CN113517225A - 基于全n型tft中心频率可调的带通放大电路制作方法 - Google Patents

基于全n型tft中心频率可调的带通放大电路制作方法 Download PDF

Info

Publication number
CN113517225A
CN113517225A CN202110342370.3A CN202110342370A CN113517225A CN 113517225 A CN113517225 A CN 113517225A CN 202110342370 A CN202110342370 A CN 202110342370A CN 113517225 A CN113517225 A CN 113517225A
Authority
CN
China
Prior art keywords
photoresist
amplifying circuit
manufacturing
type tft
center frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110342370.3A
Other languages
English (en)
Inventor
刘川
高立朝
陈国苇
黄凯荣
刘晨宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110342370.3A priority Critical patent/CN113517225A/zh
Publication of CN113517225A publication Critical patent/CN113517225A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种基于全N型TFT中心频率可调的带通放大电路制作方法,该方法将沉积在衬底上的栅极金属图案化,再在衬底及栅极上沉积一层半导体材料并图案化,在有源层上沉积源漏极金属层,使用银墨水选通需要的电路各元件;采用该方法的电路易于制备、低成本、可放大微弱信号、电路可变性强、电路透明等优势,由于电路每个器件可选择,同面包板电路一样,故可以极大的降低电路成本,增大电路可变性。

Description

基于全N型TFT中心频率可调的带通放大电路制作方法
技术领域
本发明涉及半导体技术领域,更具体地,涉及一种基于全N型TFT中心频率可调的带通放大电路制作方法。
背景技术
薄膜晶体管(TFTs)和场效应晶体管(FETs)是构建功能电子电路和探索传输物理学的基本单元。传统放大电路是硅基场效应晶体管,由于电路有两种不同的有源层,所以工艺复杂与高成本限制了平板电路的进一步实验性。在平板差分放大电路中,电路的对称性会极大影响到电路的共模抑制比,而实验室环境下很难做出高度对称的放大电路。
随着对柔性电路需求的日益增高,新型的单一有源层放大电路被报道,这种柔性电路主要基于有机薄膜晶体管,主要用于生物医疗领域,而有机薄膜晶体管往往寿命较短成本较高且对封装要求高。为了测试带通滤波器中心频率的影响因素,需要很多掩模版,成本巨大。
发明内容
本发明提供一种低成本的基于全N型TFT中心频率可调的带通放大电路制作方法。
为了达到上述技术效果,本发明的技术方案如下:
一种基于全N型TFT中心频率可调的带通放大电路制作方法,该带通放大电路包括:驱动管、负载管、电容、栅漏短接的电阻管、阻值可调的源极负载管、金属线与打印的银墨水滴,包括以下步骤:
S1:将沉积在衬底上的栅极材料图案化,形成底栅与电容金属底极板;
S2:在整面样品表面相沉积介电层同时也是平板电容绝缘层并图形化;
S3:在介电层上直流磁控溅射有源层,在有源层上沉积源漏金属层;
S4:使用银墨水选通需要的电路各元件。
进一步地,所述步骤S1的具体过程是:
采用玻璃衬底在丙酮、乙醇、水中清洗,氮气吹干;通过DC溅射在衬底及沉积一层金属钼栅电极;对钼薄膜进行光刻和蚀刻,得到图案化的钼薄膜。
进一步地,所述步骤S2的具体过程是:
在衬底及栅极上PECVD沉积绝缘层,设置绝缘层为每层为二氧化硅-氮化硅-二氧化硅的夹层结构。
进一步地,所述步骤S3的具体过程是:
使用DC溅射方法在衬底及栅极上沉积IGZO,在光刻胶涂布机涂布光刻胶薄膜,透过铬板进行曝光,并通过显影液对未固化的光刻胶进行去除,得到图案化的所述图形化光刻胶薄膜,对涂布了图案化的所述光刻胶薄膜的IGZO薄膜进行蚀刻,涂布光刻胶是整面性光刻胶涂布,未固化部分的光刻胶将被显影液去除,并且蚀刻液会继续蚀刻下方的IGZO薄膜,已经固化的光刻胶将不会被蚀刻液蚀刻或者显影液去除,并且已固化的光刻胶将会保护下方的IGZO薄膜不被蚀刻,具体的,将此时的玻璃基板置入蚀刻机台,采用稀盐酸蚀刻液进行蚀刻;光刻露出需要打孔的位置,反应离子刻蚀除去绝缘层;光刻胶涂布机涂布光刻胶薄膜,透过铬板进行曝光,并通过显影液对未固化的光刻胶进行去除,得到图案化的所述图形化光刻胶薄膜,磁控溅射金属钼,使用丙酮超声剥离,金属钼会随着光刻胶一同脱落,只留下所需的源漏电极与电容的顶极板。
进一步地,所述步骤S4的具体过程是:
使用SonoPlot直写设备对电路单管与电容进行选通;测量每个驱动管的输入、输出特性曲线,从四个驱动管中选择两个进行选通,分别输入不同频率的正弦信号,测量输出信号,观察电路对不同频率信号的增益。
优选地,通过DC溅射在衬底沉积一层厚度为80~100nm金属钼栅电极;所述绝缘层厚度均为300nm;设置绝缘层为每层均为100nm二氧化硅-氮化硅-二氧化硅的夹层结构;IGZO薄膜的厚度范围为45nm~80nm;分别输入不同频率下直流偏置为5V,峰峰值为20mv的正弦信号,测量输出信号。
与现有技术相比,本发明技术方案的有益效果是:
本发明通过采用全N型薄膜晶体管构成的频率与增益可调的放大电路具有易于制备、低成本、可放大微弱信号、电路可变性强、电路透明等优势,由于电路每个器件可选择,同面包板电路一样,故可以极大的降低电路成本,增大电路可变性。驱动管的漏极负载采用交流耦合的形式,栅漏短接的电阻管阻值可达100MΩ,大电阻可使电路无需大面积去制备大电容,当平板电容的金属极板为金属钼,介电层为每层均为100nm二氧化硅-氮化硅-二氧化硅的夹层结构得到的电容为0.14nf/mm2。当采用交流耦合负载时,极大的提高了对频率的选择特性,对1hz的与人类心率类似的低频弱生物电信号的放大倍数达到了20.3dB,而对高频信号增益均小于10dB,并且可放大20mV的微小信号,这对可穿戴式电路测量心电图研究有重要意义,当使用心电图信号R波峰值为1mv混合有峰峰值1mv频率为100hz的共模信号时,电路仿真可得到最大80mv的心电信号。
附图说明
图1为本发明方法制作的带通放大电路图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1:
本发明提供一种基于全N型TFT中心频率可调的带通放大电路制作方法,带通放大电路包括大宽长比的驱动管、小宽长比的负载管、电容、栅漏短接的电阻管组成的交流耦合负载、阻值可调的源极负载管、金属线与打印的银墨水滴组成,如图1所示。
本实施例中,有源层是非简并半导体材料为InGaZnO,只要材料具有半导体特性并与电极功函数匹配即可。
栅、源、漏电极为Mo、Al中的一种,还可以为ITO等导电材料,根据半导体材料功函数选择合适的栅、源、漏电极。
本实施例中,将沉积在衬底上的栅极金属图案化,再在衬底及栅极上沉积一层半导体材料并图案化,在有源层上沉积源漏极金属层,使用银墨水选通需要的电路各元件。
方法包括有以下步骤:
S1:玻璃衬底在丙酮、乙醇、水中清洗,氮气吹干;
S2:通过DC溅射在衬底沉积一层厚度为80~100nm金属钼栅电极;对初始化的所述钼薄膜进行光刻和蚀刻,得到图案化的所述钼薄膜;
在一种可选的实施方式中,设置钼薄膜的厚度为40nm;
在一种可选的实施方式中,设置钼薄膜的厚度为80nm,优选80nm的厚度的钼薄膜,退火时栅极金属损耗不会太大,又不过多增加整体器件的厚度;
在一种可选的实施方式中,设置钼薄膜的厚度为100nm;
S3:在衬底及栅极上PECVD沉积所述绝缘层,所述绝缘层厚度均为300nm;
在一种可选的实施方式中,设置绝缘层的厚度为300nm的氮化硅;
在一种可选的实施方式中,设置绝缘层为每层均为100nm二氧化硅-氮化硅-二氧化硅的夹层结构,优选该夹层结构,刻蚀时时间不会太久且绝缘层致密性好,不会漏电。
S4:使用DC溅射方法在衬底及栅极上沉积IGZO,在所述的光刻胶涂布机涂布光刻胶薄膜,透过铬板进行曝光,并通过显影液对未固化的光刻胶进行去除,得到图案化的所述图形化光刻胶薄膜,对涂布了图案化的所述光刻胶薄膜的IGZO薄膜进行蚀刻,涂布光刻胶是整面性光刻胶涂布,未固化部分的光刻胶将被显影液去除,并且蚀刻液会继续蚀刻下方的IGZO薄膜,已经固化的光刻胶将不会被蚀刻液蚀刻或者显影液去除,并且已固化的光刻胶将会保护下方的IGZO薄膜不被蚀刻,具体的,将此时的玻璃基板置入蚀刻机台,采用稀盐酸蚀刻液进行蚀刻,IGZO薄膜的厚度范围为45nm~80nm;在一种可选的实施方式中,IGZO薄膜的厚度为0.03um,PI薄膜的厚度为1um;
在一种可选的实施方法中,IGZO薄膜的厚度为45nm
在一种可选的实施方式中,IGZO薄膜的厚度为80nm
在一种可选的实施方式中,IGZO薄膜的厚度为65nm;IGZO薄膜厚度优选65nm,当IGZO薄膜厚度为65nm时,有源层中载流子数目足够以保证足够的开关特性,且开启电压不会负偏。
S5:光刻露出需要打孔的位置,反应离子刻蚀除去绝缘层。
S6:在所述的光刻胶涂布机涂布光刻胶薄膜,透过铬板进行曝光,并通过显影液对未固化的光刻胶进行去除,得到图案化的所述图形化光刻胶薄膜,磁控溅射80~100nm的金属钼,使用丙酮超声剥离,金属钼会随着光刻胶一同脱落,只留下所需的源漏电极与电容的顶极板。至此,单个器件全部制备完成。
S7:使用SonoPlot直写设备对电路单管与电容进行选通。测量每个驱动管的输入、输出特性曲线,从四个驱动管中选择两个进行选通,分别输入不同频率下直流偏置为5V,峰峰值为20mv的正弦信号,测量输出信号,观察电路对不同频率信号的增益。
实施例2:
本实施例提供另一种基于全N型TFT中心频率可调的带通放大电路制作方法,包括有以下步骤:
S1:玻璃衬底在丙酮、乙醇、水中清洗,氮气吹干;
S2:通过DC溅射在衬底及沉积一层厚度为80~100nm金属钼栅电极;对初始化的所述钼薄膜进行光刻和蚀刻,得到图案化的所述钼薄膜;在一种可选的实施方式中,设置钼薄膜的厚度为80nm,优选80nm的厚度的钼薄膜,退火时栅极金属损耗不会太大,又不过多增加整体器件的厚度;
S3:在衬底及栅极上PECVD沉积所述绝缘层,所述绝缘层厚度均为300nm;设置绝缘层层为每层均为100nm二氧化硅-氮化硅-二氧化硅的夹层结构。
S4:配置IGZO溶液,所选溶质分别为硝酸铟金属盐水合物、硝酸稼金属盐水合物、硝酸锌金属盐水合物。称量溶质,溶剂选择2-ME有机溶剂,分别以转速800rpm/min磁力搅拌2小时,以6:1:3的溶液比例混合金属,以转速800rpm/min磁力搅拌2小时,溶液静置24小时使用。
S5:样品经过600W紫外处理20分钟以增强样品亲水性,将大烧杯扣在盛有去离子水的小烧杯上,提前开启热板产生水蒸气,后先以加速度100rpm/s2至500rpm/s转5秒,再以加速度500rpm/s2至2000rpm/s转60秒
在一种可选的实施方法中,涂布的转速可以为800rpm/s
在一种可选的实施方法中,涂布的转速可以为3000rpm/s
在一种可选的实施方法中,涂布的转速可以为2000rpm/s;涂布的转速优选2000rpm/s,膜厚适中,单管的输出特性最优。110℃水汽氛围下退火5分钟后400℃空气氛围退火2小时。样品旋涂正性光刻胶曝光,使用正胶显影液显影,将此时的玻璃基板置入蚀刻机台,采用稀盐酸蚀刻液进行蚀刻。大量去离子水冲洗,丙酮去胶后对样品进行清洗。400℃下后烘2小时用来修复刻蚀的损伤。
S6:光刻露出需要打孔的位置,反应离子刻蚀除去绝缘层。
S7:光刻显影后不去胶,磁控溅射金属钼,使用丙酮超声剥离,金属钼会随着光刻胶一同脱落,只留下所需的源漏电极与电容的顶极板。至此,单个器件全部制备完成。
S9:使用SonoPlot直写设备对电路单管与电容进行选通。测量每个驱动管的输入、输出特性曲线,从四个驱动管中选择两个进行选通,分别输入不同频率下直流偏置为5V,峰峰值为20mv的正弦信号,测量输出信号,观察电路对不同频率信号的增益。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种基于全N型TFT中心频率可调的带通放大电路制作方法,该带通放大电路包括:驱动管、负载管、电容、栅漏短接的电阻管、阻值可调的源极负载管、金属线与打印的银墨水滴,其特征在于,包括以下步骤:
S1:将沉积在衬底上的栅极材料图案化,形成底栅与电容金属底极板;
S2:在整面样品表面相沉积介电层同时也是平板电容绝缘层并图形化;
S3:在介电层上直流磁控溅射有源层,在有源层上沉积源漏金属层;
S4:使用银墨水选通需要的电路各元件。
2.根据权利要求1所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,所述步骤S1的具体过程是:
采用玻璃衬底在丙酮、乙醇、水中清洗,氮气吹干;通过DC溅射在衬底及沉积一层金属钼栅电极;对钼薄膜进行光刻和蚀刻,得到图案化的钼薄膜。
3.根据权利要求2所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,所述步骤S2的具体过程是:
在衬底及栅极上PECVD沉积绝缘层,设置绝缘层为每层为二氧化硅-氮化硅-二氧化硅的夹层结构。
4.根据权利要求3所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,所述步骤S3的具体过程是:
使用DC溅射方法在衬底及栅极上沉积IGZO,在光刻胶涂布机涂布光刻胶薄膜,透过铬板进行曝光,并通过显影液对未固化的光刻胶进行去除,得到图案化的所述图形化光刻胶薄膜,对涂布了图案化的所述光刻胶薄膜的IGZO薄膜进行蚀刻,涂布光刻胶是整面性光刻胶涂布,未固化部分的光刻胶将被显影液去除,并且蚀刻液会继续蚀刻下方的IGZO薄膜,已经固化的光刻胶将不会被蚀刻液蚀刻或者显影液去除,并且已固化的光刻胶将会保护下方的IGZO薄膜不被蚀刻,具体的,将此时的玻璃基板置入蚀刻机台,采用稀盐酸蚀刻液进行蚀刻;光刻露出需要打孔的位置,反应离子刻蚀除去绝缘层;光刻胶涂布机涂布光刻胶薄膜,透过铬板进行曝光,并通过显影液对未固化的光刻胶进行去除,得到图案化的所述图形化光刻胶薄膜,磁控溅射金属钼,使用丙酮超声剥离,金属钼会随着光刻胶一同脱落,只留下所需的源漏电极与电容的顶极板。
5.根据权利要求4所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,所述步骤S4的具体过程是:
使用SonoPlot直写设备对电路单管与电容进行选通;测量每个驱动管的输入、输出特性曲线,从四个驱动管中选择两个进行选通,分别输入不同频率的正弦信号,测量输出信号,观察电路对不同频率信号的增益。
6.根据权利要求5所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,通过DC溅射在衬底沉积一层厚度为80~100nm金属钼栅电极。
7.根据权利要求6所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,所述绝缘层厚度均为300nm。
8.根据权利要求7所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,设置绝缘层为每层均为100nm二氧化硅-氮化硅-二氧化硅的夹层结构。
9.根据权利要求8所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,IGZO薄膜的厚度范围为45nm~80nm。
10.根据权利要求9所述的基于全N型TFT中心频率可调的带通放大电路制作方法,其特征在于,分别输入不同频率下直流偏置为5V,峰峰值为20mv的正弦信号,测量输出信号。
CN202110342370.3A 2021-03-30 2021-03-30 基于全n型tft中心频率可调的带通放大电路制作方法 Pending CN113517225A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110342370.3A CN113517225A (zh) 2021-03-30 2021-03-30 基于全n型tft中心频率可调的带通放大电路制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110342370.3A CN113517225A (zh) 2021-03-30 2021-03-30 基于全n型tft中心频率可调的带通放大电路制作方法

Publications (1)

Publication Number Publication Date
CN113517225A true CN113517225A (zh) 2021-10-19

Family

ID=78062339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110342370.3A Pending CN113517225A (zh) 2021-03-30 2021-03-30 基于全n型tft中心频率可调的带通放大电路制作方法

Country Status (1)

Country Link
CN (1) CN113517225A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2691074A (en) * 1949-08-31 1954-10-05 Rca Corp Amplifier having frequency responsive variable gain
TWI238595B (en) * 2004-06-28 2005-08-21 Sheng-Fuh Chang Bandpass amplifier
CN105514116A (zh) * 2015-12-03 2016-04-20 深圳市华星光电技术有限公司 Tft背板结构及其制作方法
CN109712992A (zh) * 2018-12-21 2019-05-03 惠科股份有限公司 阵列基板及其制作方法、显示装置
CN111865227A (zh) * 2020-08-17 2020-10-30 北京大学深圳研究生院 一种薄膜晶体管集成的放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2691074A (en) * 1949-08-31 1954-10-05 Rca Corp Amplifier having frequency responsive variable gain
TWI238595B (en) * 2004-06-28 2005-08-21 Sheng-Fuh Chang Bandpass amplifier
CN105514116A (zh) * 2015-12-03 2016-04-20 深圳市华星光电技术有限公司 Tft背板结构及其制作方法
CN109712992A (zh) * 2018-12-21 2019-05-03 惠科股份有限公司 阵列基板及其制作方法、显示装置
CN111865227A (zh) * 2020-08-17 2020-10-30 北京大学深圳研究生院 一种薄膜晶体管集成的放大器

Similar Documents

Publication Publication Date Title
US20180158904A1 (en) Thin film transistor and method for making the same
WO2013026360A1 (zh) 有机薄膜晶体管阵列基板及其制作方法和显示装置
US10475936B2 (en) Thin film transistor and method for making the same
CN107425078A (zh) 一种基于硅纳米膜的柔性金属型双底栅晶体管及制造方法
CN102779942B (zh) 一种有机薄膜晶体管阵列基板及其制作方法
US20180158905A1 (en) Thin film transistor and method for making the same
CN108011041B (zh) 半导体薄膜和薄膜晶体管、其制作方法、相关装置
US10431662B2 (en) Thin film transistor and method for making the same
CN113517225A (zh) 基于全n型tft中心频率可调的带通放大电路制作方法
CN105679676A (zh) 薄膜晶体管及其制备方法、阵列基板
CN108346691A (zh) 锗纳米膜柔性透明型顶底双栅薄膜晶体管及其制备方法
CN106960797A (zh) 一种薄膜晶体管及其制备方法和阵列基板的制备方法
CN105304497B (zh) 一种薄膜晶体管、阵列基板及相关制作方法
US10326089B2 (en) Logic circuit based on thin film transistor
CN103594772A (zh) 一种图形化氧化物介质薄膜的方法
CN108538926A (zh) 柔性衬底上的InGaAs基MOS电容器及制作方法
KR101153824B1 (ko) 상부 및 하부 게이트 구조를 이용한 박막 트랜지스터 인버터 소자 및 그 제조방법
CN208570615U (zh) 锗纳米膜柔性金属型多沟道薄膜晶体管
CN100573959C (zh) 一种有源层图形化的有机薄膜晶体管的制备方法
CN103295906A (zh) 一种薄膜晶体管的制作方法和薄膜晶体管
CN102637746A (zh) 一种高介电栅介质场效应透明薄膜晶体管及其制备方法
CN110571277A (zh) 一种柔性氧化铟锌薄膜晶体管及其制备方法
CN102270743A (zh) 使用纸基板及蚕丝介电层的有机薄膜晶体管及其制作方法
US20180159056A1 (en) Logic circuit based on thin film transistor
CN111048523A (zh) 阵列基板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211019