CN113517331A - 一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构 - Google Patents

一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构 Download PDF

Info

Publication number
CN113517331A
CN113517331A CN202110627846.8A CN202110627846A CN113517331A CN 113517331 A CN113517331 A CN 113517331A CN 202110627846 A CN202110627846 A CN 202110627846A CN 113517331 A CN113517331 A CN 113517331A
Authority
CN
China
Prior art keywords
trench
silicon carbide
deep
gate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110627846.8A
Other languages
English (en)
Inventor
王旺达
胡冬青
查祎英
贾云鹏
吴郁
周新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110627846.8A priority Critical patent/CN113517331A/zh
Publication of CN113517331A publication Critical patent/CN113517331A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构涉及功率半导体器件技术领域,在普通MOSFET结构基础上设置了深槽,深槽外边到栅槽内边间距均匀相等且控制在1‑3微米之间,深槽深度比栅槽深2‑10微米且与浅槽平行相似,相邻深槽间距设置在2.5‑5微米,深槽内填充的多晶硅与源电极相连,在器件阻断态时,起垂直偏置场板作用,可以有效降低栅槽角隅处的电场强度,改善栅可靠性,同时在深槽下方包裹一掺杂类型与漂移区相反的掺杂浮岛,一方面来屏蔽指向深槽氧化层的电场线,保护深槽角隅,另一方面也可以通过承担一部分压降改善耗尽区电场分布保护槽栅角隅,提高器件可靠性。第一导电类型碳化硅半导体漂移区掺杂浓度控制在1‑5×1016cm‑3厚度在8‑10微米范围内厚度与深槽深度相同。

Description

一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构
技术领域
本发明涉及功率半导体器件技术领域,尤其涉及一种功率半导体器件
背景技术
随着社会的发展,各种电子设备的更新换代,对槽栅碳化硅功率器件等功率半导体器件的性能指标要求越来越高,功率器件大多数工作在大功率场景,随着性能的提升,器件的可靠性问题便显得尤为重要,为了提高槽栅功率器件工作时的可靠性和稳定性,就需要对这些器件进行技术更新。
相比于槽栅MOSFET,传统的VDMOSFET在元胞间距小于10um时,击穿电压以15%的比例上升,并且由于其本身固有的寄生JFET效应限制了导通电阻的进一步降低。为进一步降低功率MOSFET的导通电阻Ron,D.Ueda于1985年提出了槽栅MOSFET结构。该结构与前者相比有许多性能优点。如更低的导通电阻,低栅漏电荷密度。随着SiC等宽禁带半导体的应用,相比于硅基器件,SiC材料拥有着卓越的耐压性能,可以使器件工作很高的电压之下,然而在SiC槽栅MOSFET器件中,当器件处在阻断态,由于曲率效应的影响导致槽栅角隅处的电场非常集中,很容易使栅氧化层击穿,降低器件工作时的可靠性和稳定性。
为了解决这个问题,一种沟底部具有P屏蔽区的沟结构被J.Tan等人提出,但这导致Ron的明显增加。因此一种源沟下具有P型区域的双沟结构(DT-MOS)被提出来用以改善槽栅底部附近的电场分布。尽管有显著的屏蔽效应,但槽栅角隅附近的峰值电场仍然很难降低到4MV/厘米以下。之后Q.Song等人又提出了一种L形栅(LSG-MOS)的沟槽器件结构,以降低槽栅角隅处的电场,这又不能对沟槽底部中部处的电场进行有效屏蔽。
发明内容
本发明的目的在于提出一种新的MOSFET结构,使用这种结构,在不增加器件制备难度的基础上,可以改善栅可靠性。
本发明主要通过浮岛耦合深槽结构群的设计,利用浮岛和垂直偏置场板共同作用以此对电场进行改善,降低栅槽角隅处的电场强度。
为解决上述技术问题,本发明提供以下技术方案:
新型SiC基槽栅MOSFET结构特征在于:增设了槽栅网络包围的浮岛耦合深槽结构群,栅槽周侧均设置了浮岛耦合深槽结构,所述浮岛耦合垂直场板结构自下而上包括第二导电类型浮岛(101),深槽绝缘介质层(104)和深槽多晶硅(105),金属化电极。深槽下方包裹一掺杂类型与漂移区相反的掺杂浮岛,深槽外边到栅槽内边间距(109)均匀相等且控制在1-3微米之间,深槽深度比栅槽(205)深2-10微米且与浅槽平行相似,相邻深槽间距设置在2.5-5微米,深槽内填充的多晶硅与源电极相连。
深槽经过热氧化和化学气相沉积,形成厚度为0.2微米至1微米的二氧化硅介质层;通过常规工艺形成掺杂多晶硅(105),掺杂多晶硅(105)与源电极相连,形成垂直场板;第二导电类型浮岛(101)通过离子注入耦合到深槽下面。所述外延层分两层,第一导电类型碳化硅漂移外延层(102)掺杂浓度控制在1-5×1016cm-3厚度与深槽深度相同。第一导电类型碳化硅耐压外延层(103)掺杂浓度和厚度与阻断电压有关,对于1200V耐压要求掺杂浓度在1-2×1016cm-3范围内,厚度在8-10微米范围内。第一导电类型碳化硅耐压外延层(103)和第一导电类型碳化硅漂移外延层(102)的总厚度为15-17微米.第二导电类型浮岛(101)掺杂浓度控制3×1017cm-3到3×1019cm-3范围内。
进一步,对于P型沟道碳化硅槽栅mosfet器件,所述第一导电类型碳化硅半导体的掺杂类型为P型时,第二导电类型碳化硅半导体的掺杂类型为N型;
对于N型沟道碳化硅槽栅mosfet器件,所述第一导电类型宽禁带半导体的掺杂类型为N型时,第二导电类型宽禁带半导体的掺杂类型为P型。
本发明采用栅槽网络包围浮岛耦合垂直场板结构方案,不仅适用于矩形元胞,也适用于圆形、椭圆形等多种形状的元胞结构。
本发明的有益效果为本发明在槽栅周侧引入浮岛耦合垂直场板结构,通过深槽和浮岛的共同作用来改变第一类导电类型碳化硅漂移区的耗尽区,从而改善槽栅角隅处发生的电场聚集效应,改善电场分布以此保护栅极角隅。并通过在第一导电类型碳化硅漂移区中引入第二导电类型浮岛结构,屏蔽指向深槽氧化层的电场线,提高器件的可靠性,从而提高进一步碳化硅槽栅mosfet器件的可靠性.
附图说明
图1为本发明的三维截面结构示意图。
图中:101——浮岛;102——第一导电类型碳化硅外延层;103——第一导电类型碳化硅外延层;104——深槽绝缘介质层;105——深槽多晶硅;106——第二导电类型碳化硅体区;107——第二导电类型碳化硅源接触区;108——重掺杂第一导电类型碳化硅衬底;203——第一导电类型碳化硅源接触区;204——深槽绝缘介质层;205——浅槽多晶硅;
具体实施方式
为了使本发明的目的与优点更加清晰突出,下面结合具体附图和实施例对本发明作进一步说明。此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
本实施例是一款具有垂直场板保护的1200V碳化硅基槽栅MOSFET。本发明与普通槽栅MOSFET结构最大的区别是增加了浮岛耦合垂直场板结构其他与常规槽栅MOSFET器件结构相同,见附图1。自下而上依次为漏极金属化电极层,重掺杂第一导电类型碳化硅衬底(108),其具体参数为具有约400微米的厚度和约1019cm-3的掺杂浓度;与衬底层邻接的是第一导电类型碳化硅耐压外延层(103),它的厚度厚度约为8微米或者10微米,掺杂浓度为1×1016cm-3。邻接第一导电类型碳化硅耐压外延层(103)的是具有浮岛耦合垂直场板群和槽栅MOS结构的第一导电类型碳化硅漂移外延层(102),该外延层的掺杂浓度为5×1016cm-3,厚度为7微米,厚度与深槽深度相同,深槽形貌与元胞相同为正方形,正方形边长2.5微米。通过离子注入在垂直场板下方形成第二导电类型浮岛(101),第二导电类型浮岛(101)的掺杂浓度为3×1017cm-3。通过热氧化生成500埃氧化层,之后再通过化学气相沉积工艺,形成一层总厚度为1微米的二氧化硅介质层。掺杂多晶填充按常规工艺制备。碳化硅表面槽栅MOS结构由第二导电类型碳化硅体区(106),第一导电类型碳化硅源接触区(203),第二导电类型碳化硅源接触区(107),浅槽多晶硅(205),浅槽绝缘介质层(204)组成,浅槽与深槽同轴并且形状相似也为矩形,深槽外边-栅槽内边间距(109)均匀相等,为1.5微米。深槽内掺杂多晶与源电极相连,构成垂直场板。栅槽网络结构为厚度为700埃的绝缘栅介质层(104)、浅槽多晶硅(105),按常规槽栅工艺制备。浅槽多晶网络,在栅焊盘处通过栅极金属引出电极。
本实施例的实现方法与常规槽栅MOSFET制备技术基本相同,包括衬底外延(1次两层)、深槽光刻与刻蚀、牺牲氧化1、牺牲氧化层去除、深槽氧化、深槽二氧化硅沉积、深槽多晶淀积,栅槽光刻与刻蚀、牺牲氧化2、牺牲氧化层2去除、栅氧化、多晶填充与回刻、p型体区注入与扩散、N型源区注入与扩散、隔离氧沉积、引线孔光刻与刻蚀、溅射源极金属、金属反刻、沉积钝化层、刻压焊盘背面金属溅射、合金等。
按照该工艺制备的样品,在漏极加压1000V,栅极加压15V的条件下,开关冲击2500次,器件正常,阈值电压和栅漏电流无明显退化,槽栅角隅和深槽角隅未出现损毁。
本具体实施例的原理在于槽栅周侧引入浮岛耦合垂直场板结构,通过深槽和浮岛的共同作用来改变第一类导电类型碳化硅漂移区的耗尽区,从而改善槽栅角隅处发生的电场聚集效应,改善电场分布以此保护栅极角隅。并通过在第一导电类型碳化硅漂移区中引入第二导电类型浮岛结构,屏蔽指向深槽氧化层的电场线,提高器件的可靠性,从而提高进一步碳化硅槽栅MOSFET器件的可靠性.
虽然本发明公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所述技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,本发明的保护范围并不局限于文中公开的特定实施例,而是包括落入权利要求范围内的所有技术方案。

Claims (2)

1.一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构,其特征在于包括:浅槽多晶硅(205),浅槽绝缘介质层(204),深槽多晶硅(105),深槽绝缘介质层(104),第二导电类型浮岛(101),第一导电类型碳化硅漂移外延层(102),第一导电类型碳化硅耐压外延层(103),重掺杂第一导电类型碳化硅衬底(108),第二导电类型碳化硅体区(106),第一导电类型碳化硅源接触区(203),第二导电类型碳化硅源接触区(107);新型SiC基槽栅MOSFET结构特征在于:栅槽周侧均设置了浮岛耦合垂直场板结构,所述浮岛耦合垂直场板结构自下而上包括第二导电类型浮岛(101),深槽绝缘介质层(104)和深槽多晶硅(105),金属化电极;深槽下方包裹一掺杂类型与漂移区相反的掺杂浮岛,深槽外边到栅槽内边间距(109)均匀相等且控制在1-3微米之间,深槽深度比栅槽205深2-10微米且与浅槽平行相似,相邻深槽间距设置在2.5-5微米,深槽内填充的多晶硅与源电极相连;
深槽经过热氧化和化学气相沉积,形成厚度为0.2微米至1微米的二氧化硅介质层;通过常规工艺形成掺杂多晶硅(105),掺杂多晶硅(105)与源电极相连,形成垂直场板;第二导电类型浮岛(101)通过离子注入耦合到深槽下面;第一导电类型碳化硅漂移外延层(102)掺杂浓度控制在1-5×1016cm-3厚度与深槽深度相同;第一导电类型碳化硅耐压外延层(103)掺杂浓度和厚度与阻断电压有关,对于1200V耐压要求掺杂浓度在1-2×1016cm-3范围内,厚度在8-10微米范围内;第一导电类型碳化硅漂移外延层(102)和第一导电类型碳化硅耐压外延层(103)的总厚度为15-17微米;第二导电类型浮岛(101)掺杂浓度控制在3×1017cm-3到3×1019cm-3范围内。
2.根据权利要求1所述的一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构,其特征在于:对于P型沟道碳化硅槽栅MOSFET器件,所述第一导电类型碳化硅半导体的掺杂类型为P型时,第二导电类型碳化硅半导体的掺杂类型为N型;
对于N型沟道碳化硅槽栅MOSFET器件,所述第一导电类型碳化硅半导体的掺杂类型为N型时,第二导电类型碳化硅半导体的掺杂类型为P型。
CN202110627846.8A 2021-06-05 2021-06-05 一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构 Pending CN113517331A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110627846.8A CN113517331A (zh) 2021-06-05 2021-06-05 一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110627846.8A CN113517331A (zh) 2021-06-05 2021-06-05 一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构

Publications (1)

Publication Number Publication Date
CN113517331A true CN113517331A (zh) 2021-10-19

Family

ID=78065600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110627846.8A Pending CN113517331A (zh) 2021-06-05 2021-06-05 一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构

Country Status (1)

Country Link
CN (1) CN113517331A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809179A (zh) * 2021-10-20 2021-12-17 无锡橙芯微电子科技有限公司 一种sic dmos器件结构
CN114823872A (zh) * 2022-04-26 2022-07-29 电子科技大学 一种全隔离衬底耐压功率半导体器件及其制造方法
CN117637849A (zh) * 2023-12-06 2024-03-01 江苏索力德普半导体科技有限公司 沟槽栅SiC功率器件及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007584A (zh) * 2008-02-14 2011-04-06 马克斯半导体股份有限公司 半导体装置结构及其相关工艺
US20140252463A1 (en) * 2008-02-14 2014-09-11 Maxpower Semiconductor, Inc. Schottky and mosfet+schottky structures, devices, and methods
JP2015195307A (ja) * 2014-03-31 2015-11-05 株式会社豊田中央研究所 半導体装置
CN110637374A (zh) * 2017-05-17 2019-12-31 罗姆股份有限公司 半导体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007584A (zh) * 2008-02-14 2011-04-06 马克斯半导体股份有限公司 半导体装置结构及其相关工艺
US20140252463A1 (en) * 2008-02-14 2014-09-11 Maxpower Semiconductor, Inc. Schottky and mosfet+schottky structures, devices, and methods
JP2015195307A (ja) * 2014-03-31 2015-11-05 株式会社豊田中央研究所 半導体装置
CN110637374A (zh) * 2017-05-17 2019-12-31 罗姆股份有限公司 半导体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809179A (zh) * 2021-10-20 2021-12-17 无锡橙芯微电子科技有限公司 一种sic dmos器件结构
CN114823872A (zh) * 2022-04-26 2022-07-29 电子科技大学 一种全隔离衬底耐压功率半导体器件及其制造方法
CN114823872B (zh) * 2022-04-26 2023-10-03 电子科技大学 一种全隔离衬底耐压功率半导体器件及其制造方法
CN117637849A (zh) * 2023-12-06 2024-03-01 江苏索力德普半导体科技有限公司 沟槽栅SiC功率器件及制备方法

Similar Documents

Publication Publication Date Title
CN103887173B (zh) 利用耗尽p-屏蔽的低输出电容的高频开关mosfet
CN109192772B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN113517331A (zh) 一种具有浮岛耦合垂直场板保护的SiC基槽栅MOSFET结构
CN109065621B (zh) 一种绝缘栅双极晶体管及其制备方法
CN107275383B (zh) 一种含有异质结的超结igbt
CN109244136B (zh) 槽底肖特基接触SiC MOSFET器件
WO2014105371A1 (en) Transistor structures and methods for making the same
CN111668312A (zh) 一种低导通电阻的沟槽碳化硅功率器件及其制造工艺
CN114843332B (zh) 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN115148826B (zh) 一种深沟槽碳化硅jfet结构的制作方法
CN111384153A (zh) 一种具有接地p型区的sgt器件及其制备方法
CN117038455A (zh) Mosfet结构及工艺方法
CN114792734A (zh) 一种双沟槽碳化硅mosfet及其制备方法
CN115377200A (zh) 一种半导体器件及其制备方法
CN116469916A (zh) 一种沟槽型碳化硅mosfet及其制作方法
CN117238968A (zh) 一种沟槽栅碳化硅mosfet器件及其制备方法
CN110021660A (zh) AlGaN/GaN异质结垂直型场效应晶体管及其制作方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN114709255B (zh) 基于异质结的高功率密度隧穿半导体器件及其制造工艺
CN116525653A (zh) 一种集成二极管的沟槽型碳化硅mosfet及其制作方法
CN115020240B (zh) 一种低压超结沟槽mos器件的制备方法及结构
CN116314279A (zh) 一种电力电子芯片终端保护结构
CN213242561U (zh) 一种沟槽型肖特基二极管器件
CN115425064A (zh) 集成反向sbd的高可靠性碳化硅mosfet器件及制备方法
CN113488540A (zh) 一种具有垂直场板保护的SiC基槽栅MOSFET结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211019