CN113511897A - 一种Bi2S3块体热电材料及其高压制备方法 - Google Patents

一种Bi2S3块体热电材料及其高压制备方法 Download PDF

Info

Publication number
CN113511897A
CN113511897A CN202110450264.7A CN202110450264A CN113511897A CN 113511897 A CN113511897 A CN 113511897A CN 202110450264 A CN202110450264 A CN 202110450264A CN 113511897 A CN113511897 A CN 113511897A
Authority
CN
China
Prior art keywords
powder
pressure
thermoelectric material
preparation
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110450264.7A
Other languages
English (en)
Other versions
CN113511897B (zh
Inventor
张跃文
姬文婷
张壮飞
房超
贾晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110450264.7A priority Critical patent/CN113511897B/zh
Publication of CN113511897A publication Critical patent/CN113511897A/zh
Application granted granted Critical
Publication of CN113511897B publication Critical patent/CN113511897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明属于热电材料制备技术领域,具体公开一种Bi2S3块体热电材料及其高压制备方法,是以Bi粉、S粉为原料,利用高温高压快速合成Bi2S3相,再将所述Bi2S3相粉碎后进行放电等离子体烧结制得。本发明提供的高压制备技术可以实现Bi2S3基块体材料的快速制备,提高合成效率,并有效提高材料的热电性能。

Description

一种Bi2S3块体热电材料及其高压制备方法
技术领域
本发明属于热电材料制备技术领域,具体公开一种Bi2S3块体热电材料及其高压制备方法。
背景技术
热电材料可以直接实现热能和电能之间的相互转化,应用于固态制冷和热能发电,具有无振动、无噪声、无流体污染、免维护等优点,在能源、军事、航空航天、电子信息等领域极具应用前景。
已商业化应用的Bi2Te3、PbTe、SiGe合金等高性能热电材料通常含有价格昂贵、储量有限或有毒害性的元素,如Te、Pb、Ge等,极大地限制了上述热电材料的应用规模。因此,发展廉价、环保、储量丰富的高性能热电材料具有重要意义。
Bi2S3材料具有无毒、低成本、储量丰富等优点,同时具有复杂的晶体结构和成键特性,表现出高Seebeck系数和低热导率,成为国内外热电研究领域的科研热点。目前,Bi2S3材料的制备方法通常是长时间的水热/溶剂热结合热压烧结或真空熔融退火,但该方法制备步骤繁琐、耗时耗能;且水热/溶剂热法需要使用一些有毒试剂,真空熔炼时高温下S挥发导致成分不易精准控制。因此,开发快速、便捷、绿色环保的Bi2S3制备技术十分紧迫和重要。
发明内容
本发明提供的高压制备技术可以实现Bi2S3基块体材料的快速制备,提高合成效率,并有效提高材料的热电性能。
本发明提供的Bi2S3块体热电材料的高压制备方法,是以Bi粉、S粉为原料,利用高温高压快速合成Bi2S3相,再将所述Bi2S3相粉碎后进行放电等离子体烧结,制得所述Bi2S3材料;
其中,所述高温高压是指在2-4GPa、750-1000℃下进行处理。
优选地,所述Bi粉与所述S粉的摩尔比为2:3。
优选地,所述原料中包括铜粉。
优选地,所述铜粉与所述Bi粉、所述S粉的摩尔比为0.0025:2:3。
优选地,所述放电等离子体烧结是在50MPa、500℃下烧结3-5min。
优选地,所述高温高压处理时间为10-60min。
优选地,在利用高温高压快速合成Bi2S3相之前将所述Bi粉与所述S粉球磨混合2-15h。
优选地,所述Bi粉与所述S粉混合后冷压成型,再进行高温高压处理。
本发明还提供一种根据上述任一项所述的方法制备得到的Bi2S3块体热电材料。
对比现有技术,本发明的有益效果为:
1、本发明采用高温高压结合放电等离子体烧结的方法制备Bi2S3块体热电材料,该方法制备工艺简单、制备效率高,且制备过程中不使用有毒的化学溶剂,绿色环保、适合规模化生产。
2、本发明在快速制备材料的同时,高温高压处理可以有效提高Bi2S3块体热电材料的晶体质量,提高其电学性能;经放电等离子体烧结后,形成多级微纳结构,显著增强了声子散射,有利于降低晶格热导率,有效提高Bi2S3块体材料的热电性能。
附图说明
图1是本发明实施例提供的制备工艺流程图;
图2是实施例1提供的纯Bi2S3样品的XRD图谱;
图3是实施例1提供的纯Bi2S3材料高温高压合成(a)和放电等离子烧结(b)后的形貌SEM图;
图4是实施例4中Cu0.0025Bi2S3样品的XRD图谱;
图5是实施例4中Cu0.0025Bi2S3材料的热电性能图;
图6是对比例1提供的纯Bi2S3材料的形貌SEM图;
图7是实施例1、对比例1中制备的纯Bi2S3材料的热电性能图。
具体实施方式
下面通过实施例进一步描述本发明,但是本发明不受这些实施例的限制。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1
一种Bi2S3块体热电材料的高压制备方法,参考图1所示,具体包括以下步骤:
S1、按照摩尔比2:3称取高纯Bi粉、S粉放入球磨罐中,采用球磨法混合15h,保证均匀混合;
S2、将S1得到的混合粉末在10MPa下冷压成型,放入钼套中密封,将其组装于叶腊石高压合成块后,放置于铰链式六面顶压机上,在3GPa、10min、1000℃条件下进行高温高压合成,得到Bi2S3块体;
S3、将S2得到的Bi2S3块体样品进行破碎、研磨成粉末,放入石墨模具中,在50MPa、5min、500℃条件下进行放电等离子体烧结成块,即得Bi2S3材料。
实施例2
一种Bi2S3块体热电材料的高压制备方法,具体包括以下步骤:
S1、按照摩尔比2:3称取高纯Bi粉、S粉放入球磨罐中,采用球磨法混合10h,保证均匀混合;
S2、将S1得到的混合粉末在10MPa下冷压成型,放入钼套中密封,将其组装于叶腊石高压合成块后,放置于铰链式六面顶压机上,在4GPa、30min、900℃条件下进行高温高压合成,得到Bi2S3块体;
S3、将S2得到的Bi2S3块体样品进行破碎、研磨成粉末,放入石墨模具中,在50MPa、4min、500℃条件下进行放电等离子体烧结成块,即得Bi2S3材料。
实施例3
一种Bi2S3块体热电材料的高压制备方法,具体包括以下步骤:
S1、按照摩尔比2:3称取高纯Bi粉、S粉放入球磨罐中,采用球磨法混合2h,保证均匀混合;
S2、将S1得到的混合粉末在10MPa下冷压成型,放入钼套中密封,将其组装于叶腊石高压合成块后,放置于铰链式六面顶压机上,在2GPa、60min、750℃条件下进行高温高压合成,得到Bi2S3块体;
S3、将S2得到的Bi2S3块体样品进行破碎、研磨成粉末,放入石墨模具中,在50MPa、3min、500℃条件下进行放电等离子体烧结成块,即得Bi2S3材料。
实施例4
一种Bi2S3块体热电材料的高压制备方法,具体包括以下步骤:
S1、按照摩尔比0.0025:2:3称取高纯Cu粉、Bi粉、S粉放入球磨罐中,采用球磨法混合15h,保证均匀混合;
S2、将S1得到的混合粉末在10MPa下冷压成型,放入钼套中密封,将其组装于叶腊石高压合成块后,放置于铰链式六面顶压机上,在3GPa、10min、1000℃条件下进行高温高压合成,得到Cu0.0025Bi2S3块体;
S3、将S2得到的Bi2S3块体样品进行破碎、研磨成粉末,放入石墨模具中,在50MPa、5min、500℃条件下进行放电等离子体烧结成块,即得Cu0.0025Bi2S3材料。
对比例1
一种Bi2S3块体热电材料的高压制备方法,具体包括以下步骤:
S1、按照摩尔比2:3称取高纯Bi粉、S粉放入球磨罐中,采用球磨法混合15h,保证均匀混合;
S2、将S1得到的混合粉末放入石墨模具中,在50MPa、5min、500℃条件下进行放电等离子体烧结成块,即得Bi2S3材料。
由于上述实施例1-3制备的材料的性能基本相同,故以下仅选取其中实施例1、以及添加微量Cu粉的实施例4与对比例1制备得到的材料进行比较,对材料的性能进行说明:
图2是实施例1中纯Bi2S3样品的XRD图谱,与标准谱匹配较好,由此可知采用本发明中的高压制备方法得到了Bi2S3相的块体样品。
图3是实施例1中纯Bi2S3样品经过高温高压合成(a)和放电等离子烧结(b)后的形貌SEM图。(a)高温高压合成后的样品具有层状结构,晶粒尺寸在10-100μm量级;(b)放电等离子体烧结之后样品的晶粒尺寸显著减小,同时具有多级微纳结构。
图4是实施例4中Cu0.0025Bi2S3样品的XRD图谱,与标准谱匹配较好,由此可知采用本发明中的高压制备方法得到了Bi2S3相的块体样品
图5是实施例4中Cu0.0025Bi2S3样品的热电性能图,包括(a)Seebeck系数和电阻率,(b)热导率和zT值。与纯Bi2S3样品相比,掺杂微量Cu后,Cu0.0025Bi2S3样品的电阻率显著降低,电学性能和zT值明显提升。
图6是对比例1中纯Bi2S3样品的形貌SEM图。样品具有1-5μm的晶粒和大量微孔。
图7是实施例1、对比例1中制备的纯Bi2S3材料的热电性能图,包括(a)Seebeck系数、(b)电阻率、(c)热导率和(d)zT值。由图可知,引入高温高压技术后,通过对微结构和致密度的调控,样品的电阻率显著降低,同时在一定程度上降低了热导率,从而有效提升了Bi2S3材料的热电性能。
以上公开的仅为本发明的具体实施例,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (9)

1.一种Bi2S3块体热电材料的高压制备方法,其特征在于,是以Bi粉、S粉为原料,利用高温高压快速合成Bi2S3相,再将所述Bi2S3相粉碎后进行放电等离子体烧结,制得所述Bi2S3材料;
其中,所述高温高压是指在2-4GPa、750-1000℃下进行处理。
2.根据权利要求1所述的Bi2S3块体热电材料的高压制备方法,其特征在于,所述Bi粉与所述S粉的摩尔比为2:3。
3.根据权利要求1所述的Bi2S3块体热电材料的高压制备方法,其特征在于,所述原料还包括铜粉。
4.根据权利要求3所述的Bi2S3块体热电材料的高压制备方法,其特征在于,所述铜粉与所述Bi粉、所述S粉的摩尔比为0.0025:2:3。
5.根据权利要求1所述的Bi2S3块体热电材料的高压制备方法,其特征在于,所述放电等离子体烧结是在50MPa、500℃下烧结3-5min。
6.根据权利要求5所述的Bi2S3块体热电材料的高压制备方法,其特征在于,所述高温高压处理时间为10-60min。
7.根据权利要求1所述的Bi2S3块体热电材料的高压制备方法,其特征在于,在利用高温高压快速合成Bi2S3相之前将所述Bi粉与所述S粉球磨混合2-15h。
8.根据权利要求1所述的Bi2S3块体热电材料的高压制备方法,其特征在于,所述Bi粉与所述S粉混合后冷压成型,再进行高温高压处理。
9.一种根据权利要求1-8任一项所述的方法制备得到的Bi2S3块体热电材料。
CN202110450264.7A 2021-04-25 2021-04-25 一种Bi2S3块体热电材料及其高压制备方法 Active CN113511897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110450264.7A CN113511897B (zh) 2021-04-25 2021-04-25 一种Bi2S3块体热电材料及其高压制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110450264.7A CN113511897B (zh) 2021-04-25 2021-04-25 一种Bi2S3块体热电材料及其高压制备方法

Publications (2)

Publication Number Publication Date
CN113511897A true CN113511897A (zh) 2021-10-19
CN113511897B CN113511897B (zh) 2022-09-13

Family

ID=78061584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110450264.7A Active CN113511897B (zh) 2021-04-25 2021-04-25 一种Bi2S3块体热电材料及其高压制备方法

Country Status (1)

Country Link
CN (1) CN113511897B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271955A (zh) * 2008-05-09 2008-09-24 北京科技大学 一种Bi-S二元体系热电材料及制备方法
CN101752495A (zh) * 2009-10-27 2010-06-23 北京科技大学 一种Bi2-xAg3xS3热电材料及其制备方法
CN102161507A (zh) * 2011-04-11 2011-08-24 北京科技大学 一种用单晶硫化铋前驱粉体制备多晶织构热电材料的方法
CN102280570A (zh) * 2011-08-01 2011-12-14 北京科技大学 一种微量Cu掺杂Bi2S3基热电材料
JP2013149651A (ja) * 2012-01-17 2013-08-01 Toyota Industries Corp 熱電材料の製造方法
CN109590481A (zh) * 2019-01-30 2019-04-09 北京科技大学 一种Cu2-xMxSe合金系列热电材料的高压制备方法
CN111876632A (zh) * 2020-07-30 2020-11-03 武汉理工大学 一种快速制备高取向高功率因子的Bi2Te3基热电材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271955A (zh) * 2008-05-09 2008-09-24 北京科技大学 一种Bi-S二元体系热电材料及制备方法
CN101752495A (zh) * 2009-10-27 2010-06-23 北京科技大学 一种Bi2-xAg3xS3热电材料及其制备方法
CN102161507A (zh) * 2011-04-11 2011-08-24 北京科技大学 一种用单晶硫化铋前驱粉体制备多晶织构热电材料的方法
CN102280570A (zh) * 2011-08-01 2011-12-14 北京科技大学 一种微量Cu掺杂Bi2S3基热电材料
JP2013149651A (ja) * 2012-01-17 2013-08-01 Toyota Industries Corp 熱電材料の製造方法
CN109590481A (zh) * 2019-01-30 2019-04-09 北京科技大学 一种Cu2-xMxSe合金系列热电材料的高压制备方法
CN111876632A (zh) * 2020-07-30 2020-11-03 武汉理工大学 一种快速制备高取向高功率因子的Bi2Te3基热电材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡博文: "p型PbTe基化合物及多晶SnSe的高压合成及热电性能研究", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技I辑》 *

Also Published As

Publication number Publication date
CN113511897B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN100391021C (zh) Ag-Pb-Sb-Te热电材料及其制备方法
CN107681043B (zh) 一种柔性热电器件的碲化铋基复合热电材料及制备方法
CN101786162B (zh) 一种碲化铋基块体纳米晶热电材料的制备方法
CN103045885B (zh) 一种高致密细晶钨铜合金的制备方法
CN105695774A (zh) Mg3Sb2基热电材料的制备方法
CN111848165B (zh) 一种p型碲化铋热电材料及其制备方法
CN105895795B (zh) 一种复合硒化锡基热电材料的制备方法
CN1974079A (zh) 一种碲化铋基热电材料的制备方法
CN104263980A (zh) 一种快速制备高性能ZrNiSn块体热电材料的方法
CN102694116A (zh) 一种p型纳米结构碲化铋基块体热电材料的制备方法
CN102931335A (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CN114249304A (zh) 一种高性能BiTe基复合热电材料及其制备方法
CN111876632A (zh) 一种快速制备高取向高功率因子的Bi2Te3基热电材料的方法
CN1786229A (zh) 纳米/微米复合晶粒结构的CoSb3热电材料制备方法
KR100663975B1 (ko) Fe가 도핑된 스커테루다이트계 고효율 열전소재 및 그제조방법
CN101338386B (zh) 一种TiNiSn基热电化合物的制备方法
CN113511897B (zh) 一种Bi2S3块体热电材料及其高压制备方法
CN107793155B (zh) 一种超快速制备Cu2Se块体热电材料的方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
CN111304492A (zh) 一种低温n型热电材料及其制备方法
CN106191522A (zh) 一种激光高效制备方钴矿热电材料的方法
CN109250692B (zh) 一种自催化低温快速合成Cu2Se基热电材料的方法
CN1752241A (zh) 纳米/微米复合晶粒结构的Lax-FeCo3Sb12热电材料制备方法
CN112279652A (zh) 一种关于Mg-Si-Sn-Sb基热电材料的快速非平衡制备方法
CN111690985B (zh) 量子点掺杂的硫化亚铜多晶材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant