CN113526472A - 一种非层状硒化锰纳米片及其制备方法 - Google Patents

一种非层状硒化锰纳米片及其制备方法 Download PDF

Info

Publication number
CN113526472A
CN113526472A CN202110719806.6A CN202110719806A CN113526472A CN 113526472 A CN113526472 A CN 113526472A CN 202110719806 A CN202110719806 A CN 202110719806A CN 113526472 A CN113526472 A CN 113526472A
Authority
CN
China
Prior art keywords
manganese selenide
preparation
layered
layered manganese
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110719806.6A
Other languages
English (en)
Inventor
刘碧录
王经纬
贺丽琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua-Berkeley Shenzhen Institute
Original Assignee
Tsinghua-Berkeley Shenzhen Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua-Berkeley Shenzhen Institute filed Critical Tsinghua-Berkeley Shenzhen Institute
Priority to CN202110719806.6A priority Critical patent/CN113526472A/zh
Publication of CN113526472A publication Critical patent/CN113526472A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种非层状硒化锰纳米片及其制备方法,该制备方法包括:将硒粉末置于管式炉的第一温区;将氯化锰粉末和氯化钠粉末混合成混合粉末,而后将其置于管式炉的第二温区;将云母衬底置于混合粉末的上方或管式炉内载气流向的下游;而后向管式炉内通入惰性气体和氢气作为载气,将第一温区的温度升至200~250℃,第二温区的温度升至590~650℃,进行保温反应。以上制备方法工艺简单、易于操作,制备成本低,合成速度快,可通过反应参数的调控实现厚度和形貌可控的大面积非层状硒化锰纳米片的制备,所得非层状硒化锰纳米片在云母衬底上均匀分布。

Description

一种非层状硒化锰纳米片及其制备方法
技术领域
本发明涉及二维非层状材料的制备技术领域,尤其是涉及一种非层状硒化锰纳米片及其制备方法。
背景技术
近年来,二维材料由于其独特的能带结构和光电特性而受到研究人员的广泛关注。除常见的层状二维材料(如石墨烯、二硫化钼等)外,非层状二维材料(层与层之间为共价键相连)也展现出巨大的应用潜力(例如,因表面不饱和的化学键诱导产生的高活性表面,超薄厚度诱导产生的独特电子态等)。然而,由于非层状材料晶体内部不存在层状结构,所有的原子均通过化学键连接,使得其二维结构难以制备,从而限制了相关应用的探索。
化学气相沉积(CVD)是可控制备二维材料的有效技术。最近,一些工作致力于通过CVD法制备二维非层状材料。例如,研究人员尝试在CVD反应中采用表面无悬挂键的特殊衬底,减弱衬底与非层状材料之间的晶格匹配要求,实现了二维非层状材料在此类基底上的生长。此外,研究人员还采用限制扩散区域的方法,使非层状材料的前驱体扩散生长局限在两片紧邻的衬底之间,从而将生长从热力学主导转变为动力学主导,得到超薄的二维非层状材料。尽管二维非层状材料的制备取得了一些进展,但仍然存在晶体在衬底表面分布不均,厚度、形貌、物相结构难以控制的问题。
作为非层状材料中的一员,硒化锰是一种带隙约为2.7eV的p型半导体材料,在电子器件,光电器件、能源等领域有广泛的应用。水热法制备的硒化锰纳米管可被应用于锂离子电池中的负极材料,具有优异的放电能力和循环稳定性。硒化锰纳米材料(如纳米颗粒、纳米花等)还可以应用于超级电容器中,不仅显示出较高的的电容存储和能量密度,还拥有低能耗和环境友好等优势。此外,O’Hara等人在硒化锰单层薄膜中观察到了室温铁磁性,有望将该材料应用于信息存储领域。尽管硒化锰材料的制备取得了一些进展,但二维薄层的硒化锰单晶仍然难以获得,限制了其二维尺度下的特性研究和应用。因此,探索二维非层状硒化锰的可控制备具有重要的意义。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种非层状硒化锰纳米片及其制备方法。
本发明的第一方面,提出了一种非层状硒化锰纳米片的制备方法,包括以下步骤:
S1、将硒粉末置于管式炉的第一温区;将氯化锰粉末和氯化钠粉末混合成混合粉末,将所述混合粉末置于所述管式炉的第二温区;将云母衬底置于所述混合粉末的上方或所述管式炉内载气流向的下游;
S2、向所述管式炉内通入惰性气体和氢气作为载气,将所述第一温区的温度升至200~250℃,所述第二温区的温度升至590~650℃,进行保温反应,制得非层状硒化锰纳米片。其中,非层状是指材料的层与层之间为共价键相连,而非范德瓦耳斯力相连。
根据本发明实施例的非层状硒化锰纳米片的制备方法,至少具有以下有益效果:该制备方法以硒粉末、氯化锰粉末作为前驱体,在其基础上添加辅助剂氯化钠粉末,在特定温度下通过化学气相沉积法在云母衬底上制备二维非层状硒化锰纳米片。通过以上方法以及反应参数的控制,可实现大面积非层状硒化锰纳米片的可控制备,具体可通过反应参数的调控实现厚度可调和形貌可控,所得非层状硒化锰纳米片在云母衬底上均匀分布;且其制备工艺简单,易于操作,制备成本低、速度快。
在本发明的一些实施方式中,所述氯化锰粉末与所述氯化钠粉末的质量比为(3~10):1;优选为8:1。
在本发明的一些实施方式中,步骤S1中,将云母衬底置于所述混合粉末的正上方,以提高硒化锰纳米片的生长效率;具体可将云母衬底置于混合粉体正上方10~15mm处。另外,一般可将硒粉末和混合粉末分别置于石英舟或其他耐高温敞口容器中,再置于管式炉内对应的温区处;第一温区和第二温区沿管式炉内的载气流向依次设置,以在制备过程中,通过载气将第一温区蒸发的物料硒载送至第二温区,与第二温区蒸发的物料进行反应;在反应过程中,辅助剂氯化钠粉末在第二温区的控制温度下能够与氯化锰形成熔融体,降低氯化锰的熔点并提高其挥发活性,以利于非层状硒化锰纳米片的生长。
在本发明的一些实施方式中,步骤S2中,所述保温反应的时间控制在1~30min;优选为1~10min。
在本发明的一些实施方式中,保温反应过程控制所述管式炉内的反应压强为1~760Torr;优选为760Torr。
在步骤S1和步骤S2之间,可先采用惰性气体(如氮气、氦气、氖气、氩气、氪气等)将管式炉内的空气排空,再通入惰性气体和氢气作为载气。在本发明的一些实施方式中,所述惰性气体的流速为10~200sccm,优选为100sccm;所述氢气的流速为1~50sccm,优选为10sccm。
在本发明的一些实施方式中,所述第一温区和所述第二温区在升温阶段的升温速度为10~50℃/min;优选为50℃/min。
本发明的第二方面,提出了一种非层状硒化锰纳米片材料,由本发明第一方面所提出的任一种非层状硒化锰纳米片的制备方法制得。
在本发明的一些实施方式中,所述非层状硒化锰纳米片的尺寸为1~20μm,厚度为5~30nm。
在本发明的一些实施方式中,所述非层状硒化锰纳米片的形状为三角形、六边形或树枝状。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为实施例1中非层状硒化锰纳米片的制备工艺流程示意图;
图2为实施例1制得非层状硒化锰纳米片的光学显微镜观察照片;
图3为实施例1制得非层状硒化锰纳米片的原子力显微镜观察照片;
图4为实施例1制得非层状硒化锰纳米片的X射线光电子能谱图;
图5为实施例2制得非层状硒化锰纳米片的光学显微镜观察照片;
图6为实施例2制得非层状硒化锰纳米片的原子力显微镜观察照片;
图7为实施例3制得非层状硒化锰纳米片的光学显微观察照片;
图8为实施例3制得非层状硒化锰的原子力显微镜观察照片;
图9为对比例1制得硒化锰纳米片的光学显微镜观察照片;
图10为实施例1制得非层状硒化锰纳米片和对比例2制得硒化锰纳米材料的光学显微镜观察照片;
图11为对比例3制得硒化锰纳米材料的光学显微镜观察照片。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整的描述,以充分理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种非层状硒化锰纳米片,制备工艺流程图如图1所示,其具体过程包括以下步骤:
S1、将过量的Se粉末(大于500mg)置于双温区管式炉的低温区;将MnCl2粉末和NaCl的粉末按照8:1的质量比混合成混合粉末(总质量约为9mg),将混合粉末并置于双温区管式炉的高温区;并将衬底云母片置于混合粉末上方10~15mm处;
S2、用氩气(Ar)反复清洗双温区管式炉后,管式炉以50℃/min的升温速率将低温区的温度升至200~250℃,高温区升至为650℃;持续通入氩气和氢气将Se蒸气运输至高温区,以与挥发的MnCl2蒸气反应,其中,氩气的流量为100sccm,氢气的流量为10sccm;在以上温度下保温反应5min,之后自然却至室温,在云母片衬底上制备得到非层状硒化锰纳米片。
采用光学显微镜对以上制得非层状的硒化锰纳米片进行观察,所得结果如图2所示。由图2可以看出,本实施例合成的非层状硒化锰纳米片主要呈三角形,其横向尺寸为5~20μm,在基底表面具有一定的取向性。
采用原子力显微镜(AFM)对以上制得的非层状硒化锰纳米片进行观察检测,所得结果如图3所示。由图3所示检测结果可知,合成的非层状硒化锰纳米片的厚度为30nm。
另外,采用X射线光电子能谱仪对以上制得的非层状硒化锰纳米片进行检测分析,所得结果如图4所示。由图4可以确定,本实施例所合成的非层状纳米片的成分为硒化锰。
实施例2
本实施例制备了一种非层状硒化锰纳米片,本实施例与实施例1的区别在于:本实施例在步骤S2中,将保温反应的时间由实施例1中的5min替换为1min,其他操作于实施例1相同。
采用光学显微镜对以上制得的非层状硒化锰纳米片进行观察,所得结果如图5所示。由图5可知,本实施例所制得的非层状硒化锰纳米片为三角形片状,尺寸比实施例1所制得非层状硒化锰纳米片略小,衬度浅,在云母片衬底上分布均匀。另外,采用原子力显微镜(AFM)对以上制得的非层状硒化锰纳米片进行观察检测,所得结果如图6所示,其中非层状硒化锰纳米片的厚度为5nm。
对比实施例1和实施例2可知,采用以上制备方法可通过调节保温反应时间来调控非层状硒化锰纳米片的厚度。
实施例3
本实施例制备了一种非层状硒化锰纳米片,本实施例与实施例1的区别在于:本实施例在步骤S2中将高温区的温度升至590℃,其他操作与实施例1相同。
采用光学显微镜对以上制得的非层状硒化锰纳米片进行观察,所得结果如图7所示。由图7可知,本实施例所制得的非层状硒化锰纳米片为枝晶状,且在云母片衬底上大面积分布。另外,采用原子力显微镜(AFM)对以上制得的非层状硒化锰纳米片进行观察检测,所得结果如图8所示,其中,枝晶状的非层状硒化锰纳米片的厚度为5nm。
对比实施例1和实施例3可知,采用以上制备方法可通过调节反应温度来调控非层状硒化锰纳米片的形貌。在较低温度下,氯化锰和硒反应生成的硒化锰前驱体在云母片衬底表面扩散受到限制,会遵循扩散限制凝聚的原理,形成树枝状的晶体。
对比例1
本对比例制备了一种硒化锰纳米材料,其与实施例1的区别在于:本对比例在步骤S1中未加入NaCl粉末,其他操作与实施例1相同。
采用光学显微镜对以上制得的硒化锰纳米材料进行观察,所得结果如图9所示。由图9可知,本对比例只能得到少量颗粒状的团聚物,而无法形成规则的非层状硒化锰纳米片。由此可知,NaCl粉末在以上非层状硒化锰纳米片制备过程中起到关键作用,其可降低硒化锰纳米片生长的能量势垒,使其更容易形核和生长。
对比例2
本对比例制备了一种硒化锰纳米材料,与实施例1的区别在于:本对比例在步骤S1中分别采用硅片、蓝宝石片、石英片代替云母片作为衬底,分别制备硒化锰纳米材料;在制备过程中,除以上区别之外,其他操作与实施例1相同。
采用光学显微镜分别对实施例1制得的非层状硒化锰纳米片和本对比例所制得的硒化锰纳米材料进行观察对比,所得结果如图10所示,图10中(a)为实施例1制得的非层状硒化锰纳米片的光学显微镜照片;(b)、(c)、(d)分别为本对比例中采用硅片、蓝宝石片和石英片作为衬底制得的硒化锰纳米材料的光学显微镜照片。由图10可知,实施例1中采用云母片作为衬底可在其表面得到薄层的非层状硒化锰纳米片,而在本对比例中所采用衬底上均只能得到颗粒状团聚物。
对比实施例1和对比例2可知,生长基底在非层状硒化锰纳米片制备过程中起到关键作用。由于硒化锰为非层状材料,表面具有未饱和的悬挂键,极易与硅片、蓝宝石片、石英片表面的悬挂键作用,影响氯化锰和硒反应生成的硒化锰前驱体的表面扩散,进而得到团聚的颗粒。而实施例1中所采用的云母片衬底不同于其他三种衬底,其本身为层状材料,表面平整且无悬挂键,能够为非层状材料提供惰性且平整的生长平台,促进二维非层状材料的生长。
对比例3
本对比例制备了一种硒化锰纳米材料,与实施例1的区别在于:本对比例在步骤S2中,将管式炉以50℃/min的升温速率将低温区的温度升至200~250℃,高温区分别升至700℃、680℃、550℃,分别制备硒化锰纳米材料;在制备过程中,除以上区别之外,其他操作与实施例1相同。
采用光学显微镜分别本对比例所制得的硒化锰纳米材料进行观察,所得结果如图11所示,图11中(a)、(b)、(c)分别为本对比例中将高温区温度升至700℃、680℃、550℃对应制得的硒化锰纳米材料的光学显微镜照片。由图11可以看出,当高温区保温阶段的温度大于650℃时,可得得到致密且较厚的硒化锰团聚物,而在其温度小于590℃时,只能得到少量颗粒物。
对比实施例1、3和对比例3可知,生长温度对非层状硒化锰纳米片制备非常重要,过低的温度(小于590℃)难以蒸发足够的前驱体氯化锰粉末进行反应;而过高的温度(大于650℃)会过渡蒸发前驱体氯化锰粉末,导致浓度过高,反应过于剧烈,成核密度高,得到厚度较大且密集的晶体团聚物。
由上,本发明实施例1~3以硒粉末和氯化锰粉末作为前驱体,在其基础上添加辅助剂氯化钠粉末,在特定温度下通过化学气相沉积法在云母衬底上沉积制备二维非层状硒化锰纳米片,通过以上方法以及反应参数的控制,可实现大面积的非层状硒化锰纳米片的可控制备,具体可通过反应参数的调控实现非层状硒化锰纳米片厚度可调、形貌可控,制得的非层状硒化锰纳米片在云母衬底上均匀分布;且其制备工艺简单,易于操作,制备成本低,合成速度快。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种非层状硒化锰纳米片的制备方法,其特征在于,包括以下步骤:
S1、将硒粉末置于管式炉的第一温区;将氯化锰粉末和氯化钠粉末混合成混合粉末,将所述混合粉末置于所述管式炉的第二温区;将云母衬底置于所述混合粉末的上方或所述管式炉内载气流向的下游;
S2、向所述管式炉内通入惰性气体和氢气作为载气,将所述第一温区的温度升至200~250℃,所述第二温区的温度升至590~650℃,进行保温反应。
2.根据权利要求1所述的非层状硒化锰纳米片的制备方法,其特征在于,所述氯化锰粉末与所述氯化钠粉末的质量比为(3~10):1。
3.根据权利要求1所述的非层状硒化锰纳米片的制备方法,其特征在于,步骤S1中,将云母衬底置于所述混合粉末的正上方。
4.根据权利要求1至3中任一项所述的非层状硒化锰纳米片的制备方法,其特征在于,步骤S2中,所述保温反应的时间控制在1~30min。
5.根据权利要求4所述的非层状硒化锰纳米片的制备方法,其特征在于,保温反应过程控制所述管式炉内的反应压强为1~760Torr。
6.根据权利要求4所述的非层状硒化锰纳米片的制备方法,其特征在于,所述惰性气体的流速为10~200sccm;所述氢气的流速为1~50sccm。
7.根据权利要求4所述的非层状硒化锰纳米片的制备方法,其特征在于,所述第一温区和所述第二温区在升温阶段的升温速度均为10~50℃/min。
8.一种非层状硒化锰纳米片,其特征在于,由权利要求1至7中任一项所述的非层状硒化锰纳米片的制备方法制得。
9.根据权利要求8所述的非层状硒化锰纳米片,其特征在于,所述非层状硒化锰纳米片的尺寸为1~20μm,厚度为5~30nm。
10.根据权利要求8所述的非层状硒化锰纳米片,其特征在于,所述非层状硒化锰纳米片的形状为三角形、六边形或树枝状。
CN202110719806.6A 2021-06-28 2021-06-28 一种非层状硒化锰纳米片及其制备方法 Pending CN113526472A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110719806.6A CN113526472A (zh) 2021-06-28 2021-06-28 一种非层状硒化锰纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110719806.6A CN113526472A (zh) 2021-06-28 2021-06-28 一种非层状硒化锰纳米片及其制备方法

Publications (1)

Publication Number Publication Date
CN113526472A true CN113526472A (zh) 2021-10-22

Family

ID=78097027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110719806.6A Pending CN113526472A (zh) 2021-06-28 2021-06-28 一种非层状硒化锰纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN113526472A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463580A (zh) * 2016-01-07 2016-04-06 中国科学院理化技术研究所 一种硒化镉或硫化镉二维单晶纳米片的制备方法
CN111304747A (zh) * 2020-04-01 2020-06-19 华中科技大学 一种非层状二维PbSe晶体材料及其制备方法
CN112850660A (zh) * 2021-01-15 2021-05-28 国家纳米科学中心 一种α-MnSe纳米片及其制备方法与用途
CN112875655A (zh) * 2021-01-29 2021-06-01 中南大学 一种非层状二维Cr2Se3纳米片的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463580A (zh) * 2016-01-07 2016-04-06 中国科学院理化技术研究所 一种硒化镉或硫化镉二维单晶纳米片的制备方法
CN111304747A (zh) * 2020-04-01 2020-06-19 华中科技大学 一种非层状二维PbSe晶体材料及其制备方法
CN112850660A (zh) * 2021-01-15 2021-05-28 国家纳米科学中心 一种α-MnSe纳米片及其制备方法与用途
CN112875655A (zh) * 2021-01-29 2021-06-01 中南大学 一种非层状二维Cr2Se3纳米片的制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIANG HU ET. AL.: ""Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide"", 《MATERIALS HORIZONS》 *
LIANG HU ET. AL.: ""Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide"", 《MATERIALS HORIZONS》, vol. 8, no. 4, 25 January 2021 (2021-01-25), pages 1286 - 1296 *
ZUCHENG ZHANG ET.AL.: ""Synthesis of Ultrathin 2D Nonlayered α-MnSe Nanosheets, MnSe/WS2 Heterojunction for High-Performance Photodetectors"", 《SMALL STRUCTURES》, vol. 2, no. 8, pages 2100028 *

Similar Documents

Publication Publication Date Title
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Yan et al. Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism
CN108910953B (zh) 一种Fe掺杂单层MoS2化学气相沉积制备方法
CN109650354B (zh) 一种二维碲化铅纳米片的制备方法、应用和一种纳米材料
CN109267036B (zh) 一种二碲化钨纳米线材料的制备及二碲化钨纳米线材料
CN106558475B (zh) 晶圆级单层二硫化钼膜及其制备方法
CN108441963A (zh) 一种碲化铂二维材料、制备及其电学器件中的应用
Chang et al. Experimental formation of monolayer group-IV monochalcogenides
Schierning et al. Microcrystalline silicon formation by silicon nanoparticles
JP6190562B2 (ja) グラフェンの成長方法
CN108486656A (zh) 一种碲化铌二维材料及其合成和应用
CN113666418A (zh) 一种二维原子晶体多层转角ws2纳米材料及其制备方法
Grynko et al. Growth of CdS nanowire crystals: Vapor–liquid–solid versus vapor–solid mechanisms
CN111392685B (zh) 二维自组装的m1/m2-vo2同质结纳米片及其制备方法
Wu et al. Synthesis of large area graphitic carbon nitride nanosheet by chemical vapor deposition
CN113718227B (zh) 一类二维层状三元化合物及其制备方法
Azizi et al. Controlled growth and atomic-scale characterization of two-dimensional hexagonal boron nitride crystals
CN113526472A (zh) 一种非层状硒化锰纳米片及其制备方法
CN112830479B (zh) 一种利用硫束流解耦技术制备易剥离近自由态石墨烯的方法
CN111470485B (zh) 一种磷化金纳米片及其可控制备方法与应用
CN114632943A (zh) 一种二维金属纳米片及其制备方法与应用
CN115072711A (zh) 石墨烯纳米带的制备方法
Hao et al. Growth and characterization of uniformly distributed triangular single-crystalline hexagonal boron nitride grains on liquid copper surface
Kim et al. Effect of buffer layer thickness on the growth properties of hydrothermally grown ZnO nanorods
Goyal et al. Synthesis and characterization of TiO2–Ge nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination