CN113488632B - 一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法 - Google Patents

一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法 Download PDF

Info

Publication number
CN113488632B
CN113488632B CN202110849944.6A CN202110849944A CN113488632B CN 113488632 B CN113488632 B CN 113488632B CN 202110849944 A CN202110849944 A CN 202110849944A CN 113488632 B CN113488632 B CN 113488632B
Authority
CN
China
Prior art keywords
positive electrode
electrode material
lini
tmo
ammonium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110849944.6A
Other languages
English (en)
Other versions
CN113488632A (zh
Inventor
郑锋华
储有奇
潘齐常
王红强
李庆余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN202110849944.6A priority Critical patent/CN113488632B/zh
Publication of CN113488632A publication Critical patent/CN113488632A/zh
Application granted granted Critical
Publication of CN113488632B publication Critical patent/CN113488632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种Li1‑xTMO4‑yNy/Li2SO4包覆的高镍三元正极材料及其制备方法,所述正极材料为Li1‑xTMO4‑yNy/Li2SO4包覆的LiNi1‑xyCoxMnyO2复合材料,所述方法为:1)将Ni1‑x‑yCoxMny(OH)2三元前驱体和锂源均匀混合后,在氧气氛围下热处理,得到LiNi1‑x‑yCoxMnyO2正极材料;2)将硫酸铵和LiNi1‑x‑yCoxMnyO2分别放入两个烧舟中,通过固体受热分解产生气体NH3和SO3,NH3和SO3与正极材料表面发生反应,SO3与材料表面的残余锂反应,并夺取正极材料次表面的锂源Li2O反应Li2SO4,造成材料表面产生锂空位,从而由层状结构向尖晶石结构转变,最终获得Li1‑xTMO4‑yNy/Li2SO4包覆LiNi1‑x‑yCoxMnyO2正极材料。这种改性方法能提高层状LiNi1‑x‑yCoxMnyO2结构稳定性,从而提高材料循环稳定和抑制正极材料循环过程中过渡金属溶解,这种制备方法简单、成本低、环境友好,适用于大规模工业生产。

Description

一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备 方法
技术领域
本发明涉及锂离子电池电极材料制备技术领域,具体是一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法。
背景技术
随着石油能源的不断消耗,储能技术也在不断发展。因此,高能量密度的锂离子电池正受到越来越多的关注。正极材料是锂离子电池最重要的组成部分。考虑到高镍含量正极材料LiNi1-x-yCoxMnyO2,这些材料被认为是未来锂离子电池的正极材料。然而,它们严重的容量衰减限制了它们的进一步应用,这主要是因为粒子中的Ni3+离子极不稳定,特别是暴露在潮湿的环境中,会自发地缓慢地还原为Ni2+。同时,正极材料表面容易吸收空气水分和二氧化碳,产生LiOH、Li2CO3等杂质,严重影响电化学性能。LiNi1-x-yCoxMnyO2表现出优越的电化学和热力学稳定性。然而,仍然存在诸如高速率循环后容量快速损耗等限制。在溶解过程中,活性的Ni3+被氧化成不稳定的、不活性的Ni4+,其中部分Ni4+在随后的锂化过程中难以还原为Ni3+,导致可逆容量严重损失。同时,由于Ni4+的高氧化态,其表面的Ni4+会氧化电解液,引起主体材料与电解液之间的副反应,导致表面膜电阻和界面电阻增大。表面涂层能有效解决表面问题。一般情况下,在表面均匀地涂覆稳定的化合物或快离子导体可以有效抑制活性物质与电解质之间的副反应,从而提高循环稳定性和热力学性能。
目前,对NCM进行了大量的改进工作。离子掺杂是一种典型的方法,可以抑制Li+/Ni2+无序,提高结构稳定性,但活性材料的溶解问题仍有待解决因此,表面改性作为减轻结构退化和改善循环性能的另一种有效方法被广泛研究。一般情况下,各种涂层材料如Al2O3、TiO2、SiO2、和SnO2等都被深入研究,以缓解电解质与主体材料之间的副反应。然而,大多数改性材料都是仅形成均匀涂层的锂离子绝缘子,表现出低的Li+/电子输运性或限制了自结构稳定性,导致改性效果有限,倍率性能较差。要实现优良的改性层,同时又具有快速的Li+导电性和高的化学稳定性,是一项巨大的挑战。
发明内容
本发明的目的是针对现有技术的不足,而提供一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法。这种正极材料能提高层状LiNi1-x-yCoxMnyO2结构稳定性,提高材料的循环稳定性性能和抑制正极材料循环过程中过渡金属溶解,这种制备方法简单、成本低、环境友好,适用于大规模工业生产。
实现本发明目的的技术方案是:
一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料,所述正极材料为Li1-xTMO4- yNy/Li2SO4包覆的LiNi1-xyCoxMnyO2复合材料,式中0<x<0.4,0<y<0.4,1-x-y≥0.6,其中,Li1- xTMO4-yNy/Li2SO4包覆的LiNi1-xyCoxMnyO2复合材料中,Li1-xTMO4-yNy/Li2SO4包覆层的质量分数为0-10%。
上述的Li1-xTMO4-yNy/Li2SO4包覆高镍三元正极材料的制备方法,包括如下步骤:
1)将Ni1-x-yCoxMny(OH)2三元前驱体和锂源均匀混合后,置于刚玉坩埚中,放入管式炉中,在氧气氛围下热处理,得到LiNi1-x-yCoxMnyO2正极材料;
2)将硫酸铵和LiNi1-x-yCoxMnyO2正极材料称量后分别放入两个烧舟中,即Li1- xTMO4-yNy/Li2SO4放入一个烧舟中但不混合,LiNi1-x-yCoxMnyO2正极材料放入另一个烧舟中均匀铺平,放入管式炉中,在惰性气氛下进一步进行热处理,硫酸铵和LiNi1-x-yCoxMnyO2分别放入两个烧舟中,通过硫酸铵固体受热分解产生气体NH3和SO3,NH3和SO3与正极材料表面发生反应,实现N3-掺杂,并且SO3夺取材料表面锂源并与表面残余锂发生反应生成Li2SO4,从而促使LiNi1-x-yCoxMnyO2正极材料表面由层状结构向尖晶石结构的转变,最终获得Li1-xTMO4-yNy/Li2SO4包覆LiNi1-x-yCoxMnyO2正极材料,此反应于惰性气Ar或N2气氛下,热处理时升温速度为2℃/min-5℃/min,升温至500℃-700℃、保温2h,自然冷却至室温后,即得到Li1-xTMO4-yNy/Li2SO4包覆LiNi1-x-yCoxMnyO2正极材料。
步骤1)中所述的锂源为碳酸锂、氢氧化锂、硝酸锂或乙酸锂中的一种或几种。
步骤2)中所述硫酸铵的加入量为(NH4)2SO4/LiNi1-x-yCoxMnyO2混合物中的质量分数为0-10%。
步骤2)中所述的热处理温度为500-700℃,热处理时间为5-30min。
用上述制备方法制得的用Li1-xTMO4-yNy/Li2SO4表面修饰LiNi1-x-yCoxMnyO2正极材料表面的化学式为:NCM@SN、且包覆层的质量为LiNi0.8Co0.1Mn0.1O2质量的0-10%。
用上述制备方法制得的用Li1-xTMO4-yNy/Li2SO4修饰表面的正极材料,应用于CR2025扣式电池时以LiNi1-x-yCoxMnyO2@Li1-xTMO4-yNy/Li2SO4锂离子正极材料、super-p导电剂和聚偏氟乙烯粘结剂按质量比8:1:1,加入N-甲基-2-吡咯烷酮混合成均匀浆料,用涂覆法均匀涂布在铝箔上,烘干滚压后,冲成圆形的电极片,120℃真空干燥12h,以制备的LiNi0.8Co0.1Mn0.1O2锂离子正极材料电极为正极,金属锂片为负极,1M LiPF6和体积比为1:1:1的EC/DMC/EMC为电解液、Celgard23250微孔膜为隔膜,在手套箱中装配成纽扣电池。
这种正极材料能提高层状结构LiNi0.8Co0.1Mn0.1O2结构稳定性、循环性能和抑制循环过程中过渡金属溶解的缺陷,这种制备方法简单、成本低、环境友好,适用于大规模工业生产。
附图说明
图1为实施例中表面修饰前纯相LiNi0.8Co0.1Mn0.1O2正极材料SEM图;
图2为实施例制备的NCM@SN正极材料的SEM图;
图3为实施例制备的NCM@SN正极材料的XRD图谱;
图4为实施例制备的NCM@SN正极材料组装成的CR2025型半电池在2.7-4.5V、1C电流密度下的放电循环曲线示意图;
图5为实施例制备的NCM@SN正极材料组装成的CR2025型半电池在2.7-4.5V不同倍率下的倍率性能曲线示意图。
具体实施方式
下面结合附图和实施例对本发明的内容作进一步的阐述,但不是对本发明的限定。
实施例:
一种用Li1-xTMO4-yNy/Li2SO4表面修饰层状结构LiNi1-x-yCoxMnyO2正极材料的制备方法,包括如下步骤:
1)分别称取5g Ni0.8Co0.1Mn0.1(OH)2三元前驱体材料、2.40g一水合氢氧化锂,在研钵中研磨均匀后,置于烧舟中,放入充满氧气的管式炉中,以5℃/min的速率升温至480℃,保温5h,再同样以5℃/min的速率升温至750℃,保温15h,自然冷却得到LiNi0.8Co0.1Mn0.1O2正极材料,如图1所示;
2)将硫酸铵和步骤1)制备LiNi0.8Co0.1Mn0.1O2正极材料称量后分别放入两个烧舟中,即硫酸铵放入一个烧舟中但不混合,LiNi0.8Co0.1Mn0.1O2正极材料放入另一个烧舟中均匀铺平,放入管式炉中,在惰性气氛下进一步进行热处理,通过硫酸铵固体受热分解产生气体NH3和SO3,NH3和SO3与正极材料表面发生反应,实现N3-掺杂,并且SO3夺取材料表面锂源并与表面残余锂发生反应生成Li2SO4,从而促使材料表面由层状结构向尖晶石结构的转变,最终获得Li1-xTMO4-yNy/Li2SO4包覆LiNi1-x-yCoxMnyO2正极材料,通过XRD图可以得知,表面改性并没有影响材料的本体结构,结果如图2和图3所示。
参见图2、图3,用上述制备方法制得的用Li1-xTMO4-yNy/Li2SO4表面修饰LiNi1-x- yCoxMnyO2正极材料表面的化学式为:NCM@SN、且包覆层的质量为LiNi0.8Co0.1Mn0.1O2质量的0-10%。
参见图4、图5,将步骤2)制备的LiNi0.8Co0.1Mn0.1O2@Li1-xTMO4-yNy/Li2SO4锂离子正极材料、super-p导电剂和聚偏氟乙烯粘结剂按质量比8:1:1,加入N-甲基-2-吡咯烷酮混合成均匀浆料,用涂覆法均匀涂布在铝箔上,烘干滚压后,冲成圆形的电极片,120℃真空干燥12h,以制备的LiNi0.8Co0.1Mn0.1O2锂离子正极材料电极为正极,金属锂片为负极,1M LiPF6和EC/DMC/EMC(体积比为1:1:1)为电解液,Celgard 23250微孔膜为隔膜,在手套箱中装配成纽扣电池,从电化学性能图中,可以得出表面改性可以有效的提高材料的电化学性能。

Claims (2)

1.一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料,其特征在于,所述材料的采用以下方法制备:
1)分别称取5g Ni0.8Co0.1Mn0.1(OH)2三元前驱体材料、2.40g一水合氢氧化锂,在研钵中研磨均匀后,置于烧舟中,放入充满氧气的管式炉中,以5℃/min的速率升温至480℃,保温5h,再同样以5℃/min的速率升温至750℃,保温15h,自然冷却得到LiNi0.8Co0.1Mn0.1O2正极材料;
2)将硫酸铵和步骤1)制备LiNi0.8Co0.1Mn0.1O2正极材料称量后分别放入两个烧舟中,即硫酸铵放入一个烧舟中但不混合,LiNi0.8Co0.1Mn0.1O2正极材料放入另一个烧舟中均匀铺平,放入管式炉中,在惰性气氛下进一步进行热处理,通过硫酸铵固体受热分解产生气体NH3和SO3,NH3和SO3与正极材料表面发生反应,实现N3-掺杂,并且SO3夺取材料表面锂源并与表面残余锂发生反应生成Li2SO4,从而促使材料表面由层状结构向尖晶石结构的转变,最终获得Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料;其中,包覆层的质量为LiNi0.8Co0.1Mn0.1O2质量的大于0至小于10%。
2.如权利要求1所述的一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料的应用,其特征在于,应用于CR2025扣式电池,以所述Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料、super-p导电剂和聚偏氟乙烯粘结剂按质量比8:1:1,加入N-甲基-2-吡咯烷酮混合成均匀浆料,用涂覆法均匀涂布在铝箔上,烘干滚压后,冲成圆形的电极片,120℃真空干燥12h,以所述Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料为正极,金属锂片为负极,1M LiPF6和体积比为1:1:1的EC/DMC/EMC为电解液、Celgard 23250微孔膜为隔膜,在手套箱中装配成纽扣电池。
CN202110849944.6A 2021-07-27 2021-07-27 一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法 Active CN113488632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110849944.6A CN113488632B (zh) 2021-07-27 2021-07-27 一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110849944.6A CN113488632B (zh) 2021-07-27 2021-07-27 一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113488632A CN113488632A (zh) 2021-10-08
CN113488632B true CN113488632B (zh) 2024-05-31

Family

ID=77944011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110849944.6A Active CN113488632B (zh) 2021-07-27 2021-07-27 一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113488632B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744759B1 (ko) * 2006-06-07 2007-08-01 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 그 제조 방법
WO2016188477A2 (zh) * 2015-05-28 2016-12-01 清华大学深圳研究生院 碳包覆三元正极材料及其制备方法、锂离子电池
CN107732220A (zh) * 2017-11-27 2018-02-23 中南大学 氮掺杂介孔碳包覆的锂离子电池三元正极材料的制备方法
CN108011097A (zh) * 2017-11-28 2018-05-08 中国科学院大学 一种提高电化学性能的锂离子电池正极材料的制备方法
CN108550899A (zh) * 2018-04-24 2018-09-18 芜湖浙鑫新能源有限公司 碳包覆的高镍锂离子电池及其制备方法
CN112768662A (zh) * 2021-01-26 2021-05-07 南昌大学 一种低温气相沉积包覆的高镍三元层状正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744759B1 (ko) * 2006-06-07 2007-08-01 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 그 제조 방법
WO2016188477A2 (zh) * 2015-05-28 2016-12-01 清华大学深圳研究生院 碳包覆三元正极材料及其制备方法、锂离子电池
CN107732220A (zh) * 2017-11-27 2018-02-23 中南大学 氮掺杂介孔碳包覆的锂离子电池三元正极材料的制备方法
CN108011097A (zh) * 2017-11-28 2018-05-08 中国科学院大学 一种提高电化学性能的锂离子电池正极材料的制备方法
CN108550899A (zh) * 2018-04-24 2018-09-18 芜湖浙鑫新能源有限公司 碳包覆的高镍锂离子电池及其制备方法
CN112768662A (zh) * 2021-01-26 2021-05-07 南昌大学 一种低温气相沉积包覆的高镍三元层状正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Sustainable and Facile Process for Lithium Recovery from Spent LiNixCoyMnzO2 Cathode Materials via Selective Sulfation with Ammonium Sulfate";Cheng Yang, etal.;《ACS Sustainable Chemistry & Engineering》;第8卷(第41期);第15732-15739页 *

Also Published As

Publication number Publication date
CN113488632A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
JP4998753B2 (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
CN110668509A (zh) 一种硒包覆的高镍三元层状正极材料及其制备方法
CN106711421B (zh) 一种表面包覆金属氮化物的锂离子正极材料及其制备方法
US20210111404A1 (en) Cathode active material for lithium ion secondary battery and method for producing same
CN115732674A (zh) 钠正极前驱体材料及其制备方法和应用
CN113488631B (zh) 一种SeS2包覆的高镍三元正极材料及其制备方法
CN116344827A (zh) 一种多元正极材料及其制备方法
CN116344816A (zh) 一种复合正极材料及其制备方法和应用
CN116093305A (zh) 一种Li+取代的钠离子电池正极材料及制备方法和应用
CN113488632B (zh) 一种Li1-xTMO4-yNy/Li2SO4包覆的高镍三元正极材料及其制备方法
CN115548290A (zh) 一种表面修饰改性的富锂锰基正极材料及其制备方法
CN112125340B (zh) 一种锰酸锂及其制备方法和应用
CN114927777A (zh) 一种超高锂含量材料与一种自补锂复合正极材料
CN114614008A (zh) 一种包覆型正极材料及其制备方法、正极片和二次电池
CN113113588A (zh) 一种利用共价界面工程策略制备锂快离子导体类材料包覆高镍三元层状氧化物的方法
CN112174218A (zh) 一种钴酸锂及其制备方法和应用
KR20050052266A (ko) 리튬 이차 전지용 양극 활물질의 제조 방법 및 이로부터제조된 양극 활물질
CN117254016B (zh) 一种高离子迁移率的钠离子电池正极材料及制备方法
CN115692682B (zh) 具有稳定结构的改性富锂锰基正极材料及其制备方法、锂离子电池
CN118553892B (zh) 改性富锂锰基材料、制备方法、正极材料、正极片和电池
CN114804234B (zh) 一种ncm/nca核壳结构三元前驱体材料及其制备方法
CN118281208B (zh) 富锂锰基正极材料及其制备方法和应用
CN117059769A (zh) 一种钠离子电池正极材料及其制备方法
CN118579853A (zh) 改性多晶正极材料及其制备方法、二次电池
CN118572110A (zh) 正极复合材料、其制备方法、正极以及锂离子二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant