TWI238595B - Bandpass amplifier - Google Patents

Bandpass amplifier Download PDF

Info

Publication number
TWI238595B
TWI238595B TW93118902A TW93118902A TWI238595B TW I238595 B TWI238595 B TW I238595B TW 93118902 A TW93118902 A TW 93118902A TW 93118902 A TW93118902 A TW 93118902A TW I238595 B TWI238595 B TW I238595B
Authority
TW
Taiwan
Prior art keywords
amplifier
gain
characteristic
capacitor
frequency
Prior art date
Application number
TW93118902A
Other languages
Chinese (zh)
Other versions
TW200601688A (en
Inventor
Hung-Cheng Chen
Shu-Fen Tang
Albert Chen
Sheng-Fuh Chang
Jia-Liang Chen
Original Assignee
Sheng-Fuh Chang
Integrated Sys Solution Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sheng-Fuh Chang, Integrated Sys Solution Corp filed Critical Sheng-Fuh Chang
Priority to TW93118902A priority Critical patent/TWI238595B/en
Application granted granted Critical
Publication of TWI238595B publication Critical patent/TWI238595B/en
Publication of TW200601688A publication Critical patent/TW200601688A/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

The present invention discloses a bandpass amplifier having gain and bandpass performance. The bandpass amplifier includes an input match unit for matching the gain of the amplifier and having a first filter response; a first bias unit electrically connected to the input match unit for driving the first terminal of the amplifier and having a first high pass filter response; a gain stage electrically connected to the first bias unit for providing the flat gain of the amplifier; a second bias unit electrically connected to the gain stage for driving the second terminal of the amplifier and having a second high pass filter response; and an output match unit electrically connected to the second bias unit for matching the gain of the amplifier and having a second filter response.

Description

1238595 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於一種單石微波積體電路(MjyQC),其特別有關於一種具 有增益及帶通功效的放大H,其可用於微波到毫米波的無線通訊系統< (wireless communication system)。 【先前技術】 在微波及毫米波頻帶之間,單石微波積體電路的高整合性係被大量需求 於廣泛之應用,例如無線寬通帶系統(wireless br〇adband systems)、頻帶、 40GHz到60GHz的行動通訊系統(mobile _municati〇n辦咖)、頻帶籲 59GHz到62GHz的高速毫米波區域網路以及頻帶24GHz到77GHz的汽車 感測器(automotive sensors)。在典型的無線電收發系統中,單石微波積體電 路晶片和晶片外濾波器(filters)係被需求於獲得最大功效及最低成本。但是 包含通帶選擇濾波器及鏡像消除濾波器(image_rejecti〇n他ers)之晶片外淚 波器通常是塊狀的,且相對高價格使得成本難以降低。一般習知之帶通放.*1238595 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a monolithic microwave integrated circuit (MjyQC), which is particularly related to an amplifier H with gain and bandpass effects, which can be used for microwave to millimeter Wireless communication system (wireless communication system). [Previous technology] Between the microwave and millimeter-wave bands, the high integration of monolithic microwave integrated circuits has been widely demanded for a wide range of applications, such as wireless broadband systems, wireless bands, 40GHz to 60GHz mobile communication system (mobile communication), high-speed millimeter-wave local area network with frequency band of 59GHz to 62GHz, and automotive sensors with frequency band of 24GHz to 77GHz. In a typical radio transceiver system, monolithic microwave integrated circuit chips and off-chip filters are required to obtain maximum efficiency and lowest cost. However, external chip tear wave filters that include passband selection filters and image removal filters (image_rejection filters) are usually block-shaped, and the relatively high price makes it difficult to reduce costs. Commonly known bandpass amplifier. *

大器的設計概念,如由Nguyen等人發表於IEEE J.Solid-State Circuits、第·· 27期、第123-127頁、1992年1月,”一矽基雙極單石射頻帶通放大器(a別 bipolar monolithic RF bandpass amplifier) ”,其揭示通帶響應係由以附加的電 感器和基射極電容所形成的多餘(resultant)並聯共振器所造成。該通帶響應鲁 顯示中心頻率為1.5GHZ、增益為8dB以及雜訊指數為6_4dB。一互補式金 屬氧化物半導體(CMOS)帶通放大器,如由Wu等人發表於ieEE JDesign concepts of amplifiers, such as published by Nguyen et al. In IEEE J. Solid-State Circuits, No. 27, pages 123-127, January 1992, "a silicon-based bipolar monolithic RF band-pass amplifier (A bipolar monolithic RF bandpass amplifier) ", which reveals that the passband response is caused by a redundant parallel resonator formed by an additional inductor and a base-emitter capacitor. The passband response shows that the center frequency is 1.5GHZ, the gain is 8dB, and the noise index is 6_4dB. A complementary metal-oxide-semiconductor (CMOS) band-pass amplifier, such as published by Wu et al. In ieEE J

Solid-State Circuits、第 32 期、第 159-168 頁,1997 年 2 月,,一 3 伏特 900MHz 之互補式金屬氧化物半導體帶通放大器之設計(The design 〇f a 3_v · 900-MHz CMOS bandpass amplifier)”,藉由正回饋且提高品質因素Q的技術· 可被得頻帶869-893 MHz之間。對於全球衛星定位系統之應用,一 16GHz 之互補式金屬氧化物半導體帶通放大器,如由Hernandez等人發表於2000 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems 5 1238595Solid-State Circuits, No. 32, pp. 159-168, February 1997, The design of a 3 volt 900MHz complementary metal oxide semiconductor bandpass amplifier (The design fafa 3_v · 900-MHz CMOS bandpass amplifier ) ", With positive feedback and improved quality factor Q technology, can be obtained between 869-893 MHz. For global satellite positioning system applications, a 16GHz complementary metal-oxide-semiconductor bandpass amplifier, such as by Hernandez Published in 2000 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems 5 1238595

Digest、第33-37頁、2000年4月,,-應用於全球衛星定位系統之3伏特且 1.6GHz之差動互補式金屬氧化物半導體帶通放大器電路(A 3 v,L6 GRz differential CMOS bandpass amplifier chain for a GPS receiver) “,係被設計 ‘ 出’其利用合併電感-電容(LC)共振器於沒極端以產生一通帶效應。雖然上 · 述結果成功的呈現出整合具帶通濾波器與具增益的放大器於單一晶片,但 是其頻帶的範圍被限制在數GHz的應用。在毫米波頻帶中,一種利用假型 高速電子遷移率電晶體(PHEMT)實現之帶通放大器,如由Sasaki等人發表· 於 2001 IEEE MTT-S Int. Microwave Symp· Dig.、第 1〇67_1918 頁,2001 年 6月使用緊密且平坦增益的假型高速電子遷移率電晶體之2〇GHz至30 · GHz之寬通帶單石微波積體電路功率放大器(2〇-3〇 GHz broadband MMIC籲 power amplifiers with compact flat gain PHEMT cells),,,其在通帶 20GHz 到 30 GHz之間的頻帶範圍中具有21dB的增益及22-dBm的匕犯壓縮點。一種 具有巴特沃茲(Butterworth)或柴比雪夫(Chebyshev)濾波器形式的4GHz低通 放大态係被揭示於由Rooney等人所發表之2002 IEEE MTT-S Int.Digest, pages 33-37, April 2000,-3 volts and 1.6 GHz differential complementary metal-oxide-semiconductor band-pass amplifier circuit (A 3 v, L6 GRz differential CMOS bandpass applied to global positioning system) amplifier chain for a GPS receiver) ", is designed to 'out' which uses a combined inductor-capacitor (LC) resonator at the extremes to produce a passband effect. Although the above results successfully present an integrated bandpass filter And gain amplifier on a single chip, but its frequency band is limited to several GHz applications. In the millimeter wave band, a band-pass amplifier implemented using a pseudo-type high-speed electron mobility transistor (PHEMT), such as by Sasaki Published by others · 2001 IEEE MTT-S Int. Microwave Symp · Dig., Pp. 1067_1918, June 2001 Pseudo-type high-speed electron mobility transistors using compact and flat gains from 20 GHz to 30 GHz The wide passband monolithic microwave integrated circuit power amplifier (20-30 GHz broadband MMIC calls for power amplifiers with compact flat gain PHEMT cells), which has a frequency between 20 GHz and 30 GHz in the pass band. With a gain of 21dB and a 22-dBm dagger compression point in the range. A 4GHz low-pass amplified state system in the form of a Butterworth or Chebyshev filter was revealed by Rooney et al. 2002 IEEE MTT-S Int.

Microwave Symp· Dig·、第 1915-1918 頁、2002 年 ό 月,,一應用於設計多頻, f之寬通V微波放大器之滤波器合成技術(A filter synthesis technique . applied to the design of multistage broadband microwave amplifiers) ”。 見於美國專利第4,984,292,頒給Millen,標題為“帶通放大器及使用帶通 放大器的接收器(5奶办⑽明er and receiver using ό咖· amp/诉er)”,其揭示一種主動帶通放大器。該主動帶通放大器其包含一單級 運算放大器,一在於該放大器的負回授路徑之橋式(bridged)T型網路單頻消 除慮波益,及一相移校正電容,其連接於橋式(bridgedyp型網路單頻消除滤 波器以影響一足夠相位移動量以維持一適當的回授,使得該放大器係能穩 定。關於在積體電路中之電路能力與相移量之該橋式(bridged)T型網路單頻、 消除遽波器產生一相移’以造成該放大器振|,當該網路被置於回饋路徑, 且校正電容影響一校正相位變動以提供放大器的穩定。如此的帶通放大器 提供一高增益且高品質因素,且該增益高於傳統信號的放大器。該傳統單 級放大器之增益典型近似於5且品質因素近似於25。在本發明中之帶通放 1238595 大器’能貫現增盈高於ίο且相當高的品質因素。這樣的一個放大器有利於 用在接收機及^號系統。在該接收器用於一信號系統中的一部分時,該接 收器的咼增盈能力在一個微小環境中特別有利。又如美國專利第 、 20030184378,由Segawa申請,標題為“具有通帶選擇性之混頻器及差動放· 大 ασ {Mixer and differential amplifier having bandpass frequency selectivity) ’’,其揭示一種使用簡單電路結構形成的混頻器及差動放大器,, 因此這樣的截止頻率能夠簡單的被改變。每一個混頻器及差動放大器各包 含-個N型金屬氧化物半導體電晶體,其中_L(>信號及_L〇+信號分別-由本地振盪器輸入至N型金屬氧化物半導體電晶體,且兩個平行共振電· 路,其中母一個皆作為輸出負載且其包含有一主動電感、電容以及電阻。 然而’在先前的技術中,沒有任何單晶片帶通放大器設計在微波到毫米波_ 的頻帶之間。繁於以上問題,有需要提供一種新型放大器或濾波器結構, 其可克服先前技術的缺點。 【發明内容】 本發明之目的在提供一種帶通放大器,其製作於單一晶片上且可用於微I· 波至毫米波頻帶。 本發明之另一目的在提供一種具有正增益之濾波電路,其製作於單一晶 片上且可用於微波至毫米波頻帶。 本發明之又一目的在提供一種不須使用被動帶通濾波器之射頻接收修 機’因此可以減少晶片尺寸及製造成本。 為達上述及其他目的’本發明提出一種二端(three terminals)放大器,具 有一贡通特性。該放大器包含一輸入匹配單元;一第一偏壓單元,電性地 連接至該輸入匹配單元;一增益級,電性地連接至該第一偏壓單元;一第 、 一偏壓單元,電性地連接至該增益級;及一輸出匹配單元,電性地連接至 該第二偏壓單元。 · 該輸入匹配單元係用於匹配該放大器之增益且具有一第一濾、波之特 性。該第一偏壓單元係用於驅動該放大器之第一端且具有一第一高通濾波 7 1238595 Π。該職域用於提供該放大器之平坦增益。該第二偏堡單元係用 ;驅該放大為之第_端且具有一第二高通遽波之特性;及 配⑽ 元係用於匹配該放大器之增益且具有波之特性。出匹配早 根據本發明之放大器之—特徵,其中該第—驗之特性 f Ϊ之躲,域第二波之特⑽為-第二低職波之娜,且該輸i 配早兀與該輸出匹配早凡係分別為包含電感器與電容器之—第— 網=與-第二τ型網路,其係用於匹配該放大器之增益,且 一濾波之特性與一第二濾波之特性。 ,弟 根據本發明之放大器之_特徵,其中該第—驗單元與該第 係分別為包含電感器與電容器之K型網路與_第4_路,= ^=動2放大器之第-端與第二端,且分別具有—第_高職波之特性 與一第一局通遽波之特性。 為達上述及其他目的,本發明另提出一種具有一增益之遽波器電路。該 濾、波器電路包含-第-τ型網路;―第―L型網路,地連接至該第一 T型網路;-第二L型網路;_第二τ型網路,連接至該第二[型網路; 及-三端放大裝置,具有-第_端電性地連接至該第_ l型網路,一第二 端電性地連接至該第二L型網路H三端連接至—接地面,其係用: 提供該帶通電路之平坦增益。該第_ τ型網路包含—具有第—低通渡波器 特性之電感器及電容器。該第—L型網路包含—具有第_高通舰器特性 之電感器及電容ϋ。該第二L型網路,包含-具有第二高通濾波器特性之 ,感器=電容ϋ。該第二Τ型網路包含—具有第二低通濾波器特性之電感 器及電容器。該三端放大裝置係用於提供該帶通電路之平坦增益。並且, 該第- Τ 鱗與該帛二τ型匹隨放Α裝置之增益且該第—l型網路驅 動該放大裝置之第一端且該第二L型網路驅動該放大裝置之第二端。 為達上述及其他目的,本發明又提出一種接收機,其包含一天線,一第 一啰通放大器,一具有本地震盪器之混頻器,一第二帶通放大器,及一選 擇接收特殊信號之檢波器。其中根據本發明之該第一及第二帶通放大器皆 1238595 包含-輸人匹配單it;-第-偏壓單元,電性地連接至該輸人匹配單元; -增益級,電性地連接至該第-偏壓單元;一第二偏壓單元,電性地連接 至該增益級;及一輸出匹配單元,電性地連接至該第二偏壓單元。 【實施方式】 雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明 者係為本發明可之紐實關,並請了解本文所揭*者係考量為本發明之 -範例,且並«圖肋將本發赚制於圖示及域所描述之特定實施例中。 為了了解本發明之精神,傳統技術之單級放大器係先介紹。請參考第 π圖’其顯不-傳統單級放大器之構造圖。該放大器3〇〇主要包含一輸入 匹配皁7G 310 ; -偏壓單元32〇 ; _增益級33()及一輸出匹配單元。該 輸述配單元310與該輸出匹配單元34〇係用於匹配該增益級33〇之增益, ^係以傳輸㈣實現,其傳輸狀設計參數獅史_圖(3祿—)所計 算。該增益級330及-輸出匹配單元34G。該偏壓單元32() 於鷄該放 大器300於適當偏壓條件,且在該偏壓單元32〇之一電容器322係用於直 ^^^(blocking) 324#^^^^&p.(ch〇cMng^ 0 根據本發明,-具有帶賴波!!之增益放Α||之整合係由於將該匹配網 路以-低通紐器處理且將該偏壓網路以_高通濾、波器來處理。現請參考 第1圖,其係顯不根據本發明第—實施例之單級帶通放大器之構造圖。該 放大器5其包含-輸人匹配單元1() ; _第_偏壓單元⑼,電性地連接至該 ^匹配單元;-增益級3G,雜鱗接㈣第_偏壓單元;—第二偏壓 單元4〇,電性地連接至該增益級;及—輸出匹配單ϋ電性地連接至該 第二偏壓單元。 名輸入匹配單元10係用於匹配與最大化(⑽心㈣該放大器之增益且 具有-第-低通舰之特性。該第一偏壓單元20係用於驅動該放大器之第 j(terminal)且具有-第_高通濾波之特性。該增益級3〇係用於提供該放 大印之平:t—增I 4第_偏壓單元4G _於驅動該放大器之第二端且具有 1238595 二第二高通紐之特性;及該輸组配單元5()係祕匹配與最大化該放大 器5之增益且具有一第二低通濾波之特性。 。需注意該使用低通T型結構之輸人匹配單元㈣選用以得到該帶通放 大器5之輸人增迦配與最尬且使之產生—第―低補波響應。接續的 該第-偏解元20是飢鶴騎職A|| 5至適#偏壓條件且不改動射 頻信號傳輸,並且其濾、波特性係具有—第一高通濾波響應。因此,串接該 輸入匹配單元1G之該第-低通舰響應及該第_偏壓單元%之該第一高 通響應2卩產生-第-帶通響應。同理的方式應用至該輸出匹配單元%及該 第二偏壓單元40中,且串接該輸出匹配單元5〇之該第二低通遽波響獻 該第二偏壓單元⑽之該第二高通響應即產生—第二帶通響應。需注意該第 一帶通響應之中心頻率及該第二帶通響之中心頻率須達到一致,當入 匹配單元10之該第一低通響應並不限於與該輸出匹配單元5〇之第二低通 響應相同,且麟-偏鮮元2G之該第-高通響應不限於與該第二偏壓單 元40之第二高通響應相同。所以,該帶通放大器5之帶通濾波轉應在通 帶邊緣具有複數個傳輸零點以造成高衰減率及寬截止帶。該增益級3〇之設 汁在於提供該通帶範圍上之平坦增益。在該增益級3〇中,該電路係適當地 最佳化以提供低雜訊、中等至高增益或高輸出功率。 因此該帶通放大器5可看作為一濾波器鍊,其係由多重濾波器單元,例 如該輸入匹配單元10,該第一偏壓單元20,該第二偏壓單元4〇及該輸出 匹配單元50,等疊接而成。根據New York,McGraw Hill,1980,作者為G L· Matthaei ’ 書名為 “Microwave Fiiters,Impedance-Maching Netwwks _Microwave Symp · Dig ·, pp. 1915-1918, June 2002, A filter synthesis technique. Applied to the design of multistage broadband microwave amplifiers). "See U.S. Patent No. 4,984,292, issued to Millen, entitled" Band Pass Amplifier and Receiver Using Band Pass Amplifier (5 Milk and Receiver Using amp / amp / er) ", which An active band-pass amplifier is disclosed. The active band-pass amplifier includes a single-stage operational amplifier, a bridged T-type network single-frequency elimination of ripple gain in a negative feedback path of the amplifier, and a phase shift. A correction capacitor is connected to a bridge-type (bridgedyp-type network single-frequency cancellation filter to affect a sufficient amount of phase shift to maintain a proper feedback, so that the amplifier system is stable. About the circuit capabilities and Phase shift amount of the bridged T-type network single frequency, eliminating the phase shifter to generate a phase shift 'to cause the amplifier to vibrate | When the network is placed in the feedback path, and corrected Capacitive influence a correction phase variation to provide stability of the amplifier. Such a bandpass amplifier provides a high gain and high quality factor, and the gain is higher than the traditional signal amplifier. The gain of the traditional single-stage amplifier is typically approximately 5 and the quality factor Approximately 25. The bandpass amplifier 1238595 in the present invention can consistently achieve a quality factor that is higher than ο and a fairly high quality factor. Such an amplifier is advantageous for use in a receiver and a ^ number system. It is used in the receiver. In a part of a signal system, the receiver's gain enhancement capability is particularly advantageous in a small environment. Another example is US Patent No. 20030184378, filed by Segawa, entitled "Mixer with Passband Selectivity and Differential amplifier · large ασ {Mixer and differential amplifier having bandpass frequency selectivity) '' discloses a mixer and a differential amplifier formed using a simple circuit structure, so such a cut-off frequency can be easily changed. Each mixer and differential amplifier each contain an N-type metal-oxide-semiconductor transistor, of which the _L (> signal and _L〇 + signal are input from the local oscillator to the N-type metal-oxide semiconductor transistor, respectively. Crystal and two parallel resonant circuits, one of which is an output load and it contains an active inductor, capacitor and resistor. However, in the prior art, no single-chip bandpass amplifier was designed in the microwave to millimeter wave Between the frequency bands of _. Complicated by the above problems, there is a need to provide a new amplifier or filter structure that can overcome the shortcomings of the prior art. [Summary of the invention] The object of the present invention is to provide a bandpass amplifier, which is fabricated on a single chip It can be used in the micro I · wave to millimeter wave band. Another object of the present invention is to provide a filter circuit with positive gain, which is fabricated on a single chip and can be used in the microwave to millimeter wave band. Another object of the present invention In providing a radio frequency receiving repair machine that does not require the use of a passive band-pass filter, the chip size and manufacturing cost can be reduced. To achieve the above and its Purpose 'The present invention proposes a three terminals amplifier with a Gongtong characteristic. The amplifier includes an input matching unit; a first biasing unit electrically connected to the input matching unit; a gain stage, a Is connected to the first bias unit; a first and a bias unit are electrically connected to the gain stage; and an output matching unit is electrically connected to the second bias unit. The unit is used to match the gain of the amplifier and has a first filter and wave characteristics. The first bias unit is used to drive the first end of the amplifier and has a first high-pass filter 7 1238595 Π. This field is used for To provide a flat gain of the amplifier. The second partial fort unit is used; the second end of the amplifier is driven and has a characteristic of a second high-pass chirp; and a matching unit is used to match the gain of the amplifier and has The characteristics of the wave. The matching characteristics of the amplifier according to the present invention are as follows, wherein the characteristic of the first test is f 躲 hide, the characteristic of the second wave of the domain is-the second low-ranking wave, and the input i matches Early Wu matches this output The early ones are-first-network = and-second tau networks including inductors and capacitors, which are used to match the gain of the amplifier, and have a filtering characteristic and a second filtering characteristic. According to the characteristics of the amplifier of the present invention, the first test unit and the first system are a K-type network including an inductor and a capacitor, and the fourth circuit, respectively. The two terminals have the characteristics of the first high-vocational wave and the characteristics of the first round pass. In order to achieve the above and other objectives, the present invention further provides a wave filter circuit with a gain. The filter, wave The device circuit includes a -t-type network;-a -L-type network, the ground is connected to the first T-type network;-a second L-type network; a second t-type network, connected to the first A two-type network; and a three-terminal amplifying device having a first terminal electrically connected to the first network and a second terminal electrically connected to the second L-type network H three terminals Connected to the-ground plane, which is used to provide the flat gain of the bandpass circuit. The _ τ type network includes-an inductor and a capacitor with the characteristics of a-low pass wave. The -L network includes-an inductor and a capacitor 具有 with the characteristics of a _high pass warship. The second L-shaped network includes-with a second high-pass filter characteristic, and inductor = capacitance. The second T-type network includes an inductor and a capacitor having a second low-pass filter characteristic. The three-terminal amplification device is used to provide a flat gain of the band-pass circuit. And, the gain of the -T scale and the second τ-type random A device and the -1 type network drives the first end of the amplification device and the second L-type network drives the first Both ends. To achieve the above and other objectives, the present invention further provides a receiver, which includes an antenna, a first pass-through amplifier, a mixer having the oscillator, a second band-pass amplifier, and a selective reception special signal. Detector. Wherein, the first and second band-pass amplifiers according to the present invention each include 1238595-an input matching unit it;-a-bias unit, which is electrically connected to the input matching unit;-a gain stage, which is electrically connected To the first bias unit; a second bias unit electrically connected to the gain stage; and an output matching unit electrically connected to the second bias unit. [Embodiment] Although the present invention may be embodied in different forms of embodiments, those shown in the drawings and those described below are the key points of the present invention, and please understand that those disclosed herein are based on consideration Invention-Exemplary, and «Figure ribs the present invention in the specific embodiment described in the illustration and the field. In order to understand the spirit of the present invention, a conventional single-stage amplifier is introduced first. Please refer to Figure π for its display-the structure of a traditional single-stage amplifier. The amplifier 300 mainly includes an input matching soap 7G 310;-a bias unit 32; a gain stage 33 () and an output matching unit. The input matching unit 310 and the output matching unit 34 are used to match the gain of the gain stage 33, and are realized by transmission ,, whose transmission-like design parameters are calculated by Shishi_Figure (3Lu—). The gain stage 330 and the -output matching unit 34G. The biasing unit 32 () is used in the amplifier 300 under appropriate biasing conditions, and a capacitor 322 in the biasing unit 32 is used to directly block 324 # ^^^^ & p. (ch〇cMng ^ 0 According to the present invention, the integration of the gain amplifier A || with Laibo! is because the matching network is processed with a low pass button and the bias network is processed with a high pass filter. And wave device for processing. Please refer to FIG. 1 for a structure diagram of a single-stage band-pass amplifier according to the first embodiment of the present invention. The amplifier 5 includes an input-matching unit 1 (); _ 第A bias unit, electrically connected to the ^ matching unit;-a gain stage of 3G, a miscellaneous scale is connected to the first bias unit;-a second bias unit 40, electrically connected to the gain stage; and —The output matching unit is electrically connected to the second bias unit. The input matching unit 10 is used for matching and maximizing the power of the amplifier. A biasing unit 20 is used to drive the jth (terminal) of the amplifier and has the characteristics of the -th_high-pass filtering. The gain stage 30 is used to provide the amplification level: t- I 4th _ bias unit 4G _ is used to drive the second end of the amplifier and has the characteristics of 1238595 second and second high pass button; and the output matching unit 5 () is to match and maximize the gain of the amplifier 5 and It has the characteristics of a second low-pass filter.. It should be noted that the input matching unit using a low-pass T-type structure is selected to obtain the input gain of the bandpass amplifier 5 and the most awkward and make it-the first- Low supplementary wave response. The subsequent -partial solution element 20 is Hungry Crane A || 5 to ## bias condition without changing the RF signal transmission, and its filtering and wave characteristics are-the first high-pass filtering Response. Therefore, the first low-pass carrier response of the input matching unit 1G and the first high-pass response 2% of the first bias unit% generate a second-band-pass response. The same method is applied to the The output matching unit% and the second bias unit 40, and the second low-pass wave connected to the output matching unit 50 in response to the second bias unit generates the second high-pass response—the first Two-band pass response. Note the center frequency of the first band-pass response and the center frequency of the second band-pass response. The rate must be consistent. The first low-pass response of the input matching unit 10 is not limited to the same as the second low-pass response of the output matching unit 50, and the first-high-pass response of Lin-Partial Fresh 2G is not limited to It is the same as the second high-pass response of the second biasing unit 40. Therefore, the band-pass filter of the band-pass amplifier 5 should have a plurality of transmission zeros at the edge of the pass band to cause a high attenuation rate and a wide cut-off band. The gain stage The design of 30 is to provide a flat gain over the passband range. In the gain stage 30, the circuit is appropriately optimized to provide low noise, medium to high gain, or high output power. Therefore, the bandpass The amplifier 5 can be regarded as a filter chain, which is composed of multiple filter units, such as the input matching unit 10, the first biasing unit 20, the second biasing unit 40, and the output matching unit 50. Connected. According to New York, McGraw Hill, 1980, the author is G. Matthaei ’s title is “Microwave Fiiters, Impedance-Maching Netwwks _

Coupling structures”所提到之鏡像參數濾波器法可用於決定該輸入匹配單 元1〇,該第一偏壓單元20,該第二偏壓單元4〇及該輸出匹配單元5〇之組 成疋件,此係由於其具有簡化一高階濾波器為數個初級濾波晶胞的優點, 以至於其特性可由所有晶胞的矩陣乘積得到。 現請參考第2圖,其顯示根據本發明第一實施例中,第1圖之該輸入匹配 單元10之等效電路。該輸入匹配單元1〇係為一包含電感器,£^2及電容器 1238595 /…值仔“的疋,該弟—τ型網路之輸入及輸 如仏、,其表示錄人匹配單元1Q之左右部分之·阻抗% === ,通滅波響紅截止角頻率及吻係為該第一低賴波響應之傳輸零點之 角頻率’其由該第一τ都綱敗夕光窗絲a 士 …' 表不成· ω〇Τ = 1 ^{Lx+L2)C2 (1) ωζΤ = 1 V^2^2 ⑺ 在第丁型網路中,為該電感器Li、L2之電感值與該電容器Cl之電容值 可由該第-低職、波雜之截止鮮及傳輸零點之辭,與—第―鏡像阻 抗所決定。第-T型網路之該第一鏡像阻抗匹配了該第一丁型網路之輸入及 輸出阻抗以達到該帶通放大器5之增益。 該傳輸零點之存在係特別有用於加強該帶通放大器之止帶衰減率。因此 該傳輸零關率~可選擇#近該截止解•减生大鮮的轉變或是選 (3)The image parameter filter method mentioned in "Coupling structures" can be used to determine the components of the input matching unit 10, the first bias unit 20, the second bias unit 40, and the output matching unit 50. This is because it has the advantage of simplifying a high-order filter into several primary filtering cells, so that its characteristics can be obtained by the matrix product of all the cells. Please refer to FIG. 2, which shows a first embodiment of the present invention. The equivalent circuit of the input matching unit 10 in Fig. 1. The input matching unit 10 is an input circuit including an inductor, £ ^ 2 and a capacitor 1238595 / ... value, the input of the brother-τ network. And input such as 仏, which indicates that the impedance% of the left and right parts of the recording matching unit 1Q ===, the on-off frequency of the red ringing cutoff frequency and the kiss are the angular frequency of the transmission zero point of the first low Raibo response ' It is caused by the first τ Dugang ’s light window wire a ... ”ω〇Τ = 1 ^ {Lx + L2) C2 (1) ωζΤ = 1 V ^ 2 ^ 2 ⑺ in the D-type network Where the inductance values of the inductors Li and L2 and the capacitance value of the capacitor Cl can be determined by the- Miscellaneous cut-offs and transmission zeros are determined by the-mirror impedance. The first image impedance of the -T network matches the input and output impedance of the first T network to achieve the gain of the bandpass amplifier 5. The existence of the transmission zero is particularly useful for enhancing the stop-band attenuation rate of the band-pass amplifier. Therefore, the transmission has a zero pass rate ~ you can choose #near the cut-off solution.

擇干擾存在之辭。鋪止頻和滅傳輸零點鮮啦可表示成—因子卿: mT 為了匹配該放大器5之增益去同時滿足輸入及輸出端條件,Ζ01必須等 於該輸入匹配單元10之輸入阻抗4且z。2亦需等於該輸入匹配單元1〇之 輸出阻抗zout。因此,所謂的第一鏡像阻抗可以該式表示之: Z, ⑷ 其中$ σΓChoose the words of interference. The cut-off frequency and the zero-off transmission zero point can be expressed as: factor: mT In order to match the gain of the amplifier 5 to meet the input and output conditions at the same time, Z01 must be equal to the input impedance 4 and z of the input matching unit 10. 2 also needs to be equal to the output impedance zout of the input matching unit 10. Therefore, the so-called first mirror impedance can be expressed by this formula: Z, ⑷ where $ σΓ

iTiT

係為直流之鏡像阻抗。由方程式(1)到(4),該電路單元 可由ωα ωζΓ及及#計算之,其表示為: 11 1238595It is the DC image impedance. From equations (1) to (4), this circuit unit can be calculated by ωα ωζΓ and #, which is expressed as: 11 1238595

L 1 =mT ω〇τ (5) l2 一 1 - mT RnT mT ωοτ ⑹ C2 = 1 =^r—— ⑺ ① cT^oT ι參照第3圖,根據本發明之第—實_卿為f i圖巾之該第一偏壓 〇之等效電路。該第-偏壓單兀2()係為-包含該電❹L3、電容器 =C4之第-L型網路,其係驅動該放大器之第—端且具有該第一高 〜波之特性。需注意的是’該第—L型網路之輸入端之阻抗π。〗及輸出 4之阻抗Z,Q2 ’表示該第—偏壓單元2G之左右部分之等效阻抗。在該第一 型網路之該電« 電紐及該電容器Q之電容值,係由在該 L型網路之該第一高通濾波特性之截止頻率叫及傳輪零點之頻率咐,與 一第二鏡像阻抗所共同決定。且^^可以表示成: ω^ίΐ¥ΐ} ⑻ ωL 1 = mT ω〇τ (5) l2-1-mT RnT mT ωοτ ⑹ C2 = 1 = ^ r—— ⑺ ① cT ^ oT ι Referring to FIG. 3, according to the first embodiment of the present invention, the real graph is fi An equivalent circuit of the first bias voltage 0. The -biasing unit 2 () is a -L network including the electric voltage L3 and the capacitor = C4, which drives the first terminal of the amplifier and has the first high-wave characteristics. It should be noted that the impedance π of the input terminal of the first L-type network. And the impedance Z, Q2 'of the output 4 represents the equivalent impedance of the left and right portions of the first bias unit 2G. The capacitance values of the electric circuit and the capacitor Q in the first type network are called by the cut-off frequency of the first high-pass filtering characteristic of the L-type network and the frequency of the transmission zero point, and a The second image impedance is jointly determined. And ^^ can be expressed as: ω ^ ίΐ ¥ ΐ} ⑻ ω

zL (9) 該第-L型網路之該第二鏡像阻抗匹配至該第_L型網路之輸入及輸出 P且抗以驅動該放大器之第—端UO別域第—高通濾波響應之截 止角頻率及傳輸零點角頻率,由該第一L型網路之分支上的串聯共振所產 生。該傳輸零點畴在係制有麟加強該帶通濾波&之止帶衰減率。該 截止頻率〇^L及傳輸零點頻率可表示成一因子饥^ : mL=^T-〇)2cL/co2zL (1〇) 為了匹配該放大态5之增盈,Z’0l必需等於至該第一偏壓單元2〇之輸 入阻抗z,out a z,02必需等於至該第-偏壓單元20之輸出阻抗z,⑽。因此別 所謂的第二鏡像阻抗心可以表示為: 12 1238595 7j in out = ^iL - 及' 1 ο V ω:τ 其中= 係為直流之鏡像阻抗。由方程式(8)到(li) ’該電路單元可由 ®cL,C〇zL及尺^計算之,其表示為: Q : 1 1 mL COcL^oL (12) Q: mL 1 _ l - m2L 〇)cLRoi (13) - 1 R〇l :----- mL co〇l (14) • 該增益級30係被設計於能夠在所希望的通帶範圍内提供平坦的增益。該 增益級的電晶體形式可以被下列種類實現:雙載子電晶體(BJT),異質接面 雙載子電晶體(HBT) ’局電子移動率電晶體(HEMT),假型高電子移動率電 晶體(PHEMT),互補式金屬氧化半導場效電晶體(CM0S)以及側面擴散式金 ’ 屬氧化半導場效電晶體(LDMOS)。其中,假型高電子移動率電晶體係適用·-於微波至釐米波範圍的該增益級30。用於該帶通放大器5之半導體基板材料 包含有:矽、絕緣層上矽(soi)、矽鍺化合物(SiGe)、砷化鎵(GaAs)、磷化銦 (InP)與矽鍺-碳化合物。該增益級30較佳係以製作在Ai4n_GaAs化合物基板着 之電阻性並聯回授假型高電子移動率電晶體來設計。該增益級3〇可以是一 級或是多級電晶體組成,主要是由所需要的增益值來決定。在本較佳實施 例中,由該第-偏壓單元2〇驅動的該帶通放大器5的第一端係為閘極且由該 第二偏壓單元40驅_該帶通放大n5的第三端係為錄,_以上並未限* 定而是由放大器的設計需求所決定。 . 現請參考第-圖,該帶通放大器5具有一電阻性並聯回授網路,其中該 電容32係用於汲極至閘級的直颇隔,且其與電㈣之組合提供示當的回 授相位。該帶通放放大器5實際上會包含多個回授路徑。其中之一係經由電 13 1238595zL (9) The second mirror impedance of the -L network matches the input and output P of the _L network and is resistant to drive the -end UO domain of the amplifier -the high-pass filter response The cut-off angular frequency and the transmission zero angular frequency are generated by series resonance on a branch of the first L-shaped network. The transmission zero domain is strengthened by the stop band attenuation rate of the band-pass filter. The cut-off frequency 〇L and the transmission zero frequency can be expressed as a factor ^: mL = ^ T-〇) 2cL / co2zL (1〇) In order to match the gain of the amplified state 5, Z'0l must be equal to the first The input impedance z, out az, 02 of the bias unit 20 must be equal to the output impedance z, 至 of the -bias unit 20. Therefore, the so-called second mirror impedance center can be expressed as: 12 1238595 7j in out = ^ iL-and '1 ο V ω: τ where = is the mirror impedance of DC. From the equations (8) to (li) 'The circuit unit can be calculated by ®cL, CozL and ruler, and it is expressed as: Q: 1 1 mL COcL ^ oL (12) Q: mL 1 _ l-m2L 〇 ) cLRoi (13)-1 R〇l: ----- mL co〇l (14) • This gain stage 30 is designed to provide a flat gain in the desired passband range. The gain transistor type can be realized by the following types: BJT, Heterojunction Bipolar Transistor (HBT) 'Local Electron Mobility Transistor (HEMT), pseudo high electron mobility Transistors (PHEMT), complementary metal oxide semiconductor field-effect transistors (CM0S), and side diffused metal oxide semiconductor field-effect transistors (LDMOS). Among them, the pseudo-type high electron mobility transistor system is applicable to the gain stage 30 in the microwave to centimeter wave range. The semiconductor substrate materials used for the bandpass amplifier 5 include: silicon, silicon on insulation (soi), silicon germanium compound (SiGe), gallium arsenide (GaAs), indium phosphide (InP), and silicon germanium-carbon compounds . The gain stage 30 is preferably designed by making a resistive parallel feedback pseudo high electron mobility transistor on an Ai4n_GaAs compound substrate. The gain stage 30 may be composed of one or more transistors, and is mainly determined by the required gain value. In this preferred embodiment, the first end of the band-pass amplifier 5 driven by the first bias unit 20 is a gate and the second bias unit 40 drives the first end of the band-pass amplifier n5. The three-terminal system is recorded. The above is not limited to * but is determined by the design requirements of the amplifier. Please refer to Figure-. The band-pass amplifier 5 has a resistive parallel feedback network, where the capacitor 32 is used for the direct separation from the drain to the gate, and the combination of the capacitor 32 and the electric resistor provides an indication. Feedback phase. The band-pass amplifier 5 will actually include multiple feedback paths. One of them is via electricity 13 1238595

容32、電感34與電阻36的外部回授路徑 回授路控:。該異右炙External feedback path of capacitor 32, inductor 34 and resistor 36. The different right

回义位該具有多回授路控的帶通放大器$,其源極與負載的阻抗分別為 心s與^,且其散射參數可由小訊號模型與心參數%^所推 ^02L [(1 + , )(1 + ^22 ) - S]2S2{] (l^Sn)(^S22) + Sl2S2l (11) 該輸出匹配單元50之等效電路係近似於第2圖巾該輸人匹配單元1〇之等 放電路.亥輸出匹配單元5〇係為一包含電感器及電容器之一第二丁型網路, 其可達到随與最大傾放A||5之增益且具有該第二低誠波響應。在第 T型網路巾’為該賴||之電感值與該電容器之電容值可由該第二低通渡 波特性之截止辭及傳輸零點之解,與1三鏡雜抗所決定。第二丁型 j路之該第三鏡像阻抗匹配了該第二丁型網路之輸入及輸出阻抗以達到該 贡通放大器5之增益。值得注意的是,該輸入匹配單元1〇與該輸出匹配單元 50亦可以設計成具有帶通濾波的響應,雖然會增加更多的組成元件,如更 夕的電谷器與電感器等。而為了達到帶通濾波的響應 ,該輸入匹配單元10 與該輸出匹配單元_組成元件亦域容器與電感器,且該賴器之電感 值與該電容m容值可㈣想要之帶通航特性讀止解及傳輸零點 之頻率,與對應的鏡像阻抗所共同決定。 該第二偏壓單元40之等效電路係近似於第2圖中該第一偏壓單元2〇之等 政電路。該第一偏壓單元4〇係為一包含電感器及電容器之一第二l型網路, 其可驅動該放大器5之第二端且具有該第二高通濾波響應。在第二[型網路 中’為該電感器之電感值與該電容器之電容值可由該第二高通濾波特性之 截止頻率及傳輸零點之頻率,與一第四鏡像阻抗所決定。第二L型網路之該 第四鏡像阻抗匹配了該第二T型網路之輸入及輸出阻抗以驅動該帶通放大 器5之第二端。 先請參考第4圖,其顯示根據本發明第二實施例之兩級帶通放大器之構 14 1238595 造圖。該帶通放大器105包含一輸入匹配單元11〇 ; 一第一偏壓單元丨加,電 性地連接至該輸入匹配單元110 ; 一增益級13〇,電性地連接至該第一偏壓 單儿120 ; 一第二偏壓單元140,電性地連接至該增益級130 ;及一輸出匹配 單元150:電性地連接至該第二偏鮮元14〇。在第獨中的該輸入匹配單元 110、該第一偏壓單元120、該第二偏壓單元14〇與該輸出匹配單元15〇係近 似於在第1®巾的該輸人匹配單元1G、該第—偏壓單元Μ、該第二偏壓單元 4〇與該輸出匹配單元5G。該第—實施例與第二實施例的主要差別係該增益 級13〇具有兩增益級132與I%喊得高通帶增益。該帶通放大㈣5可以用 傳輸矩陣的乘積來表示: [Thndpass amp = (12) 其中咴,心—卿,I”,[Γ]㈣,吨,& 別為該輸入匹配單元110、該第一偏壓單元12〇、該增益級ΐ32、ΐ34、該第 二偏壓單元140與該輸出匹配單元15〇的傳輸矩陣。 在本發明的-具體實施例中,根據本發明的一個兩級的帶通放大器係設 計在2〇到4〇GHz範圍有一個浦的通帶,並具有抑制在7及57GHz的 非理心的干擾。該π通放大器准許在該設計的通帶邊緣頻率範圍為Μ到 4〇GHZ。其低截止頻率係選擇在18GHz且高截止頻率選在44服。其傳輸 零點的,率正確地選擇落在丨8驰錢57服。鱗輸人匹配單元以及輸 出匹配單元之〇·64及mi=G 92係被設定。在巾^解㈣qgHz,所有 的輸匹配單元、輸出匹配單元以及偏壓單元係皆5⑽匹配,因此根據方 程式(4)及(11)得到凡成3沿以及^62 5Ω。接著根據方程式⑺到⑺, 具有m尸〇.64的輸入匹配單元u〇 _總元件值可以估算上产〇16沾、 Α 〇·23 nH及q— 0.033 pf。同樣地根據方程式(13)到(15),第一偏壓單元 ^元件值為有C3-0.153 pF、C4= 0.86 pF以及i4=() 6G nH。串聯兩個阻 抗回授的假型高電子移鱗電晶雜ΗΕΜΤ)作為增益級能提供足夠的增 益。 在本無明的-具體實施例中,根據本發明的一個兩級的帶通放大器係被 15 1238595 5又汁與製造。現在請參照圖5,其顯示使用理想集總式元件之雙級帶通放大 器之功率增益(Sn)與插入損特性(Su與S22),其中角頻率等於2 7Γ乘上頻率, 亦即ω==2ττ/。禁止帶的傳輸零點如要求地出現在7以及57GHz。其通帶增 益在20到4〇GHz為l5.4dB並具有土 1.4dB的增益漣波。為了實現單石微波 積體電路,該集總式電感通常以具有高阻抗短路微帶線來實現,其電子長 度θ== 2 tan·1 (ωΖΖ/〇,以及該集總式電容通常以放射狀的開路樁來取代,在 這Θ係微帶線的電子長度,Zh係高阻抗微帶線之阻抗值。然而,集總式電 感亦能以其他集總形式,例如螺旋電感來實現,以及集總式電容亦能以其 他集總形式,例如指插式電容或是金屬-絕緣_金屬的絕緣電容器(MM)來實 現。此外,佈局寄生效應,如微帶線τ型接面、轉折以及穿孔連接亦被考 慮。整體電路係被最佳化來實現所設計的通帶增益及禁止帶的衰減。藉此, 根據發明之兩級帶通放大器係被製造。製造所用之半導體基板係為 AlGaAs/InGaAs/GaAs化合物。假型高電子移動率電晶體元件(ρΗΕΜΤ)係用 來作增证級,其中在2V;及極偏壓時,該元件大致上具有超過1〇〇GHz之單 位電流增益_止辭⑹,與超過25GGHz的最大振麵特_)。實作後 之該帶通放大器之晶片尺寸為3xl mm2。 現在請參照第6圖、第7圖與第8圖,其分別顯示根據本發明第二實施 例之雙級帶通放大器之功率增益(p〇wer gain補插入損 、insertion loss)、輸 入返回損(input return l〇ss)與輸出返回損(〇utpm retum i〇ss)之模擬與實測 圖。模擬結果顯示從20到40 GHz具有良好的帶通特性,其通帶增益為 13.9土0.7dB且其返簡失大於祕。模擬賴止帶衰減量在驗以下係 4 dBc且及k 57到75 GHz係64-dBc。實際量測結果顯示從2〇到4〇 〇Ηζ 該通帶增益係14細dB,而織係略小於模擬值…個低頻侧邊的 2輸零點⑺楚地洛在7GHz ’其與難值相符。高侧邊的兩個傳輸零點之 夏測值分別在62以及75 GHz,與模擬值略不_致。儘管不_致,從2到 9GHz以及從57到75GHz,該等傳輸零點有效地給予禁止帶5邊的衰 減,此與模擬的酬非常—致。實__簡失大社無擬值有相 16 1238595 觸塾的dB。這應是操作晶圓上制時,探針尖端接觸及接 見在請參照第9圖,其顯示根據本發明第二實施例之雙 7雜訊指數(nGise %ure)之模擬與實麵。該實際量測的雜訊 " 至,H〇GHz係在2·7到3.她的範圍内,稍高於模擬值。因此可以 ^庙根據本發明之帶通放大討、具有低_減,極適合於低雜訊放大 斋的應用。 在過去,射頻被動濾波器係由電容器、電感器、電阻器之組合來構成, 而已傳輸線的方式來實現。射紐誠波器只有造成損失且其增益少· dB。為了得到正的增益,射頻被域波器_般皆會配合_微波主動積體電 路來得到增益響應與最減本。軸本發明之帶通放大 電路元件,須注意的是本發明之第—實施例亦可當成一個做:單== 有正增益響應之主動濾波器。 現請參考第帽,其係不須被動帶通紐器之—接收機。該接收機2〇〇 包含-天線21G、-第-帶通放大n,、—具有本地震盘器鳩之混頻器 230 第一 f通放大器250與用於決定一特定信號是否接收之檢測裝置260 所接收,,其中該第一帶通放大器220與該第二帶通放大器25〇係根據本發 明之實施例所述之帶通放大器。信號由天線210所接收並通過該第一帶通放 大器220。經過濾波且放大之信號進入該混頻器23〇,且由該本地震盛器24〇 所產生之一本地震盪信號所混頻而得上通帶信號與下通帶信號。該上通帶 信號接著被該第二帶通放大器250所濾波及放大。該第二帶通放大器25〇之 輸出被檢測裝置260所接收並檢測已進入後續的信號處理元件。 根據本發明之較佳實施例,該帶通放大器之優點係其可製作於單一晶片 上且可用於彳政波至宅米波頻帶,因此本發明能有效降低晶片尺寸與製作成 本0 該帶通放大器之另一優點係該帶通放大器之濾波響應可以被精確地預 測,此係由於電感器之電感值與電容器之電容值係以封閉形式(cl〇sedf〇rm) 表示。 17 1238595 该帶通放大器之另一優點係該帶通放大器之其傳輸零點的頻率可以落 在所想要的位置以加強該帶通放大器之止帶衰減。 該τ通放大ϋ之另-優點係提供—種具有正增益之濾波電路,其製作於單 一晶片上且可用於微波至毫米波頻帶。 雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何 熟習此技藝者,在不脫離本發明之精神和範圍内,當可作各種之更動與 修改。如上述的解釋,關於每一層之金屬片之相對位置與距離、耦合電 谷之耦合量控制以及傳輸零點之位置控制等等都可以作各型式的修正 與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之 申請專利範圍所界定者為準。 【圖式簡單說明】 為了讓本發明之上述和其他目的、特徵、和優點能更明顯,下文特舉本 發明較佳實施例,並配合所附圖示,作詳細說明如下。 第1圖顯示根據本發明第一實施例之單級帶通放大器之構造圖; 第2醜示根據本發明第一實施例之第„圖中,該輸入匹配單元之等效 電路圖; 第3圖顯示根據本發明第一實施例之第一圖中,該第一偏壓單元之等效 電路圖; 第4圖顯示根據本發明第二實施例之雙級帶通放大器之構造圖; 第5圖顯π使用理想集總式元件之雙級帶通放大器之功率增益與插 損特性; 第6圖顯示根據本發明第二實施例之雙級帶通放大器之功率增益之 擬與實測圖; ' 第7圖顯不根據本發明第二實施例之雙級帶通放大器之輸入返回損 (input return loss)之模擬與實測圖; 、 第8圖顯示根據本發明第二實施例之雙級帶通放大器之輸出返回損之 18 1238595 模擬與實測圖; 第9圖顯示根據本發明第二實施例之雙級帶通放大器之雜訊指數之模 擬與實測圖; 第10圖係不須被動帶通濾波器之一接收機;以及 第11圖顯示一傳統單級放大器之構造圖。 圖號說明: 5放大器 10輸入匹配單元 20第一偏壓單元 30增益級 32電容 34電感 36電阻 40第二偏壓單元 50輸出匹配單元 105放大器 110輸入匹配單元 120第一偏壓單元 130增益級 132增益級 134增益級 140第二偏壓單元 150輸出匹配單元 200接收機 210天線 220第一帶通放大器 230混頻器 240本地震盪器 250第二帶通放大器 260檢測裝置 300放大器 310輸入匹配單元 320偏壓單元 322電容器 324電感器 330增益級 340輸出匹配單元 19In the echo position, the band-pass amplifier $ with multi-feedback path control has source and load impedances of s and ^, respectively, and its scattering parameters can be inferred from the small signal model and the heart parameter% ^ ^ 02L [(1 +,) (1 + ^ 22)-S] 2S2 {] (l ^ Sn) (^ S22) + Sl2S2l (11) The equivalent circuit of the output matching unit 50 is similar to the second figure. The input matching unit The equalizing circuit of 10. The output matching unit 50 is a second D-type network including an inductor and a capacitor, which can achieve a gain corresponding to the maximum tilt A || 5 and has the second lowest Chengbo responded. In the T-type network towel, the inductance value of the capacitor and the capacitance value of the capacitor can be determined by the cutoff of the second low-pass wave characteristic and the solution of the transmission zero point, and the one-three-mirror impedance. The third mirror impedance of the second T-type j path matches the input and output impedances of the second T-type network to achieve the gain of the Gongtong amplifier 5. It is worth noting that the input matching unit 10 and the output matching unit 50 can also be designed to have a band-pass filtering response, although more constituent elements will be added, such as more recent valleyrs and inductors. In order to achieve the response of the band-pass filtering, the input matching unit 10 and the output matching unit _ constituent elements are also a container and an inductor, and the inductance value of the relay and the capacitance m capacitance can meet the desired band navigation characteristics. The frequency of the read stop solution and the transmission zero point are determined together with the corresponding image impedance. The equivalent circuit of the second bias unit 40 is similar to the equivalent circuit of the first bias unit 20 in the second figure. The first bias unit 40 is a second L-type network including an inductor and a capacitor, which can drive the second end of the amplifier 5 and has the second high-pass filtering response. In the second [type network ', the inductance value of the inductor and the capacitance value of the capacitor can be determined by the cut-off frequency of the second high-pass filter characteristic, the frequency of the transmission zero point, and a fourth mirror impedance. The fourth mirror impedance of the second L-type network matches the input and output impedance of the second T-type network to drive the second end of the band-pass amplifier 5. Please refer to FIG. 4 first, which shows the structure of a two-stage band-pass amplifier according to the second embodiment of the present invention. The band-pass amplifier 105 includes an input matching unit 11; a first bias unit 丨 plus, electrically connected to the input matching unit 110; a gain stage 13, electrically connected to the first bias unit 120; a second biasing unit 140 electrically connected to the gain stage 130; and an output matching unit 150: electrically connected to the second biasing element 14o. The input matching unit 110, the first biasing unit 120, the second biasing unit 140, and the output matching unit 15 in the first solo are similar to the input matching unit 1G, The first biasing unit M, the second biasing unit 40 and the output matching unit 5G. The main difference between the first embodiment and the second embodiment is that the gain stage 13 has two gain stages 132 and 1%, which are high-passband gains. The bandpass amplification ㈣5 can be expressed by the product of the transmission matrix: [Thndpass amp = (12) where 咴, heart-qing, I ”, [Γ] ㈣, t, & do n’t be the input matching unit 110, the first A biasing unit 120, the gain stages ΐ32, ΐ34, the second biasing unit 140 and the output matching unit 15o transmission matrix. In a specific embodiment of the present invention, a two-stage The band-pass amplifier is designed to have a Pu pass band in the range of 20 to 40 GHz, and to suppress unintentional interference at 7 and 57 GHz. The π-pass amplifier permits a frequency range of M to 4〇GHZ. The low cut-off frequency is selected at 18GHz and the high cut-off frequency is selected at 44. The transmission zero point rate is correctly selected to fall in the 8th and 57th. The scale loses the matching unit and the output matching unit. · 64 and mi = G 92 are set. At qgHz, all input matching units, output matching units, and bias units are matched by 5⑽. Therefore, according to equations (4) and (11), Fan Cheng has 3 edges. And ^ 62 5Ω. Then according to the equations ⑺ to ⑺, with m Corps. The input matching unit u〇_ of 64 can estimate the total component value of 〇16 沾, Α 〇23 nH, and q—0.033 pf. Similarly, according to equations (13) to (15), the first bias unit ^ component value There are C3-0.153 pF, C4 = 0.86 pF, and i4 = () 6G nH. Two pseudo-type high-electron scale-shifting transistor crystals (EMT) provided in series with impedance feedback as a gain stage can provide sufficient gain. In this unknown -In a specific embodiment, a two-stage band-pass amplifier according to the present invention is manufactured by 15 1238595 5. Now refer to FIG. 5, which shows the power gain of a two-stage band-pass amplifier using an ideal lumped element. (Sn) and insertion loss characteristics (Su and S22), where the angular frequency is equal to 2 7Γ times the frequency, that is, ω == 2ττ /. The transmission zero of the forbidden band appears at 7 and 57GHz as required. Its passband gain is between 20 to 40 GHz is 15.4 dB and has a gain ripple of 1.4 dB. In order to implement a monolithic microwave integrated circuit, the lumped inductor is usually implemented with a short-strip microstrip line with high impedance, and its electronic length θ = = 2 tan · 1 (ωZZ / 〇, and the lumped capacitor is usually replaced by a radial open pile At the electron length of the Θ series microstrip line, Zh is the impedance value of the high-impedance microstrip line. However, lumped inductors can also be implemented in other lumped forms, such as spiral inductors, and lumped capacitors can also It can be realized in other lumped forms, such as plug-in capacitors or metal-insulated-metal insulated capacitors (MM). In addition, layout parasitics such as microstrip line τ-type junctions, transitions, and through-hole connections are also considered. The overall circuit is optimized to achieve the designed passband gain and forbidden band attenuation. Thereby, a two-stage band-pass amplifier system according to the invention is manufactured. The semiconductor substrate used in the manufacture is an AlGaAs / InGaAs / GaAs compound. Pseudo-type high electron mobility transistor device (ρΗΕΜΤ) is used as a booster level, where at 2V; and under extreme bias, the device has a unit current gain of more than 100GHz_ 止 词 ⑹, and Exceeds the maximum vibration characteristics of 25GGHz_). The chip size of the band-pass amplifier after implementation is 3xl mm2. Please refer to FIG. 6, FIG. 7 and FIG. 8, which respectively show the power gain (insertion loss) and input return loss of the two-stage band-pass amplifier according to the second embodiment of the present invention. (input return l0ss) and output return loss (〇utpm retum i〇ss) simulation and actual measurement. The simulation results show that it has good bandpass characteristics from 20 to 40 GHz. Its passband gain is 13.9 ± 0.7dB and its return loss is greater than the secret. The simulated deadband attenuation is 4 dBc below the test and 64-dBc at k 57 to 75 GHz. The actual measurement results show that the passband gain is 14 fine dB from 20 to 400. Zeta, and the weaving system is slightly smaller than the analog value ... the 2 input zero points on the low frequency side. Chudeluo matches the difficult value at 7GHz. . The summer measurements of the two transmission zeros on the high side are at 62 and 75 GHz, respectively, which are slightly inconsistent with the analog values. Although not inconsistent, from 2 to 9 GHz and from 57 to 75 GHz, these transmission zeros effectively give attenuation to the 5 sides of the forbidden band, which is very much the same as that of the simulation. Real __ Jane Lost Society has no pseudo-values with a phase of 16 1238595 dB. This is the contact and contact of the probe tip during wafer fabrication. Please refer to FIG. 9, which shows the simulation and real surface of the double 7 noise index (nGise% ure) according to the second embodiment of the present invention. The actual measured noise " to, HoGHz is in the range of 2.7 to 3. Her, slightly higher than the analog value. Therefore, the band-pass amplification according to the present invention can be discussed, and has a low reduction, which is very suitable for the application of low noise amplification. In the past, RF passive filters were composed of a combination of capacitors, inductors, and resistors, and have been implemented by means of transmission lines. The radio wave filter only causes loss and its gain is less than dB. In order to obtain a positive gain, the RF domain waver will generally cooperate with the microwave active integrated circuit to obtain the gain response and the minimum cost. For the band-pass amplifier circuit component of the present invention, it should be noted that the first embodiment of the present invention can also be used as one: single == active filter with positive gain response. Please refer to the first cap, which is a receiver that does not require a passive band pass button. The receiver 200 includes-an antenna 21G,-a band-pass amplifier n,-a mixer 230 having the seismic coil dove 230, a first f-pass amplifier 250, and a detection device for determining whether a specific signal is received. 260 received, wherein the first band-pass amplifier 220 and the second band-pass amplifier 25 are band-pass amplifiers according to the embodiment of the present invention. The signal is received by the antenna 210 and passes through the first band-pass amplifier 220. The filtered and amplified signal enters the mixer 23 and is mixed with one of the local oscillator signals generated by the local seismic container 24 to obtain an upper passband signal and a lower passband signal. The upper passband signal is then filtered and amplified by the second bandpass amplifier 250. The output of the second band-pass amplifier 25 is received by the detection device 260 and detects that it has entered a subsequent signal processing element. According to a preferred embodiment of the present invention, the advantages of the band-pass amplifier are that it can be fabricated on a single chip and can be used in the frequency band from Zhengzheng to Zhaimi. Therefore, the present invention can effectively reduce the chip size and production cost. Another advantage of the amplifier is that the filter response of the band-pass amplifier can be accurately predicted. This is because the inductance value of the inductor and the capacitance value of the capacitor are expressed in a closed form (closedfrm). 17 1238595 Another advantage of the band-pass amplifier is that the frequency of the transmission zero of the band-pass amplifier can fall at the desired position to enhance the stop-band attenuation of the band-pass amplifier. Another advantage of this τ-pass amplifier is to provide a filter circuit with positive gain, which is fabricated on a single chip and can be used in the microwave to millimeter wave band. Although the present invention has been disclosed in the foregoing preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. As explained above, the relative position and distance of the metal pieces of each layer, the control of the coupling amount of the coupled valley, and the position control of the transmission zero point can be modified and changed in various types without destroying the spirit of the invention . Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application. [Brief description of the drawings] In order to make the above and other objects, features, and advantages of the present invention more apparent, the following describes the preferred embodiments of the present invention in detail with the accompanying drawings as follows. FIG. 1 shows a structure diagram of a single-stage band-pass amplifier according to the first embodiment of the present invention; FIG. 2 shows an equivalent circuit diagram of the input matching unit according to the first diagram of the first embodiment of the present invention; FIG. 3 The first diagram according to the first embodiment of the present invention shows the equivalent circuit diagram of the first bias unit; FIG. 4 shows the structure diagram of the dual-stage band-pass amplifier according to the second embodiment of the present invention; π Power gain and insertion loss characteristics of a two-stage band-pass amplifier using an ideal lumped element; Figure 6 shows a schematic and measured diagram of the power gain of a two-stage band-pass amplifier according to a second embodiment of the present invention; The figure shows simulation and actual measurement diagrams of input return loss of a two-stage band-pass amplifier according to the second embodiment of the present invention; and FIG. 8 shows a two-stage band-pass amplifier according to the second embodiment of the present invention. 18 1238595 simulation and actual measurement chart of output return loss; Fig. 9 shows the simulation and actual measurement chart of the noise index of the two-stage bandpass amplifier according to the second embodiment of the present invention; A receiver And Figure 11 shows the structure of a traditional single-stage amplifier. Explanation of drawing number: 5 amplifier 10 input matching unit 20 first bias unit 30 gain stage 32 capacitor 34 inductor 36 resistor 40 second bias unit 50 output matching unit 105 Amplifier 110 input matching unit 120 first biasing unit 130 gain stage 132 gain stage 134 gain stage 140 second biasing unit 150 output matching unit 200 receiver 210 antenna 220 first bandpass amplifier 230 mixer 240 local oscillator 250 Second bandpass amplifier 260 detection device 300 amplifier 310 input matching unit 320 bias unit 322 capacitor 324 inductor 330 gain stage 340 output matching unit 19

Claims (1)

1238595 拾、申請專利範圍: 1.一種三端放大器,具有一帶通特性,其包含: =輸入匹配單元’制於匹g谋放A|§之增益且具有U波之特化 -第-偏壓單元,電性地連接錢輸人匹配單元,其制於驅動該放大 姦之第一端且具有一第一高通濾波之特性; -增益級’紐連接至該第—碰單元,其制於提縣放大器之平 坦增益; -第二偏壓單元,電性地連接至該增益級,其制於驅麟放大器之第 二端且具有一第二高通濾波之特性;及 輸出匹配單元,電性地連接至該第二偏壓單元,其係用於匹配該放大 器之增益且具有一第二濾波之特性。 2·如專利申睛範圍第1項之三端放大器,其中該輸入匹配單元係為包含 電感器與電容器之一第一 τ型網路,其係用於匹配該放大器之增益且具有 該第一濾波之特性。 3·如專利申請範圍第2項之三端放大器,其中該第一濾波之特性係為一 第一低通濾波之特性,且在該第一 T型網路中,該電感器之電感值及該電 各器之電容值係由該第一低通濾波特性之截止頻率及傳輸零點之頻率,與 一第一鏡像阻抗所決定。 4·如專利申請範圍第3項之三端放大器,其中該第一 τ型網路之該第一 鏡像阻抗係匹配至該第一 T型網路之輸入及輸出阻抗以匹配該放大器之 增益。 1238595 5·'如專利申請範圍第丨項之三端放大器,其中該第一偏壓單元係為包 感器及電容器之K型網路,其伽於驅動該放Ail之第—端且呈 該第一高通濾波之特性。 /、 6.如。專利中請範圍第5項之三端放大器,其中在該第一 l型網路中,該 電感為之賴值及電容器之電容值係由係該第—高通濾波器特性之截止 頻率及傳輸零點之頻率,與該第—L型網路之_第二鏡像阻抗所決定。 7·如專利申請範圍第6項之三端放大器,其中該第一 L型網路之第二鏡像 阻抗係匹配至該第-L型網路之輸人及輸&阻抗以驅動該放大器之第一 端0 8.如專利巾請範圍第丨項之三端放大n,其中該輸出匹配單元係為包含電 感器及電容器之一第二T型網路,其係用於匹配該放大器之增益且呈 第二濾波之特性。 ' Λ 9·如專射請範圍第8項之三端放大n,其中該第二系皮之特性係為一第 二低通濾波之特性,且在該第二Τ型網路中,該電感器之電感值及該電容 器之電谷值係由該第二低通濾波器特性之截止頻率及傳輸零點之頻率,與 一第三鏡像阻抗所決定。 10·如專利申睛範圍苐9項之二端放大器’其中該第二丁型網路之第三鏡 像I1 且抗係匹配至該第一 Τ型網路之輸入及輸出阻抗以匹配該放大器之增 益。 曰 21 1238595 11.如專利申請範圍第1項之三端放大器,其中該第二偏壓單元係為包含 電感器及電容器之一第二L型網路,其係用於驅動該放大器之第二端且具 有該第二高通濾波之特性。 12·如專利申請範圍第11項之三端放大器,其中在該第二L型網路中,該 電感器之電感值及該電容器之電容值係由該第二高通濾波器特性之截止 頻率及傳輸零點之頻率,與一第四鏡像阻抗所決定。 13·如專利申請範圍第12項之三端放大器,其中該第二L型網路之第四鏡 像阻抗係匹配至第二L型網路之輸入及輸出阻抗以驅動該放大器之第二 端。 14·如專利申請範圍第1項之三端放大器,其中該增益級係為一假型高速 電子移動電晶體。 15.—種具有一增益之濾波器電路,包含·· 一第一 T型網路,包含一具有第一濾波器特性之電感器及電容器; 一第一L型網路,電性地連接至該第一丁型網路,包含一具有第一高通 濾波器特性之電感器及電容器; -第二1^_路’包含—具有第二高通濾波n特性之電㈣及電容器; -第二T型網路’連接至該第二[型網路,包含—具有第二纽器特性 之電感器及電容器;及 一三端放大裝置,具有一第一端電性地連接至該第一L型網路,一第二 端電性地連接至該第二L型網路,且一第三端連接至_接地面,其係用於 提供該帶通電路之平坦增益; 22 1238595 其中 該第一T型網路與該第二T型匹配該放大裝置之增益;且 該第一L型網路驅動該放大裝置之第一端且該第二L型網路驅動該放大 裝置之第二端。 μ 16.如專利申請範圍第15項之具有一增益之濾波器電路,其中該第一濾波 之特性係為一第一低通濾波之特性,且在該第一 τ型網路中,該電感器之 電感值及該電容器之電容值係由該第一低通濾波特性之截止頻率及傳輸 零點之頻率,與一第一鏡像阻抗所決定。 17·如專利申請範圍第15項之具有一增益之濾波器電路,其中在該第_l 型網路中,該電感器之電感值及該電容器之電容值系由該第一高通渡波特 性之截止頻率及傳輸零點之頻率,與一第二鏡像阻抗所決定。 18·如專利申請範圍第15項之具有一增益之濾波器電路,其中該第二溏波 之特性係為一第二低通濾、波之特性,且在該第二T型網路中,該電感器之 電感值及該電容器之電容值系由該第二低通濾波特性之截止頻率及傳輸 零點之頻率,與一第三鏡像阻抗所決定。 19·如專利申請範圍第15項之具有一增益之濾波器電路,其中在該第二乙 型網路中,該電感器之電感值及該電容器之電容值系由該第二高通遽波特 性之截止頻率及傳輸零點之頻率,與一第四鏡像阻抗所決定。 20.如專利申請範圍第15項之具有一增益之濾波器電路,其中該三端放大 裝置係為一假型高速電子移動電晶體。 23 1238595 種^接收機’其包含—天線’―第—帶通放大器,—具有本地震盡器 之此頻器’-第二帶通放大器,及__選擇接收特殊信號之檢波器, 其中該第一及第二帶通放大器皆包含: =輸述配單元,伽祕輯放All之增Μ具有波之特性; 一第-偏壓單元,電性地連接至職人匹配單元,其侧於驅動該放大 器之第一端且具有一第一高通濾波之特性; -增益級,概地連接第__單元,其制於提傾放大器 坦增益; 山第一偏壓單% ’電性地連接至該增益級,其細於鶴該放大器之第 二端且具有一第二高通濾波之特性;及 押-輸出匹配單元,電性地連接至該第二偏壓單元,其_祕配該放大 器之增盃且具有一第二濾波之特性。 請顧第21項之接收機,其中該輸入匹配單元係為包含電 in谷為之第一τ型網路,其係用於匹配該放大器之增益且具有該 二波之特性,且其中該輸出匹配單元係為包含電感器與電容器之一第 - 51網路’其係用於匹配該放大器之增益域有―第二濾、波之特性。 23=專/Γ嫌圍第21項之接收機,其中該第一紐之特性係為一第 一低通纽之雜,且該第二濾波之触係為1二倾舰之特性。第 範圍第23項之接收機,其中在該第一 τ型網路中,剛 電容值箱轉—低«麟性之截止頻= 傳輸零點之頻率,與-第一鏡像阻抗所決定,且在該第二Τ型網路中,該 24 1238595 電感器之電感值及該電容器之電容值係由該第二低通濾波特性之截止頻 率及傳輸零點之頻率,與一第三鏡像阻抗所決定。 25.如專利申請範圍第24項之接收機,其中該第一 τ型網路之該第一鏡像 阻抗匹配至該第一 Τ型網路之輸入及輸出阻抗以匹配該放大器之增益,又 該第二Τ型網路之該第三鏡像阻抗匹配至該第二τ型網路之輸入及輸出 阻抗以匹配該放大器之增益。 26·如專利申請範圍第21項之接收機,其中該第一偏壓單元係為包含電感 器及電容器之一第一 L型網路,係用於驅動該放大器之第一端及具有該第 一高通濾波特性,且該第二偏壓單元係為包含電感器及電容器之一第二L 型網路,係用於驅動該放大器之第二端及具有該第二高通濾波器特性。 27.如專利申請範圍第26項之接收機,其中在該第一 l型網路中,該電咸 器之電感值及該電容|§之電容值系由該第一高通濾波特性之截止頻率及 傳輸零點之頻率,與一第三鏡像阻抗所決定,且在該第二乙型網路中,該 電感器之電感值及該電容器之電容值係由該第二高通濾波特性之截止= 率及傳輸零點之頻率,與一第四鏡像阻抗所決定。 28·如專利申請範圍第27項之接收機,其中該第一 l型網路之該第一鏡像 阻抗匹配至該第一 L型網路之輸入及輸出阻抗以驅動該放大器之第一 端,又該第二L型網路之該第四鏡像阻抗匹配至該第二l型網路之輪入 及輸出阻抗以驅動該放大器之第二端。 25 1238595 29.如專利申請範圍第21項之接收機,其中該增益級係為一假型高速電 子移動電晶體。 261238595 Scope of patent application: 1. A three-terminal amplifier with a band-pass characteristic, which includes: = input matching unit 'made in Pg to gain A | § gain and has U-wave specialization-the first-bias Unit, electrically connected to the money input matching unit, which is driven at the first end of the amplifier and has a characteristic of a first high-pass filter; a gain stage button is connected to the first bump unit, which is County amplifier flat gain;-a second bias unit, electrically connected to the gain stage, which is made at the second end of the driver amplifier and has a second high-pass filtering characteristic; and an output matching unit, electrically grounded Connected to the second bias unit, which is used to match the gain of the amplifier and has a second filtering characteristic. 2. The three-terminal amplifier of item 1 of the patent application scope, wherein the input matching unit is a first τ-type network including an inductor and a capacitor, which is used to match the gain of the amplifier and has the first Filtering characteristics. 3. The three-terminal amplifier according to item 2 of the patent application scope, wherein the characteristic of the first filtering is a characteristic of a first low-pass filtering, and in the first T-shaped network, the inductance value of the inductor and The capacitance of the electrical device is determined by the cut-off frequency of the first low-pass filter characteristic, the frequency of the transmission zero point, and a first image impedance. 4. The three-terminal amplifier according to item 3 of the patent application scope, wherein the first image impedance of the first τ network is matched to the input and output impedance of the first T network to match the gain of the amplifier. 1238595 5 · 'As in the three-terminal amplifier of the scope of the patent application, wherein the first biasing unit is a K-type network including a sensor and a capacitor, which is used to drive the first end of the amplifier Ail and presents the The characteristics of the first high-pass filtering. /, 6. Such as. The patent claims the three-terminal amplifier in the fifth item, wherein in the first l-type network, the value of the inductance and the capacitance of the capacitor are determined by the cut-off frequency and transmission zero of the first high-pass filter characteristic. The frequency is determined by the second mirror impedance of the -L network. 7. The three-terminal amplifier according to item 6 of the patent application scope, wherein the second mirror impedance of the first L-type network is matched to the input and input impedance of the -L-type network to drive the amplifier. The first end 0 8. If a patent is requested, the third end of the range item 丨 is amplified n. The output matching unit is a second T-type network including an inductor and a capacitor, which is used to match the gain of the amplifier. And has the characteristics of the second filtering. 'Λ 9 · If you shoot specifically, please enlarge n at the three ends of the 8th item, where the characteristic of the second system is a characteristic of a second low-pass filter, and in the second T-type network, the inductor The inductor's inductance and the capacitor's valley are determined by the cut-off frequency of the second low-pass filter characteristic, the frequency of the transmission zero, and a third mirror impedance. 10. If the patent claims the scope of the 9-terminal two-terminal amplifier 'where the third mirror I1 of the second D-type network and the impedance is matched to the input and output impedance of the first T-type network to match the amplifier's Gain. 21 2138595 11. The three-terminal amplifier according to item 1 of the patent application scope, wherein the second bias unit is a second L-shaped network including an inductor and a capacitor, which is used to drive a second L-type network of the amplifier. And has the characteristics of the second high-pass filtering. 12. The three-terminal amplifier according to item 11 of the patent application scope, wherein in the second L-type network, the inductance value of the inductor and the capacitance value of the capacitor are determined by the cut-off frequency of the second high-pass filter characteristic and The frequency of the transmission zero is determined by a fourth image impedance. 13. The three-terminal amplifier according to item 12 of the patent application, wherein the fourth image impedance of the second L-type network is matched to the input and output impedance of the second L-type network to drive the second end of the amplifier. 14. The three-terminal amplifier according to item 1 of the patent application range, wherein the gain stage is a pseudo-type high-speed electronic mobile transistor. 15.—A filter circuit having a gain, including a first T-shaped network including an inductor and a capacitor having a first filter characteristic; a first L-shaped network electrically connected to The first D-type network includes an inductor and a capacitor having the characteristics of a first high-pass filter; a second 1 ^ circuit includes an electric capacitor and a capacitor having a second characteristic of a high-pass filter; a second T Type network 'is connected to the second [type network, including-an inductor and a capacitor having a second button characteristic; and a three-terminal amplification device having a first terminal electrically connected to the first L-type Network, a second end is electrically connected to the second L-shaped network, and a third end is connected to the ground plane, which is used to provide the flat gain of the band-pass circuit; 22 1238595 where the first The T-type network and the second T-type match the gain of the amplification device; and the first L-type network drives a first end of the amplification device and the second L-type network drives a second end of the amplification device. μ 16. The filter circuit with a gain according to item 15 of the patent application range, wherein the characteristic of the first filtering is a characteristic of a first low-pass filtering, and in the first τ-type network, the inductor The inductor value of the capacitor and the capacitor value are determined by the cut-off frequency of the first low-pass filter characteristic, the frequency of the transmission zero point, and a first image impedance. 17. The filter circuit with a gain according to item 15 of the scope of patent application, wherein in the first network, the inductance value of the inductor and the capacitance value of the capacitor are determined by the first high-pass wave characteristic. The cut-off frequency and the frequency of the transmission zero are determined by a second image impedance. 18. The filter circuit having a gain as described in item 15 of the scope of patent application, wherein the characteristic of the second chirp is a characteristic of a second low-pass filter and wave, and in the second T-type network, The inductance value of the inductor and the capacitance value of the capacitor are determined by the cut-off frequency of the second low-pass filter characteristic, the frequency of the transmission zero point, and a third mirror impedance. 19. The filter circuit with a gain according to item 15 of the scope of patent application, wherein in the second type B network, the inductance value of the inductor and the capacitance value of the capacitor are determined by the second high-pass 遽 baud The cut-off frequency and the frequency of the transmission zero are determined by a fourth image impedance. 20. A filter circuit having a gain as claimed in item 15 of the patent application, wherein the three-terminal amplification device is a pseudo-type high-speed electronic mobile transistor. 23 1238595 types of receiver 'which includes-antenna'-first-bandpass amplifier,-this frequency band with its own geophone '-second bandpass amplifier, and __ choose a receiver to receive special signals, where The first and second band-pass amplifiers each include: = an input and output unit, and the enhancement amplifier M of All has the wave characteristic; a first-bias unit, which is electrically connected to the worker matching unit, which is driven by The first end of the amplifier has the characteristics of a first high-pass filter;-a gain stage, which is roughly connected to the __ unit, which is based on the gain of the tilt amplifier; The gain stage is thinner than the second end of the amplifier and has a characteristic of a second high-pass filtering; and a bet-output matching unit electrically connected to the second bias unit, which The cup has a second filtering characteristic. Please consider the receiver of item 21, wherein the input matching unit is a first τ-type network including an electric in valley, which is used to match the gain of the amplifier and has the characteristics of the two waves, and wherein the output The matching unit is a 51st network including one of an inductor and a capacitor, which is used to match the gain domain of the amplifier with the characteristics of the second filter and wave. 23 = Special / Γ receiver in item 21, in which the characteristic of the first button is a first low-pass button, and the contact of the second filter is a characteristic of a tilt boat. The receiver of the 23rd item, wherein in the first τ-type network, the rigid capacitor value box turns-low «cut-off frequency of linity = frequency of transmission zero, and-determined by the first image impedance, and In the second T-type network, the inductance value of the 24 1238595 inductor and the capacitance value of the capacitor are determined by the cut-off frequency of the second low-pass filter characteristic, the frequency of the transmission zero point, and a third mirror impedance. 25. The receiver of claim 24, wherein the first image impedance of the first τ network is matched to the input and output impedance of the first T network to match the gain of the amplifier, and the The third mirror impedance of the second T-network is matched to the input and output impedance of the second τ-network to match the gain of the amplifier. 26. The receiver according to item 21 of the patent application, wherein the first bias unit is a first L-shaped network including an inductor and a capacitor, and is used for driving the first end of the amplifier and having the first A high-pass filtering characteristic, and the second bias unit is a second L-shaped network including an inductor and a capacitor, which is used to drive the second end of the amplifier and has the second high-pass filter characteristic. 27. The receiver according to item 26 of the patent application scope, wherein in the first l-type network, the inductance value of the electric appliance and the capacitance value of the capacitor | § are determined by the cut-off frequency of the first high-pass filtering characteristic And the frequency of the transmission zero, which is determined by a third image impedance, and in the second type B network, the inductance value of the inductor and the capacitance value of the capacitor are cut off by the second high-pass filtering characteristic = rate And the frequency of the transmission zero is determined by a fourth image impedance. 28. The receiver according to item 27 of the patent application scope, wherein the first mirror impedance of the first l-type network matches the input and output impedance of the first l-type network to drive the first end of the amplifier, The fourth mirror impedance of the second L-type network is matched to the round-in and output impedance of the second L-type network to drive the second end of the amplifier. 25 1238595 29. The receiver according to item 21 of the patent application, wherein the gain stage is a pseudo-type high-speed electronic mobile transistor. 26
TW93118902A 2004-06-28 2004-06-28 Bandpass amplifier TWI238595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93118902A TWI238595B (en) 2004-06-28 2004-06-28 Bandpass amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93118902A TWI238595B (en) 2004-06-28 2004-06-28 Bandpass amplifier

Publications (2)

Publication Number Publication Date
TWI238595B true TWI238595B (en) 2005-08-21
TW200601688A TW200601688A (en) 2006-01-01

Family

ID=37000318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93118902A TWI238595B (en) 2004-06-28 2004-06-28 Bandpass amplifier

Country Status (1)

Country Link
TW (1) TWI238595B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471049B (en) * 2010-12-28 2015-01-21 Mediatek Inc Wireless device
CN113517225A (en) * 2021-03-30 2021-10-19 中山大学 Manufacturing method of band-pass amplifying circuit with adjustable center frequency based on all-N-type TFT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471049B (en) * 2010-12-28 2015-01-21 Mediatek Inc Wireless device
US9142874B2 (en) 2010-12-28 2015-09-22 Mediatek Inc. Wireless device
CN113517225A (en) * 2021-03-30 2021-10-19 中山大学 Manufacturing method of band-pass amplifying circuit with adjustable center frequency based on all-N-type TFT

Also Published As

Publication number Publication date
TW200601688A (en) 2006-01-01

Similar Documents

Publication Publication Date Title
US7340237B2 (en) Dual-band active filter
US7245186B2 (en) Bandpass amplifier
US6346859B1 (en) Microwave amplifier with reduced beat noise
JP2005516515A (en) Output circuit for semiconductor amplifier elements
Katzin et al. Narrow-band MMIC filters with automatic tuning and Q-factor control
JPH08130419A (en) Amplifier and receiver and communication equipment with the amplifier
Karacaoglu et al. MMIC active bandpass filters using varactor-tuned negative resistance elements
EP1391987A1 (en) Reflection loss suppression circuit
JP3723202B2 (en) Transmission line and semiconductor integrated circuit device
KR101351693B1 (en) Isolation tunable rf power divider employing mmic
TWI238595B (en) Bandpass amplifier
Ito et al. 60-GHz-band coplanar MMIC active filters
Ashley et al. Non-reciprocal RF-bandpass filters using transistor-based microwave resonators
US3818365A (en) Microwave amplifier circuit utilizing negative resistance diode
US4878033A (en) Low noise microwave amplifier having optimal stability, gain, and noise control
Lin et al. A W-band GCPW MMIC Diode Tripler
Hadipour et al. A low power high gain-bandwidth E-band LNA
US7889029B2 (en) Active bandpass filter
Chaturvedi et al. Millimeter-wave active bandpass filters
Darcel et al. New MMIC approach for low noise high order active filters
Hagag et al. Balanced-balanced tunable filtering LNA using evanescent-mode resonators
Chang et al. Balun bandpass low-noise amplifier in GaAs
JP4071549B2 (en) Multistage amplifier
US20050104664A1 (en) Intergrated power amplifier arrangement
US3454895A (en) Broadband,low noise amplifier using a common base transistor configuration

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees