述对照产品1~7进行性能测试,图12为本发明对比例1~4所述对照产品1~4的线性扫描伏安LSV曲线。从图12可知,在交换电流密度为10mA/cm2时,对比例1~4所述对照产品在碱性溶液中(1M KOH, pH=14),过电位分别为96mV、214mV、200mV、243mV,表明金属(铂、钴、铜)与氮共掺杂碳化钼体系相较于金属掺杂碳化钼体系和纯碳化钼体系均能显著提升电催化析氢活性。
图13为本发明对比例5~7所述对照产品5~7的线性扫描伏安LSV曲线。从图13可知,在交换电流密度为10mA/cm2时,在碱性溶液中(1M KOH,pH=14),过电位分别为278mV、707mV及597mV,说明调节金属盐的加入顺序,将显著影响金属与碳化钼的作用。而本发明所述制备方法将有利于金属参与到合成的络合作用中,形成金属与非金属共掺杂碳化钼体系,从而对碳化钼电子结构进行调控,得到高活性的改性碳化钼催化剂。
对实施例1所述铂氮共掺杂碳化钼催化剂(N-Pt-MoC)进行稳定性测试,测试环境为pH=14的碱性体系(1M KOH)。测试体系为三电极体系,即工作电极、参比电极和对电极。选用直径为5mm玻碳电极为工作电极;Ag/AgCl为参比电极;直径为6mm的碳棒为对电极。所制备催化剂在玻碳电极的负载量恒定为0.5mg/cm2。选取过电位为200mV时进行计时电流法测试(i-t测试)。N-Pt-MoC 催化剂在碱性体系下的稳定性曲线如图14所示。从图14可知,N-Pt-MoC在1M KOH电解液中可维持长达20天的稳定性,表明该催化剂具有优异的稳定性。实施例2~12所述催化剂在碱性体系下的稳定性曲线图与图14类似。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (9)

1.一种金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,包括如下步骤:
S1.将钼酸盐、4-氯邻苯二胺、金属盐、溶剂混合得到混合溶液,加入酸调节混合溶液pH为1~6;钼酸盐中的Mo与所述4-氯邻苯二胺中的NH2的摩尔比为1:(1~5),金属盐中的金属与钼酸盐中的钼的质量比为(1~5):100;所述金属盐选自氯铂酸、硝酸钴、硝酸铜中的一种或多种;
S2.将所述混合溶液进行恒温反应,然后过滤得到金属和氮共掺杂前驱体;所述恒温反应温度为40~60℃,时间为2~8h;
S3.将所述金属和氮共掺杂前驱体进行热解碳化处理,得到金属与氮共掺杂碳化钼催化剂。
2.如权利要求1所述金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,步骤S1中,所述钼酸盐中的Mo与所述4-氯邻苯二胺中的NH2的摩尔比为1:(2~4)。
3.如权利要求1所述金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,步骤S1中,加入酸调节混合溶液pH为3~4。
4.如权利要求1所述金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,步骤S2中,所述恒温反应温度为45~55℃,时间为3~5h。
5.如权利要求1所述金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,步骤S3中,所述热解碳化处理的温度为650~850℃,时间为3~6h。
6.如权利要求1所述金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,步骤S3中,所述热解碳化处理的气氛为氩气。
7.如权利要求6所述金属与氮共掺杂碳化钼催化剂的制备方法,其特征在于,所述氩气流量为50~100mL/min。
8.权利要求1~7任一所述金属与氮共掺杂碳化钼催化剂的制备方法制得的金属与氮共掺杂碳化钼催化剂。
9.权利要求8所述金属与氮共掺杂碳化钼催化剂在碱性电解水制氢中的应用。
CN202110803216.1A 2021-07-15 2021-07-15 一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用 Active CN113529102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110803216.1A CN113529102B (zh) 2021-07-15 2021-07-15 一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110803216.1A CN113529102B (zh) 2021-07-15 2021-07-15 一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113529102A CN113529102A (zh) 2021-10-22
CN113529102B true CN113529102B (zh) 2022-11-01

Family

ID=78128194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110803216.1A Active CN113529102B (zh) 2021-07-15 2021-07-15 一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113529102B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277397A (zh) * 2021-12-22 2022-04-05 长沙学院 一种核壳结构的电催化析氢催化剂及其制备方法和应用
CN115083786B (zh) * 2022-02-22 2023-03-31 合肥师范学院 一种均匀锚定铂单原子的碳化钼与氮掺杂碳复合材料及其制备方法
CN114855180B (zh) * 2022-03-23 2024-01-19 中国石油大学(华东) 一种多酸衍生低铂载量析氢电催化剂的制备方法
CN115044927B (zh) * 2022-06-18 2024-04-05 福州大学 一种碳化物负载金属催化剂的制备方法及应用
CN115305478B (zh) * 2022-07-09 2024-03-29 济南大学 一种可循环利用的高效复合铂催化剂的制备方法及其在电催化中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136973B (zh) * 2018-08-28 2020-07-14 南京工业大学 一种非贵金属掺杂碳化钼析氢电极及其制备方法和应用
CN110681404A (zh) * 2019-10-25 2020-01-14 广东工业大学 一种用于电解水阴极析氢反应的片状碳化钼催化剂及其制备方法和应用
CN110721713B (zh) * 2019-10-29 2022-07-29 广东工业大学 一种Mo2C催化材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113529102A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113529102B (zh) 一种金属与氮共掺杂碳化钼催化剂及其制备方法和应用
CN111420658B (zh) 一种Ir/Ru合金氧析出催化剂及制备方法和应用
KR102197464B1 (ko) 전기화학적 암모니아 합성용 촉매 및 이의 제조방법
CN114164448B (zh) 一种异相磷化镍材料及其制备方法
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
Hu et al. Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co (OH) 2 nanosheet arrays
CN110681404A (zh) 一种用于电解水阴极析氢反应的片状碳化钼催化剂及其制备方法和应用
CN109680299A (zh) 一种三维自支撑γ-Fe2O3-NC/CF电极及其制备方法和应用
CN111778517A (zh) 一种电极材料及其制备方法和应用
CN113862701B (zh) 一种铜单原子催化材料与电极的制备方法及其在硝酸盐还原产氨中的应用
Yang et al. Achieving enhanced electrocatalytic performance towards hydrogen evolution of molybdenum carbide via morphological control
Sfirloaga et al. Addressing electrocatalytic activity of metal-substituted lanthanum manganite for the hydrogen evolution reaction
CN112899715A (zh) 一种氧化钴纳米薄片析氯电极及其制备方法与应用
CN112563522A (zh) 一种钴掺杂二氧化钼电催化剂的制备方法及其应用
CN112779586A (zh) 一种具有纳米管阵列结构的磷化镍及其制备方法与应用
CN115557469B (zh) 一种非晶态贵金属氧化物材料及其制备方法与应用
CN114774983B (zh) 一种超小Ru纳米团簇负载于MoO3-x纳米带的双功能复合材料及其制备方法与应用
KR20200048442A (ko) 산소발생용 니켈-철 산화물 촉매의 산소결핍의 유도 방법 및 그 방법에 의해 제조된 니켈-철 산화물 촉매
CN110104649B (zh) 一种热分解法制备双金属碳化物复合材料的方法
CN114561655A (zh) 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用
CN113106470A (zh) 一种适用于电化学氮还原的钒掺杂二氧化钛/石墨烯电催化剂及其制备方法
CN113355687A (zh) 一种锡基双金属碳化物@碳纳米链核壳结构及其制备方法和应用
CN110270362B (zh) 一种锰氮共掺杂碳化钼纳米棒及其制备方法和应用
CN115747875B (zh) 一种柠檬酸掺杂的镍铁催化剂及其制备方法及在电解水制氢中的应用
CN113668000B (zh) 一种γ-MnO2的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant