CN113485009A - Super surface imaging device - Google Patents

Super surface imaging device Download PDF

Info

Publication number
CN113485009A
CN113485009A CN202010904854.8A CN202010904854A CN113485009A CN 113485009 A CN113485009 A CN 113485009A CN 202010904854 A CN202010904854 A CN 202010904854A CN 113485009 A CN113485009 A CN 113485009A
Authority
CN
China
Prior art keywords
phase compensation
metasurface
super
imaging device
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010904854.8A
Other languages
Chinese (zh)
Other versions
CN113485009B (en
Inventor
杨萌
戴付建
赵烈烽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN202010904854.8A priority Critical patent/CN113485009B/en
Publication of CN113485009A publication Critical patent/CN113485009A/en
Application granted granted Critical
Publication of CN113485009B publication Critical patent/CN113485009B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供了一种超表面成像装置。该超表面成像装置包括光阑、至少一个超表面镜片和成像传感器,其中,光阑用于对入射的光束进行限制;至少一个超表面镜片与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿;成像传感器将经所述相位补偿后的光转换为与所述光的信号成比例的电信号。所述超表面镜片具有多个相位补偿结构,所述相位补偿结构的等效焦距在远离所述超表面镜片的中心的方向上逐渐增大。本申请提供的相位补偿结构的相位补偿能根据主光线角的变化而变化,使得超透镜能具有一定的视场角。

Figure 202010904854

The present application provides a metasurface imaging device. The metasurface imaging device includes a diaphragm, at least one metasurface mirror and an imaging sensor, wherein the diaphragm is used to limit the incident light beam; at least one metasurface mirror is aligned with the diaphragm and has a plurality of phase compensation structures , so as to deflect the light beam limited by the diaphragm to perform phase compensation; the imaging sensor converts the phase-compensated light into an electrical signal proportional to the signal of the light. The metasurface lens has a plurality of phase compensation structures, and the equivalent focal length of the phase compensation structures gradually increases in a direction away from the center of the metasurface lens. The phase compensation of the phase compensation structure provided by the present application can be changed according to the change of the chief ray angle, so that the superlens can have a certain field of view.

Figure 202010904854

Description

一种超表面成像装置A metasurface imaging device

分案申请声明Divisional Application Statement

本申请是2020年4月24日递交的发明名称为“一种超表面成像装置”、申请号为202010331976.2的中国发明专利申请的分案申请。This application is a divisional application of the Chinese invention patent application with the invention title "A Metasurface Imaging Device" and the application number 202010331976.2 submitted on April 24, 2020.

技术领域technical field

本申请涉及光学器件的领域,更具体地,涉及一种超表面成像装置。The present application relates to the field of optical devices, and more particularly, to a metasurface imaging device.

背景技术Background technique

现有摄像领域中用于成像、透射等的镜头均是采用由树脂、塑料、玻璃等透明体材料制成镜片。由于此类镜片需通过透过厚度的渐变来引入光程差,从而使得光线产生聚焦或发散的效果,因此一般需要具有较大的尺寸。2015年3月Capasso等人在Science杂志347卷期号6228上发表了超表面的论文,并由此引发了全世界对于超表面透镜的研究。In the existing imaging field, lenses used for imaging, transmission, etc. are all made of transparent materials such as resin, plastic, and glass. Since such lenses need to introduce optical path difference through the gradual change in thickness, so that the light can be focused or divergent, it generally needs to have a larger size. In March 2015, Capasso et al. published a paper on metasurfaces in Science, Vol. 347, Issue No. 6228, which triggered the worldwide research on metasurface lenses.

超表面透镜与传统透镜的不同之处在于,超表面透镜采用由微纳米尺度结构引入的、与形状相关的Pancharatnam-Berry相位差,以使得被散射的入射光的相位可以被任意调制从而代替传统透镜所依赖的光程差。因此,超表面透镜可以形成更易于集成的实质上平面的光学器件,并且尺寸相对于传统透镜可以大大降低。由于超表面透镜在原理上所依赖的是衍射光学而非几何光学,因而可以从设计上避免球差等传统镜头的固有像差,但是相反地,会产生特定于衍射光学的新类型的像差。The difference between the metasurface lens and the traditional lens is that the metasurface lens adopts the shape-dependent Pancharatnam-Berry phase difference introduced by the micro-nano-scale structure, so that the phase of the scattered incident light can be arbitrarily modulated to replace the traditional lens. The optical path difference on which the lens depends. Thus, metasurface lenses can form substantially planar optics that are easier to integrate and can be greatly reduced in size relative to conventional lenses. Because the metasurface lens relies in principle on diffractive optics rather than geometric optics, the inherent aberrations of conventional lenses such as spherical aberration can be avoided by design, but on the contrary, new types of aberrations specific to diffractive optics will be generated .

目前的现有技术中使用超表面成像均限于傍轴成像的情况,即采用显微镜头研究平行于光轴的细光线在中心视场成像。而在实际应用场景中,镜头必须将一定视场角范围内所有的入射光线成像在像面处的传感器上,而不能限于傍轴情况,这就必须要求面向应用的超表面透镜的设计必须考虑到使多个视场角都能得到正常成像。The use of metasurface imaging in the current prior art is limited to the case of paraxial imaging, that is, the use of a microscope lens to study the imaging of thin rays parallel to the optical axis in the central field of view. In practical application scenarios, the lens must image all incident light rays within a certain field of view on the sensor at the image surface, and cannot be limited to the paraxial situation. This requires that the design of application-oriented metasurface lenses must be considered. So that multiple field of view angles can be properly imaged.

发明内容SUMMARY OF THE INVENTION

本申请的一方面提供了一种超表面成像装置。该超表面成像装置可包括光阑、至少一个超表面镜片和成像传感器,其中,光阑用于对入射的光束进行限制;至少一个超表面镜片与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿。成像传感器则将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号。其中,所述多个相位补偿结构中的每一个所产生的相位补偿随着距所述光阑的中心的距离的变化而变化。An aspect of the present application provides a metasurface imaging device. The metasurface imaging device may include a diaphragm, at least one metasurface mirror and an imaging sensor, wherein the diaphragm is used to confine the incident light beam; at least one metasurface mirror is aligned with the diaphragm and has a plurality of phase compensations The structure is used to deflect the light beam limited by the diaphragm for phase compensation. The imaging sensor converts the phase-compensated light into an electrical signal proportional to the light signal. Wherein, the phase compensation produced by each of the plurality of phase compensation structures varies with the distance from the center of the diaphragm.

在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。In one embodiment, the center of the aperture is aligned with the center of the metasurface lens in the direction of the optical axis.

在一个实施方式中,所述相位补偿从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。In one embodiment, the phase compensation varies with a decaying periodicity from the center of the metasurface mirror along the radial direction of the metasurface mirror.

在一个实施方式中,位于所述超表面镜片上的所述多个相位补偿结构中的每一个相对于所述超表面镜片的任一径向方向形成的旋转角度随着距所述超表面镜片的中心的距离的变化而改变。In one embodiment, the rotation angle formed by each of the plurality of phase compensation structures on the metasurface mirror with respect to any radial direction of the metasurface mirror varies with distance from the metasurface mirror changes with the distance from the center.

在一个实施方式中,所述多个相位补偿结构中的每一个的所述旋转角度从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。In one embodiment, the rotation angle of each of the plurality of phase compensation structures exhibits a decaying periodic change from the center of the metasurface mirror along a radial direction of the metasurface mirror.

在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。In one embodiment, the metasurface mirror further includes a transparent substrate, wherein the phase compensation structure is formed by a dielectric material on the transparent substrate.

在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。In one embodiment, the dielectric material forming the phase compensation structure is an inorganic dielectric material having a refractive index different from the refractive index of the material forming the substrate.

在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。In one embodiment, the index of refraction of the inorganic dielectric material is greater than the index of refraction of the material forming the transparent substrate.

在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。In one embodiment, the inorganic dielectric material comprises zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide at least one of.

在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。In one embodiment, the material forming the transparent substrate is an inorganic material, and the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.

在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。In one embodiment, the material forming the transparent substrate is a resin-based organic transparent material.

在一个实施方式中,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。In one embodiment, the distance between the metasurface mirror and the imaging sensor is smaller than the distance between the metasurface mirror and the diaphragm.

在一个实施方式中,所述相位补偿结构被形成为长方体翅片。In one embodiment, the phase compensation structure is formed as a cuboid fin.

在一个实施方式中,所述相位补偿结构是高200-800nm、长和宽均在30-500nm的长方体翅片。In one embodiment, the phase compensation structure is a cuboid fin with a height of 200-800 nm and a length and width of 30-500 nm.

在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。In one embodiment, the phase compensation structure is formed as a solid micro-nano structure of a cuboid, a cylinder or a hemisphere.

在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。In one embodiment, a hollow structure of a cuboid, a cylinder or a hemisphere is further formed on the solid micro-nano structure.

本申请的另一方面提供了这样一种超表面成像装置,其包括:光阑,用于对入射的光束进行限制;至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对所述光阑限制后的光束进行偏折处理以对其进行相位补偿;以及成像传感器,将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号。其中,每个所述超表面镜片包括:第一部分,所述第一部分位于所述超表面镜片的中央,包含第一多个相位补偿结构;以及第二部分,所述第二部分包围所述第一部分,包含第二多个相位补偿结构,其中,经所述第一多个相位补偿结构和所述第二多个相位补偿结构进行所述相位补偿的光束分别入射在所述成像传感器上的、不相重叠的第一干涉相长位置和第二干涉相长位置处。Another aspect of the present application provides such a metasurface imaging device, comprising: a diaphragm for confining an incident light beam; at least one metasurface mirror, aligned with the diaphragm and having a plurality of phase compensations The structure is used for deflecting the light beam limited by the diaphragm to perform phase compensation; and the imaging sensor is used for converting the phase-compensated light into an electrical signal proportional to the signal of the light. Wherein, each of the metasurface lenses includes: a first part, the first part is located in the center of the metasurface lens, and includes a first plurality of phase compensation structures; and a second part, the second part surrounds the first part A part comprising a second plurality of phase compensation structures, wherein the light beams subjected to the phase compensation by the first plurality of phase compensation structures and the second plurality of phase compensation structures are respectively incident on the imaging sensor, at the non-overlapping first interferometric constructive position and the second interferometric constructive position.

在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。In one embodiment, the center of the aperture is aligned with the center of the metasurface lens in the direction of the optical axis.

在一个实施方式中,在所述第一部分中,所述第一多个相位补偿结构在靠近和远离所述超表面镜片的中心的方向上所引入的相移变化对称。In one embodiment, in the first portion, the phase shift changes introduced by the first plurality of phase compensation structures are symmetrical in directions close to and away from the center of the metasurface mirror.

在一个实施方式中,在所述第二部分中,所述第二多个相位补偿结构在靠近和远离所述超表面镜片的中心的方向上所引入的相移变化不对称。In one embodiment, in the second portion, the phase shift variation introduced by the second plurality of phase compensation structures is asymmetric in directions near and far from the center of the metasurface mirror.

在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。In one embodiment, the metasurface mirror further includes a transparent substrate, wherein the phase compensation structure is formed by a dielectric material on the transparent substrate.

在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述透明衬底的材料的折射率不同。In one embodiment, the dielectric material forming the phase compensation structure is an inorganic dielectric material, and the refractive index of the inorganic dielectric material is different from the refractive index of the material forming the transparent substrate.

在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。In one embodiment, the index of refraction of the inorganic dielectric material is greater than the index of refraction of the material forming the transparent substrate.

在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。In one embodiment, the inorganic dielectric material comprises zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide at least one of.

在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。In one embodiment, the material forming the transparent substrate is an inorganic material, and the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.

在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。In one embodiment, the material forming the transparent substrate is a resin-based organic transparent material.

在一个实施方式中,所述超表面镜片与所述成像传感器之间的距离小于所述超表面镜片与所述光阑之间的距离。In one embodiment, the distance between the metasurface mirror and the imaging sensor is smaller than the distance between the metasurface mirror and the diaphragm.

在一个实施方式中,所述相位补偿结构被形成为长方体翅片。In one embodiment, the phase compensation structure is formed as a cuboid fin.

在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。In one embodiment, the phase compensation structure is formed as a solid micro-nano structure of a cuboid, a cylinder or a hemisphere.

在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。In one embodiment, a hollow structure of a cuboid, a cylinder or a hemisphere is further formed on the solid micro-nano structure.

本申请的另一方面提供了这样一种超表面成像装置,其包括:光阑,用于对入射的光束进行限制;至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对所述光阑限制后的光束进行偏折处理以对其进行相位补偿;以及成像传感器,将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号;其中所述超表面镜片具有多个相位补偿结构,所述相位补偿结构的等效焦距在远离所述超表面镜片中心的方向上逐渐增大。Another aspect of the present application provides such a metasurface imaging device, comprising: a diaphragm for confining an incident light beam; at least one metasurface mirror, aligned with the diaphragm and having a plurality of phase compensations a structure for deflecting the light beam limited by the diaphragm to perform phase compensation; and an imaging sensor for converting the phase-compensated light into an electrical signal proportional to the signal of the light; The metasurface lens has a plurality of phase compensation structures, and the equivalent focal length of the phase compensation structures gradually increases in the direction away from the center of the metasurface lens.

在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。In one embodiment, the center of the aperture is aligned with the center of the metasurface lens in the direction of the optical axis.

在一个实施方式中,所述相位补偿从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。In one embodiment, the phase compensation varies with a decaying periodicity from the center of the metasurface mirror along the radial direction of the metasurface mirror.

在一个实施方式中,位于所述超表面镜片上的所述多个相位补偿结构中的每一个相对于所述超表面镜片的任一径向方向形成的旋转角度随着距所述超表面镜片的中心的距离的变化而改变。In one embodiment, the rotation angle formed by each of the plurality of phase compensation structures on the metasurface mirror with respect to any radial direction of the metasurface mirror varies with distance from the metasurface mirror changes with the distance from the center.

在一个实施方式中,所述多个相位补偿结构中的每一个的所述旋转角度从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。In one embodiment, the rotation angle of each of the plurality of phase compensation structures exhibits a decaying periodic change from the center of the metasurface mirror along a radial direction of the metasurface mirror.

在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。In one embodiment, the metasurface mirror further includes a transparent substrate, wherein the phase compensation structure is formed by a dielectric material on the transparent substrate.

在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。In one embodiment, the dielectric material forming the phase compensation structure is an inorganic dielectric material having a refractive index different from the refractive index of the material forming the substrate.

在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。In one embodiment, the index of refraction of the inorganic dielectric material is greater than the index of refraction of the material forming the transparent substrate.

在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。In one embodiment, the inorganic dielectric material comprises zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide at least one of.

在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。In one embodiment, the material forming the transparent substrate is an inorganic material, and the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.

在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。In one embodiment, the material forming the transparent substrate is a resin-based organic transparent material.

在一个实施方式中,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。In one embodiment, the distance between the metasurface mirror and the imaging sensor is smaller than the distance between the metasurface mirror and the diaphragm.

在一个实施方式中,所述相位补偿结构被形成为长方体翅片。In one embodiment, the phase compensation structure is formed as a cuboid fin.

在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。In one embodiment, the phase compensation structure is formed as a solid micro-nano structure of a cuboid, a cylinder or a hemisphere.

在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。In one embodiment, a hollow structure of a cuboid, a cylinder or a hemisphere is further formed on the solid micro-nano structure.

本申请的另一方面提供了这样一种超表面成像装置,其包括:光阑,用于对入射的光束进行限制;至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对所述光阑限制后的光束进行偏折处理以对其进行相位补偿;以及成像传感器,将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号;其中,所述超表面镜片具有多个相位补偿区域,每个相位补偿区域包括多个相位补偿结构,以及所述多个相位补偿区域中的至少一个的相位补偿结构在靠近和远离所述超表面镜片中心的方向上所引入的相移变化不对称。在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。Another aspect of the present application provides such a metasurface imaging device, comprising: a diaphragm for confining an incident light beam; at least one metasurface mirror, aligned with the diaphragm and having a plurality of phase compensations a structure for deflecting the light beam limited by the diaphragm to perform phase compensation; and an imaging sensor for converting the phase-compensated light into an electrical signal proportional to the signal of the light; Wherein, the metasurface lens has a plurality of phase compensation regions, each phase compensation region includes a plurality of phase compensation structures, and the phase compensation structure of at least one of the plurality of phase compensation regions is close to and away from the metasurface The phase shift variation introduced in the direction of the center of the lens is asymmetrical. In one embodiment, the center of the aperture is aligned with the center of the metasurface lens in the direction of the optical axis.

在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。In one embodiment, the metasurface mirror further includes a transparent substrate, wherein the phase compensation structure is formed by a dielectric material on the transparent substrate.

在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。In one embodiment, the dielectric material forming the phase compensation structure is an inorganic dielectric material having a refractive index different from the refractive index of the material forming the substrate.

在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。In one embodiment, the index of refraction of the inorganic dielectric material is greater than the index of refraction of the material forming the transparent substrate.

在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。In one embodiment, the inorganic dielectric material comprises zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide at least one of.

在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。In one embodiment, the material forming the transparent substrate is an inorganic material, and the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.

在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。In one embodiment, the material forming the transparent substrate is a resin-based organic transparent material.

在一个实施方式中,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。In one embodiment, the distance between the metasurface mirror and the imaging sensor is smaller than the distance between the metasurface mirror and the diaphragm.

在一个实施方式中,所述相位补偿结构被形成为长方体翅片。In one embodiment, the phase compensation structure is formed as a cuboid fin.

在一个实施方式中,所述相位补偿结构是高200-800nm、长和宽均在30-500nm的长方体翅片。In one embodiment, the phase compensation structure is a cuboid fin with a height of 200-800 nm and a length and width of 30-500 nm.

在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。In one embodiment, the phase compensation structure is formed as a solid micro-nano structure of a cuboid, a cylinder or a hemisphere.

在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。In one embodiment, a hollow structure of a cuboid, a cylinder or a hemisphere is further formed on the solid micro-nano structure.

现有技术中相位补偿结构的相位补偿仅根据距镜片中心的距离r变化。根据本申请,相位补偿结构的相位补偿能根据主光线角的变化而变化,而非对于主光线的入射角不做补偿而仅满足傍轴成像的要求,这样使得超透镜能具有一定的视场角,从而能够在实际使用时与像面上包含不止一个像素的CMOS传感器进行匹配。另外,本申请的优势还在于能够节省空间与CMOS更靠近地进行集成。The phase compensation of the phase compensation structure in the prior art varies only according to the distance r from the center of the lens. According to the present application, the phase compensation of the phase compensation structure can be changed according to the change of the chief ray angle, instead of not compensating the incident angle of the chief ray and only meeting the requirements of paraxial imaging, so that the superlens can have a certain field of view angle, so that it can be matched with CMOS sensors that contain more than one pixel on the image surface in actual use. In addition, an advantage of the present application is that it can be integrated closer to the CMOS in a space-saving manner.

附图说明Description of drawings

通过阅读参照以下附图所作的对非限制性实施方式所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:

图1示出了根据本申请实施方式的超表面成像装置;FIG. 1 shows a metasurface imaging device according to an embodiment of the present application;

图2示出了根据本申请实施方式的相位补偿结构;FIG. 2 shows a phase compensation structure according to an embodiment of the present application;

图3示出了根据本申请实施方式的相位补偿结构的相位补偿原理图;Fig. 3 shows the phase compensation principle diagram of the phase compensation structure according to the embodiment of the present application;

图4示出了根据本申请实施方式的镜片对CRA为零的光束成像;Figure 4 shows the imaging of a beam with zero CRA by a lens according to an embodiment of the present application;

图5示出了根据本申请实施方式的镜片对CRA不为零的光束成像;FIG. 5 illustrates the imaging of a light beam with a non-zero CRA by a lens according to an embodiment of the present application;

图6示出了根据本申请实施方式的镜片被分为多个同心区域;FIG. 6 shows that a lens according to an embodiment of the present application is divided into a plurality of concentric regions;

图7示出了根据本申请实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;7 shows a graph of the rotation angle φ of the phase compensation structure fins at a distance Δr from a reference position in each region according to an embodiment of the present application;

图8示出了根据本申请实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图;FIG. 8 shows a graph of the rotation angle φ of a cuboid fin according to an embodiment of the present application as a function of the distance r from the center to the edge of the metasurface;

图9示出了根据本申请另一实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;9 shows a graph of the rotation angle φ of the phase compensation structure fins at a distance Δr relative to a reference position in each region according to another embodiment of the present application;

图10示出了根据本申请另一实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图;FIG. 10 shows a graph of the variation of the rotation angle φ of a cuboid fin according to another embodiment of the present application as a function of the distance r from the center to the edge of the metasurface;

图11示出了根据本申请又一实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;11 shows a graph of the rotation angle φ of the phase compensation structural fins at a distance Δr relative to a reference position in each region according to yet another embodiment of the present application;

图12示出了根据本申请又一实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图。FIG. 12 is a graph showing the variation of the rotation angle φ of the cuboid fin with the distance r from the center to the edge of the metasurface according to yet another embodiment of the present application.

图13示出了根据本申请再一实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;13 shows a graph of the rotation angle φ of the phase compensation structure fins at a distance Δr relative to a reference position in each region according to yet another embodiment of the present application;

图14示出了根据本申请再一实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图。FIG. 14 is a graph showing the variation of the rotation angle φ of the cuboid fins with the distance r from the center to the edge of the metasurface according to yet another embodiment of the present application.

具体实施方式Detailed ways

为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。For a better understanding of the present application, various aspects of the present application will be described in more detail with reference to the accompanying drawings. It should be understood that these detailed descriptions are merely illustrative of exemplary embodiments of the present application and are not intended to limit the scope of the present application in any way. Throughout the specification, the same reference numerals refer to the same elements. The expression "and/or" includes any and all combinations of one or more of the associated listed items.

应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一介电材料也可被称作第二介电材料。It should be noted that in this specification, the expressions first, second, etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first dielectric material discussed below may also be referred to as a second dielectric material without departing from the teachings of the present application.

在附图中,为了便于说明,可能已稍微夸大了各部件的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。In the drawings, the thickness, size and shape of components may be slightly exaggerated for convenience of explanation. In particular, the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings. The drawings are examples only and are not drawn strictly to scale.

在整个说明书中,当诸如层、区域或基板的元件被描述为位于另一元件“上”、“连接到”或“联接到”另一元件时,该元件可直接位于该另一元件“上”、直接“连接到”或直接“联接到”该另一元件,或者可存在介于该元件与该另一元件之间的一个或多个其它元件。相反地,当元件被描述为“直接位于”另一元件“上”、“直接连接到”或“直接联接到”另一元件时,则可不存在介于该元件与该另一元件之间的其它元件。Throughout the specification, when an element such as a layer, region or substrate is described as being "on", "connected to" or "coupled to" another element, the element can be directly on the other element ", directly "connected to" or "coupled" directly to the other element, or one or more other elements may be present between the element and the other element. Conversely, when an element is described as being "directly on," "directly connected to," or "directly coupled to" another element, there may be no intervening element between the element and the other element. other components.

诸如“在……之上”、“较上”、“在……之下”和“较下”的空间相对措辞可以在本申请中为了描述便利而使用,以描述如附图中所示的一个元件相对于另一个元件的关系。除了涵盖附图中所描绘的定向之外,这些空间相对措辞旨在还涵盖设备在使用或操作中的不同的定向。例如,如果附图中的设备翻转,则描述为在另一元件“之上”或相对于该另一元件“较上”的元件将在该另一元件“之下”或相对于该另一元件“较下”。因此,根据设备的空间定向,措辞“在……之上”涵盖“在……之上”和“在……之下”两种定向。该设备还可以以其它方式定向(例如,旋转90度或在其它定向上),并且本申请中使用的空间相对措辞应被相应地解释。Spatially relative terms such as "above," "above," "below," and "lower" may be used in this application for descriptive convenience to describe an object as shown in the accompanying drawings. The relationship of one element to another element. In addition to encompassing the orientations depicted in the figures, these spatially relative terms are intended to encompass different orientations of the device in use or operation. For example, if the device in the figures is turned over, elements described as "above" or "above" another element would then be oriented "below" or relative to the other element The element is "lower". Thus, depending on the spatial orientation of the device, the wording "above" covers both "above" and "below" orientations. The device may also be oriented in other ways (eg, rotated 90 degrees or at other orientations) and the spatially relative terms used in this application should be interpreted accordingly.

还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除还存在一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰列表中的全部特征,而不是仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。另外,词语“示例性的”旨在指代示例或举例说明。It will also be understood that the terms "comprising", "comprising", "having", "comprising" and/or "comprising" when used in this specification mean that the stated features, elements and/or components are present , but does not exclude the presence of one or more other features, elements, components and/or combinations thereof. Furthermore, when an expression such as "at least one of" appears after a list of listed features, it modifies all of the features in the list and not only individual elements of the list. Furthermore, when describing embodiments of the present application, the use of "may" means "one or more embodiments of the present application." Additionally, the word "exemplary" is intended to refer to an example or illustration.

如在本文中使用的,词语“大致”、“大约”以及类似的词语用作表近似的词语,而不用作表程度的词语,并且旨在说明本领域普通技术人员能够认识到的测量值或计算值中的固有偏差。As used herein, the words "approximately," "approximately," and similar words are used as words of approximation, not of degree, and are intended to describe measurements or values that one of ordinary skill in the art would recognize. Inherent bias in calculated values.

除非另外限定,否则本文中使用的所有术语(包括技术术语和科学术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,术语(例如在常用词典中定义的术语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义进行解释,除非本文中明确如此限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms (such as those defined in commonly used dictionaries) should be interpreted as having meanings consistent with their meanings in the context of the related art and not in idealized or overly formalized meanings , unless expressly so limited herein.

需要说明的是,在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other if there is no conflict. In addition, unless clearly defined or contradicted by the context, the specific steps included in the methods described in the present application are not necessarily limited to the described order, but may be performed in any order or in parallel.

下面将参考附图并结合实施方式来详细说明本申请。The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.

图1示出了根据本申请的实施方式的超表面成像装置100。参考图1,其中示出了对光轴上的物体110成像的简图,图中距离和比例仅为示意。如图所示,超表面成像装置100包括光阑120、至少一个超表面镜片130和传感器140,其中,光阑120、至少一个超表面镜片130和传感器140沿超表面成像装置100的光轴依次设置。FIG. 1 shows a metasurface imaging device 100 according to an embodiment of the present application. Referring to FIG. 1 , there is shown a simplified diagram of imaging an object 110 on the optical axis, the distances and scales in the diagram are for illustration only. As shown in the figure, the metasurface imaging device 100 includes a diaphragm 120 , at least one metasurface lens 130 and a sensor 140 , wherein the diaphragm 120 , the at least one metasurface lens 130 and the sensor 140 are in sequence along the optical axis of the metasurface imaging device 100 set up.

光阑120对光束起限制作用,即,对入射到成像装置100的光进行限制,以约束入射光束的大小。光阑120的中心O1与超表面镜片130的中心O2在光轴方向上大致对齐。至少一个超表面镜片130与光阑120对准并具有多个相位补偿结构220(参见图2和图3),以对经光阑120限制后的光束进行偏折处理,从而对光束进行相位补偿。多个相位补偿结构220中的每个所产生的相位补偿随着其距光阑120中心的距离的变化而变化。成像传感器140接收光线,并将光信号转换为与光信号成相应比例关系的电信号,即,将经过相位补偿后的光转换为与来自物体的光的信号成比例的电信号。The diaphragm 120 confines the light beam, that is, restricts the light incident on the imaging device 100, so as to constrain the size of the incident light beam. The center O 1 of the diaphragm 120 is substantially aligned with the center O 2 of the metasurface lens 130 in the optical axis direction. At least one metasurface mirror 130 is aligned with the diaphragm 120 and has a plurality of phase compensation structures 220 (see FIG. 2 and FIG. 3 ) to deflect the light beam limited by the diaphragm 120 so as to perform phase compensation on the light beam . The phase compensation produced by each of the plurality of phase compensation structures 220 varies as a function of its distance from the center of the stop 120 . The imaging sensor 140 receives light and converts the light signal into an electrical signal proportional to the light signal, that is, converts the phase-compensated light into an electrical signal proportional to the light signal from the object.

在示例性实施方式中,每个超表面镜片130可包括:位于超表面镜片中央区域的第一部分,该第一部分包含第一多个相位补偿结构;以及包围第一部分的第二部分(即,介于超表面镜片130的中央区域与边缘之间的部分),该第二部分包含第二多个相位补偿结构,其中,经第一多个相位补偿结构和第二多个相位补偿结构进行所述相位补偿的光束分别入射在成像传感器上的、不相重叠的第一干涉相长位置和第二干涉相长位置处。In an exemplary embodiment, each metasurface lens 130 may include: a first portion located in a central region of the metasurface lens, the first portion containing the first plurality of phase compensation structures; and a second portion (ie, an intermediate portion) surrounding the first portion (the portion between the central region and the edge of the metasurface lens 130), the second portion includes a second plurality of phase compensation structures, wherein the first plurality of phase compensation structures and the second plurality of phase compensation structures are described. The phase-compensated light beams are incident on the imaging sensor at non-overlapping first and second interferometric constructive locations, respectively.

在将超表面镜片的表面划分成位于中央区域的第一部分和第二部分的情况下,第一部分中的第一多个相位补偿结构在靠近和远离超表面镜片的中心的方向上所引入的相移变化对称;第二部分的第二多个相位补偿结构在靠近和远离超表面镜片的中心的方向上所引入的相移变化不对称。In the case of dividing the surface of the metasurface lens into a first portion and a second portion located in the central region, the phase compensating structures introduced by the first plurality of phase compensation structures in the first portion in directions close to and away from the center of the metasurface lens The shift variation is symmetric; the phase shift variation introduced by the second plurality of phase compensation structures of the second portion is asymmetric in directions close to and away from the center of the metasurface mirror.

可替代地,超表面镜片130具有的上述多个相位补偿结构的等效焦距在远离超表面镜片130中心的方向上逐渐增大。Alternatively, the equivalent focal lengths of the above-mentioned plurality of phase compensation structures of the meta-surface lens 130 gradually increase in the direction away from the center of the meta-surface lens 130 .

可替代地,超表面镜片130具有多个相位补偿区域,每个相位补偿区域包括多个相位补偿结构,以及其中,在多个相位补偿区域中的至少一个相位补偿区域中,相位补偿结构在靠近和远离超表面镜片的中心的方向上所引入的相移变化不对称。Alternatively, the metasurface lens 130 has a plurality of phase compensation regions, each phase compensation region includes a plurality of phase compensation structures, and wherein, in at least one phase compensation region of the plurality of phase compensation regions, the phase compensation structure is close to the phase compensation region. and the phase shift variation introduced in the direction away from the center of the metasurface mirror is asymmetric.

由于物体110上不同位置所发射的光线通过光阑120时与O1-O2所限定的光轴所成的角度各不相同,为便于说明,在本文中将通过光阑120中心O1的光线与光轴所成的角度定义为主光线角CRA。来自物体110的以特定主光线角为中心的一系列光线(如图1中所示的光线121、122、123和光线131、132、133)将通过超表面镜片130上的相位补偿结构引入一个与相位补偿结构的形状相关的Pancharatnam-Berry(PB)相位差,并在传感器140上的特定位置产生一个干涉相长的位置以形成图像150的像点。Since the light rays emitted from different positions on the object 110 pass through the diaphragm 120 at different angles with the optical axis defined by O 1 -O 2 , for the convenience of description, the light passing through the center O 1 of the diaphragm 120 will be used in this paper. The angle formed by the ray and the optical axis is defined as the principal ray angle CRA. A series of rays from object 110 centered at a particular chief ray angle (rays 121, 122, 123 and 131, 132, 133 as shown in FIG. 1) will be introduced into a The Pancharatnam-Berry (PB) phase difference is related to the shape of the phase compensation structure and produces an interfering constructive location at a particular location on the sensor 140 to form the image point of the image 150 .

图2和图3分别示出了根据本申请实施方式的相位补偿结构220的示意性结构。如图所示,超表面镜片130可包括衬底210和衬底上的多个相位补偿结构220。相位补偿结构220在透明衬底210上通过电介质材料形成。形成衬底210的材料可以是导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅等无机材料,也可以是树脂类的有机透明材料。形成相位补偿结构220的电介质材料可以是无机电介质材料,主要包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓等无机介电材料中的至少一种材料,但也可以包括PMMA等有机物材料。形成相位补偿结构220的材料的折射率与形成衬底210的材料的折射率不同,一般要求形成相位补偿结构220的材料的折射率较高。单个相位补偿结构220的尺度与光的波长相似或更小,视工作波段的不同,其最大长度或高度可例如在50nm至2000nm的范围内。在超表面镜片130中,虽然将多个上述相位补偿结构220布置在透明衬底210上,由于相位补偿结构220的尺度相比于衬底210要小多个数量级,因此仍然可以认为超表面镜片130是平面的光学器件,即,超表面镜片130是近似平坦的。FIG. 2 and FIG. 3 respectively show schematic structures of the phase compensation structure 220 according to an embodiment of the present application. As shown, the metasurface mirror 130 may include a substrate 210 and a plurality of phase compensation structures 220 on the substrate. The phase compensation structure 220 is formed on the transparent substrate 210 by a dielectric material. The material for forming the substrate 210 may be an inorganic material such as conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, silicon dioxide, or an organic transparent material such as resin. The dielectric material forming the phase compensation structure 220 may be an inorganic dielectric material, mainly including zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, At least one material among inorganic dielectric materials such as gallium arsenide, but may also include organic materials such as PMMA. The refractive index of the material forming the phase compensation structure 220 is different from that of the material forming the substrate 210 , and generally, the material forming the phase compensation structure 220 is required to have a higher refractive index. The dimensions of a single phase compensation structure 220 are similar to or smaller than the wavelength of light, and its maximum length or height may be, for example, in the range of 50 nm to 2000 nm, depending on the operating wavelength. In the metasurface lens 130, although a plurality of the above-mentioned phase compensation structures 220 are arranged on the transparent substrate 210, since the dimensions of the phase compensation structures 220 are several orders of magnitude smaller than the substrate 210, it can still be considered that the metasurface lens 130 is a planar optic, ie, the metasurface mirror 130 is approximately flat.

根据本申请的实施方式,超表面镜片130与成像传感器140之间的距离小于超表面镜片与光阑120之间的距离,从而能够节省空间与CMOS更靠近地进行集成。。According to the embodiment of the present application, the distance between the meta-surface mirror 130 and the imaging sensor 140 is smaller than the distance between the meta-surface mirror and the diaphragm 120 , thereby saving space and integrating closer to the CMOS. .

相位补偿结构220可为长方体翅片,如图2所示,可以定义每个长方体翅片的长为L、宽为W以及高为H。H可以根据材料种类在200-800nm范围内,L可以根据材料种类在30-500nm的范围内以及W可以根据材料种类在30-500nm的范围内,从而以尽可能多地在超表面镜片130上布置相位补偿结构220。本领域技术人员应该理解,这种长方体翅片对于圆偏振的入射光可以近似于半波片起到调整相位的效果,使得旋转翅片旋转角度α的入射左旋或者右旋圆偏振光分别出射为旋转2α或者-2α的右旋或左旋偏振光,如图3所示。由此,使得长方体翅片的旋转角度各不相同而在不同的位置引入不同的PB相位差,并使得上述PB相位差在设计的聚焦点处的光线为相长干涉即可实现聚焦效果。例如,传感器140与超表面镜片130之间的距离可以定义为焦距f,则在傍轴成像的限定条件下,相位补偿结构的旋转角度α的设计应满足:The phase compensation structure 220 can be a cuboid fin. As shown in FIG. 2 , the length of each cuboid fin can be defined as L, the width as W, and the height as H. H may be in the range of 200-800 nm according to the kind of material, L may be in the range of 30-500 nm according to the kind of material, and W may be in the range of 30-500 nm according to the kind of material, so that as much as possible on the metasurface lens 130 A phase compensation structure 220 is arranged. It should be understood by those skilled in the art that such cuboid fins can be similar to a half-wave plate to adjust the phase of the circularly polarized incident light, so that the incident left-handed or right-handed circularly polarized light with the rotation angle α of the rotating fin respectively exits as Right- or left-handed polarized light rotated by 2α or -2α, as shown in Figure 3. As a result, the rotation angles of the cuboid fins are different to introduce different PB phase differences at different positions, and the light rays at the designed focus point with the above PB phase differences can achieve the focusing effect. For example, the distance between the sensor 140 and the metasurface lens 130 can be defined as the focal length f, then under the limited condition of paraxial imaging, the design of the rotation angle α of the phase compensation structure should satisfy:

Figure BDA0002661041090000081
Figure BDA0002661041090000081

其中,λ为波长,r为每个长方体翅片距离超表面镜片130中心的距离,k为整数且优选可以是0。Among them, λ is the wavelength, r is the distance between each cuboid fin and the center of the metasurface mirror 130 , and k is an integer and can preferably be 0.

本领域技术人员还将知晓每个单个的相位补偿结构并不限于长方体翅片,而是可以采用长方体、柱体、半球体等实心微纳结构,或者进一步在其上具有长方体、柱体、半球体的凹陷或者孔洞的空心或者部分空心微纳结构来实现相位的进一步微调,以达成消除色差、偏振敏感度等进一步的效果。尤其应当注意的是,相位补偿结构可以由多个不同尺寸的上述实心或者空心微纳结构的组合来组成一个单独的相位补偿单元,并利用多个相位补偿单元的组合达成消除色差、偏振敏感度等进一步的效果。也就是说,超表面镜片130上的相位补偿结构220的大小、间距和旋转角度可以各不相同,而不限于彼此一致的图2至图3中的情况。如果使用此类复杂相位补偿结构,则难以以解析形式计算所需的相位补偿结构220的大小、间距和旋转角度等,而需要使用FDTD(时域有限差分)、有限元FEM等数值模拟方法进行分析,只需满足

Figure BDA0002661041090000091
的相位补偿即可。Those skilled in the art will also know that each single phase compensation structure is not limited to cuboid fins, but can adopt solid micro-nano structures such as cuboid, cylinder, hemisphere, or further have cuboid, cylinder, hemisphere on it. The hollow or partially hollow micro-nano structure of the body is used to achieve further fine-tuning of the phase, so as to achieve further effects such as eliminating chromatic aberration and polarization sensitivity. In particular, it should be noted that the phase compensation structure can be composed of a combination of the above-mentioned solid or hollow micro-nano structures of different sizes to form a single phase compensation unit, and the combination of multiple phase compensation units can be used to eliminate chromatic aberration and polarization sensitivity. wait for further effects. That is, the sizes, spacings and rotation angles of the phase compensation structures 220 on the metasurface mirror 130 may vary, and are not limited to the cases in FIGS. 2 to 3 that are consistent with each other. If such a complex phase compensation structure is used, it is difficult to calculate the required size, spacing and rotation angle of the phase compensation structure 220 in analytical form, and numerical simulation methods such as FDTD (Finite Difference Time Domain), finite element FEM, etc. analysis, just satisfy
Figure BDA0002661041090000091
phase compensation.

对于宽波段(或者多波长)的成像情形,则上式中λ的会变化。此时可以简单地将多个不同波长的相位补偿结构220在不同的空间位置中互相组合,例如将多个代表波长的相位补偿结构220作为一组使得不同波长的聚焦效果产生一定的均衡,或者将多个代表波长的相位补偿结构形成为超表面镜头的不同空间部分。也可以在根据某一参加波长设计的相位补偿结构基础上进一步加入引入的相移随着波长变化的色差补偿结构,如根据翅片结构等纳米结构内部的谐振模式或者纳米结构之间的组合谐振模式使得所提供的相移会随着波长变化,由于难以以解析形式计算何种纳米结构或者组合可以提供这样的随波长变化的相移,现有技术中一般通过计算机模拟的方式在穷举多种可能的结构之后选取可提供最符合的相移曲线的结构。For broadband (or multi-wavelength) imaging situations, λ in the above formula will vary. At this time, a plurality of phase compensation structures 220 with different wavelengths can be simply combined with each other in different spatial positions, for example, a plurality of phase compensation structures 220 representing wavelengths can be used as a group to achieve a certain balance of focusing effects of different wavelengths, or Multiple phase compensation structures representing wavelengths are formed as different spatial parts of the metasurface lens. It is also possible to further add a chromatic aberration compensation structure whose phase shift changes with wavelength on the basis of the phase compensation structure designed according to a certain participating wavelength, such as the resonance mode within the nanostructure such as the fin structure or the combined resonance between the nanostructures. The mode causes the provided phase shift to vary with wavelength. Since it is difficult to analytically calculate which nanostructures or combinations can provide such a wavelength-dependent phase shift, computer simulations are generally used in the prior art to be exhaustive. After selecting the possible structure, the structure that provides the most matching phase shift curve is selected.

在实际情况下,由于传感器140上的各个位置的像素均可用于成像,而不仅仅是用光轴附近的一小块区域进行成像,这就要求对于不同的入射光线都同时成像在传感器140所在平面的不同位置上,而不能限于以上分析中傍轴入射的特殊情况。如图1所示,虚线所示出的光束121、122、123的CRA为0,符合上述傍轴成像的情况。但实线示出的光束131、132和133的CRA不为零,对该CRA的光束所需要的成像位置也同样要与傍轴光束121、122和123的成像位置不同,在此情况下,需要满足的相位补偿也将产生变化。如图5所示,由于透镜在多数情况下要对距离远大于焦距的外界场景成像,可以将入射的细光束等效看作平行光,此时所需的相位补偿变为:In practical situations, since the pixels at various positions on the sensor 140 can be used for imaging, not just a small area near the optical axis for imaging, this requires that different incident light rays are simultaneously imaged at the location of the sensor 140 different positions of the plane, and cannot be limited to the special case of paraxial incidence in the above analysis. As shown in FIG. 1 , the CRAs of the light beams 121 , 122 , and 123 shown by the dotted lines are 0, which conforms to the above-mentioned situation of paraxial imaging. However, the CRA of the beams 131, 132 and 133 shown by the solid lines is not zero, and the imaging position required for the beams of the CRA is also different from the imaging positions of the paraxial beams 121, 122 and 123. In this case, The phase compensation that needs to be met will also change. As shown in Figure 5, since the lens needs to image an external scene with a distance far greater than the focal length in most cases, the incident beamlet can be regarded as parallel light equivalently, and the required phase compensation becomes:

Figure BDA0002661041090000092
Figure BDA0002661041090000092

其中,

Figure BDA0002661041090000093
in,
Figure BDA0002661041090000093

其中,λ为波长,where λ is the wavelength,

f为传感器140与超表面镜片130之间的距离(即焦距),f is the distance between the sensor 140 and the metasurface lens 130 (ie, the focal length),

f’为主光线从超表面镜片130到达传感器140所经过的距离,f' is the distance traveled by the principal ray from the metasurface lens 130 to the sensor 140,

Δr是相位补偿结构距离主光线与超表面镜片130交点的距离,Δr is the distance from the phase compensation structure to the intersection of the chief ray and the metasurface mirror 130,

θ=arccos(f/f’)。θ=arccos(f/f').

可以看出相位补偿与f’和CRA均相关,也就是将根据光阑120的中心的距离的变化而变化。通过f’的选取可以使得超表面成像装置适应于不同尺寸的传感器。如果使用翅片形状的相位补偿结构,则翅片旋转的角度应为上式中

Figure BDA0002661041090000104
的1/2,其中,对于左旋入射光,则旋转的角度为
Figure BDA0002661041090000105
的正1/2,对于右旋偏振光,则旋转的角度为
Figure BDA0002661041090000103
的负1/2。对于不同圆偏振,旋转方向是相反的。仅在CRA=0的情况下上式等价于傍轴情形,而对在0-90°之间的CRA则与傍轴情况下所需的相位补偿的差别将不断增大。It can be seen that the phase compensation is related to both f' and CRA, ie will vary according to the distance from the center of the stop 120. Through the selection of f', the metasurface imaging device can be adapted to sensors of different sizes. If a fin-shaped phase compensation structure is used, the angle of rotation of the fin should be in the above formula
Figure BDA0002661041090000104
1/2 of , where, for left-handed incident light, the angle of rotation is
Figure BDA0002661041090000105
positive 1/2 of , for right-handed polarized light, the angle of rotation is
Figure BDA0002661041090000103
minus 1/2 of . For different circular polarizations, the rotation directions are opposite. The above equation is equivalent to the paraxial case only in the case of CRA = 0, and the difference in phase compensation required from the paraxial case will continue to increase for CRA between 0-90°.

在一个简化的实施方式中,可以使聚焦点位于主光线延长线与传感器所在的像面相交的位置:In a simplified implementation, the focal point can be located where the extension line of the chief ray intersects the image plane where the sensor is located:

Figure BDA0002661041090000101
Figure BDA0002661041090000101

其中f/cosCRA可以定义为等效焦距,也就是在超表面镜片130径向方向上,等效焦距应逐渐增大。The f/cosCRA can be defined as the equivalent focal length, that is, in the radial direction of the metasurface lens 130, the equivalent focal length should gradually increase.

为了满足上式要求,超表面镜片130可分为多个区域,多个区域可以彼此之间互不重叠,各自按照一定范围内的CRA进行设计。也可以互相部分地重叠使得对于CRA的响应在镜片的径向方向上连续改变。In order to meet the requirements of the above formula, the metasurface lens 130 may be divided into multiple regions, and the multiple regions may not overlap with each other, each of which is designed according to a CRA within a certain range. It is also possible to partially overlap each other such that the response to CRA changes continuously in the radial direction of the lens.

如图6所示,可以将超表面镜片130按照CRA分为多个同心区域,每个区域根据上述公式中不同的CRA进行设计。每个区域的形状不限于上述的环形,而是可以根据超表面镜片130自身的形状进行划分,如矩形、多边形、不规则形状等。还可以将超表面镜片130在坐标系中按照区域划分为多个的网格,并在不同的网格内根据相应的CRA和Δr以及上述公式进行不同的相位补偿结构的布置。每个同心区域的大小或者是宽度可以根据实际微加工能力进行确定。As shown in FIG. 6 , the metasurface lens 130 can be divided into multiple concentric regions according to CRA, and each region is designed according to different CRAs in the above formula. The shape of each region is not limited to the above-mentioned ring shape, but can be divided according to the shape of the meta-surface lens 130 itself, such as a rectangle, a polygon, an irregular shape, and the like. The metasurface lens 130 can also be divided into multiple grids according to regions in the coordinate system, and different phase compensation structures can be arranged in different grids according to the corresponding CRA and Δr and the above formula. The size or width of each concentric region can be determined according to the actual micromachining capability.

实施例1Example 1

在一个示例中,设CRA最大为30°,波长为500纳米,共布置6个同心的环形区域,每个区域的宽度(例如,图6中的r1、r2、r3、r4和r5)以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为50微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应地如表1和图7所示。In one example, assuming that the CRA is 30° at maximum and the wavelength is 500 nm, 6 concentric annular regions are arranged in total, and the width of each region (for example, r 1 , r 2 , r 3 , r 4 and r 5 ) and the diaphragm radius are both 20 microns, the distance between the diaphragm and the metasurface mirror is 200 microns, and f is 50 microns, then the phase compensation structure fins at the distance Δr relative to the corresponding reference position in each area The rotation angle φ is shown in Table 1 and Fig. 7 accordingly.

具体地,在本示例中,对于CRA=0°的区域,基准位置为超表面镜片130的中心O2;对于CRA=5°的区域,基准位置为CRA=5°的区域与CRA=0°的区域的交界处;对于CRA=10°的区域,基准位置为CRA=10°的区域与CRA=5°的区域的交界处;对于CRA=15°的区域,基准位置为CRA=15°的区域与CRA=10°的区域的交界处;对于CRA=20°的区域,基准位置为CRA=20°的区域与CRA=15°的区域的交界处;对于CRA=25°的区域,基准位置为CRA=25°的区域与CRA=20°的区域的交界处;对于CRA=30°的区域,基准位置为CRA=30°的区域与CRA=25°的区域的交界处。Specifically, in this example, for the region of CRA=0°, the reference position is the center O 2 of the metasurface lens 130 ; for the region of CRA=5°, the reference position is the region of CRA=5° and CRA=0° For the area with CRA=10°, the reference position is the junction of the area with CRA=10° and the area with CRA=5°; for the area with CRA=15°, the reference position is the area with CRA=15° The junction of the area with the area with CRA=10°; for the area with CRA=20°, the reference position is the junction of the area with CRA=20° and the area with CRA=15°; for the area with CRA=25°, the reference position is the junction of the area of CRA=25° and the area of CRA=20°; for the area of CRA=30°, the reference position is the junction of the area of CRA=30° and the area of CRA=25°.

表1在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φTable 1 Rotation angle φ of phase compensation structural fins in each region relative to the center distance Δr

Figure BDA0002661041090000102
Figure BDA0002661041090000102

Figure BDA0002661041090000111
Figure BDA0002661041090000111

其中的一个显著区别在于,针对CRA=0°的情况,φ的变化在正负方向上是对称的;而针对CRA不等于0°的情况,在距离每个区域的基准位置同样距离的情况下,正方向(也就是远离超表面镜片130的中心的方向上)的φ的变化量开始大于负方向(也就是靠近超表面镜片130的中心的方向上)的φ的变化量,且正方向和负方向上的变化量的差随着CRA增大也出现增大的趋势。One notable difference is that for the case of CRA=0°, the change of φ is symmetrical in the positive and negative directions; while for the case of CRA not equal to 0°, at the same distance from the reference position of each area , the variation of φ in the positive direction (that is, in the direction away from the center of the meta-surface mirror 130 ) begins to be greater than the amount of change in φ in the negative direction (that is, in the direction close to the center of the meta-surface mirror 130 ), and the positive direction and the The difference in the amount of change in the negative direction also tends to increase as the CRA increases.

如果按照从超表面的中心到边缘的距离r为准,则对应的长方体翅片的旋转角度可从上述表中提取并列在一起如表2和图8所示。If the distance r from the center of the metasurface to the edge is the criterion, the corresponding rotation angle of the cuboid fins can be extracted from the above table and listed together as shown in Table 2 and Figure 8.

表2长方体翅片的旋转角度φ随r的变化Table 2 Rotation angle φ of cuboid fins as a function of r

Figure BDA0002661041090000112
Figure BDA0002661041090000112

Figure BDA0002661041090000121
Figure BDA0002661041090000121

实施例2Example 2

在另一个示例中,设CRA最大为30°,波长为700纳米,共布置6个同心的环形区域,每个区域的宽度以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为50微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应地如表3和图9所示。在本实施例中,基准位置与实施例1类似定义。In another example, the maximum CRA is 30° and the wavelength is 700 nanometers, and 6 concentric annular regions are arranged in total. The width of each region and the radius of the aperture are both 20 microns, and the distance between the aperture and the metasurface mirror is 200 μm, f is 50 μm, then the rotation angle φ of the phase compensation structure fin at the distance Δr relative to the corresponding reference position in each region is shown in Table 3 and FIG. 9 accordingly. In this embodiment, the reference position is defined similarly to Embodiment 1.

表3在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φTable 3 Rotation angle φ of phase compensation structural fins in each region relative to the center distance Δr

Figure BDA0002661041090000122
Figure BDA0002661041090000122

Figure BDA0002661041090000131
Figure BDA0002661041090000131

如果按照从超表面的中心到边缘的距离r为准,则对应的长方体翅片的旋转角度可从上述表中提取并列在一起如表4和图10所示。If the distance r from the center to the edge of the metasurface is the criterion, the corresponding rotation angle of the cuboid fins can be extracted from the above table and listed together as shown in Table 4 and Figure 10.

表4长方体翅片的旋转角度φ随r的变化Table 4 Rotation angle φ of cuboid fins as a function of r

r(μm)r(μm) φ(°)φ(°) r(μm)r(μm) φ(°)φ(°) r(μm)r(μm) φ(°)φ(°) r(μm)r(μm) φ(°)φ(°) 00 00 3535 -117.018-117.018 7070 -117.138-117.138 105105 00 11 -2.57117-2.57117 3636 -86.3583-86.3583 7171 -153.572-153.572 106106 -1.92891-1.92891 22 -10.2816-10.2816 3737 -60.2311-60.2311 7272 -195.06-195.06 107107 -7.77403-7.77403 33 -23.1221-23.1221 3838 -38.7091-38.7091 7373 -241.631-241.631 108108 -17.6224-17.6224 44 -41.0772-41.0772 3939 -21.8614-21.8614 7474 -199.121-199.121 109109 -31.5602-31.5602 55 -64.1258-64.1258 4040 -9.75365-9.75365 7575 -162.466-162.466 110110 -49.6722-49.6722 66 -92.2405-92.2405 4141 -2.4474-2.4474 7676 -129.297-129.297 111111 -72.0418-72.0418 77 -125.389-125.389 4242 00 7777 -99.7016-99.7016 112112 -98.7505-98.7505 88 -163.531-163.531 4343 -2.4642-2.4642 7878 -73.769-73.769 113113 -129.878-129.878 99 -206.625-206.625 4444 -9.8879-9.8879 7979 -51.5871-51.5871 114114 -165.5-165.5 1010 -254.622-254.622 4545 -22.3139-22.3139 8080 -33.2439-33.2439 115115 -205.692-205.692 1111 -247.546-247.546 4646 -39.7797-39.7797 8181 -18.8272-18.8272 116116 -152.982-152.982 1212 -201.204-201.204 4747 -62.317-62.317 8282 -8.42388-8.42388 117117 -125.015-125.015 1313 -159.499-159.499 4848 -89.9521-89.9521 8383 -2.1199-2.1199 118118 -99.6536-99.6536 1414 -122.497-122.497 4949 -122.705-122.705 8484 00 119119 -76.9736-76.9736 1515 -90.2626-90.2626 5050 -160.591-160.591 8585 -2.14733-2.14733 120120 -57.0527-57.0527 1616 -62.8558-62.8558 5151 -203.616-203.616 8686 -8.64316-8.64316 121121 -39.9702-39.9702 1717 -40.3318-40.3318 5252 -251.784-251.784 8787 -19.5666-19.5666 122122 -25.8067-25.8067 1818 -22.7412-22.7412 5353 -218.992-218.992 8888 -34.9941-34.9941 123123 -14.644-14.644 1919 -10.1296-10.1296 5454 -178.483-178.483 8989 -54.9994-54.9994 124124 -6.5656-6.5656 2020 -2.53753-2.53753 5555 -141.884-141.884 9090 -79.6531-79.6531 125125 -1.65576-1.65576 21twenty one 00 5656 -109.28-109.28 9191 -109.022-109.022 126126 00 22twenty two -2.54636-2.54636 5757 -80.7595-80.7595 9292 -143.17-143.17 127127 -1.68469-1.68469 23twenty three -10.2001-10.2001 5858 -56.406-56.406 9393 -182.154-182.154 128128 -6.79694-6.79694 24twenty four -22.9789-22.9789 5959 -36.3032-36.3032 9494 -226.031-226.031 129129 -15.4245-15.4245 2525 -40.8942-40.8942 6060 -20.533-20.533 9595 -176.782-176.782 130130 -27.6553-27.6553 2626 -63.9514-63.9514 6161 -9.17479-9.17479 9696 -144.367-144.367 131131 -43.5778-43.5778 2727 -92.1498-92.1498 6262 -2.3057-2.3057 9797 -114.999-114.999 132132 -63.2802-63.2802 2828 -125.482-125.482 6363 00 9898 -88.7615-88.7615 133133 -86.8504-86.8504 2929 -163.936-163.936 6464 -2.32887-2.32887 9999 -65.7396-65.7396 134134 -114.376-114.376 3030 -207.492-207.492 6565 -9.36001-9.36001 100100 -46.0193-46.0193 135135 -145.943-145.943 3131 -256.125-256.125 6666 -21.1574-21.1574 101101 -29.6875-29.6875 136136 -181.638-181.638 3232 -235.426-235.426 6767 -37.7808-37.7808 102102 -16.8316-16.8316 3333 -191.631-191.631 6868 -59.2858-59.2858 103103 -7.53954-7.53954 3434 -152.135-152.135 6969 -85.723-85.723 104104 -1.89958-1.89958

实施例3Example 3

在又一个示例中,设CRA最大为30°,波长为500纳米,共布置6个同心的环形区域,每个区域的宽度以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为60微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应地如表5和图11所示。在本实施例中,基准位置与实施例1类似定义。In another example, the maximum CRA is 30° and the wavelength is 500 nanometers, and 6 concentric annular regions are arranged in total. The width of each region and the radius of the aperture are both 20 microns, and the distance between the aperture and the metasurface mirror is 200 μm, f is 60 μm, then the rotation angle φ of the phase compensation structure fin at the distance Δr relative to the corresponding reference position in each region is shown in Table 5 and FIG. 11 accordingly. In this embodiment, the reference position is defined similarly to Embodiment 1.

表5在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φTable 5 Rotation angle φ of phase compensation structure fins at distance Δr from center in each region

示例1Example 1 CRA=0°CRA=0° CRA=5°CRA=5° CRA=10°CRA=10° CRA=15°CRA=15° CRA=20°CRA=20° CRA=25°CRA=25° CRA=30°CRA=30° Δr(μm)Δr(μm) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) 1010 -297.945-297.945 -298.853-298.853 -292.926-292.926 -280.288-280.288 -261.449-261.449 -237.298-237.298 -209.068-209.068 99 -241.648-241.648 -242.038-242.038 -236.89-236.89 -226.339-226.339 -210.831-210.831 -191.112-191.112 -168.19-168.19 88 -191.154-191.154 -191.187-191.187 -186.846-186.846 -178.266-178.266 -165.824-165.824 -150.126-150.126 -131.978-131.978 77 -146.503-146.503 -146.317-146.317 -142.785-142.785 -136.033-136.033 -126.367-126.367 -114.264-114.264 -100.347-100.347 66 -107.731-107.731 -107.438-107.438 -104.693-104.693 -99.6001-99.6001 -92.399-92.399 -83.4492-83.4492 -73.2107-73.2107 55 -74.8702-74.8702 -74.5583-74.5583 -72.5473-72.5473 -68.9212-68.9212 -63.8542-63.8542 -57.6016-57.6016 -50.4845-50.4845 44 -47.9468-47.9468 -47.6777-47.6777 -46.3246-46.3246 -43.9479-43.9479 -40.6643-40.6643 -36.6403-36.6403 -32.0824-32.0824 33 -26.9831-26.9831 -26.7927-26.7927 -25.9949-25.9949 -24.6273-24.6273 -22.7582-22.7582 -20.4832-20.4832 -17.9185-17.9185 22 -11.9967-11.9967 -11.8947-11.8947 -11.524-11.524 -10.9029-10.9029 -10.0628-10.0628 -9.04702-9.04702 -7.9071-7.9071 11 -2.99979-2.99979 -2.96998-2.96998 -2.87334-2.87334 -2.71481-2.71481 -2.50258-2.50258 -2.24755-2.24755 -1.96264-1.96264 00 00 00 00 00 00 00 00 -1-1 -2.99979-2.99979 -2.96139-2.96139 -2.85701-2.85701 -2.69228-2.69228 -2.47591-2.47591 -2.21904-2.21904 -1.93452-1.93452 -2-2 -11.9967-11.9967 -11.8261-11.8261 -11.3934-11.3934 -10.7227-10.7227 -9.8496-9.8496 -8.819-8.819 -7.68216-7.68216 -3-3 -26.9831-26.9831 -26.5614-26.5614 -25.5546-25.5546 -24.0198-24.0198 -22.0391-22.0391 -19.7141-19.7141 -17.1596-17.1596 -4-4 -47.9468-47.9468 -47.1301-47.1301 -45.2824-45.2824 -42.5097-42.5097 -38.9611-38.9611 -34.8184-34.8184 -30.2843-30.2843 -5-5 -74.8702-74.8702 -73.4908-73.4908 -70.5152-70.5152 -66.1164-66.1164 -60.5318-60.5318 -54.0463-54.0463 -46.9746-46.9746 -6-6 -107.731-107.731 -105.598-105.598 -101.188-101.188 -94.762-94.762 -86.6663-86.6663 -77.3124-77.3124 -67.15-67.15 -7-7 -146.503-146.503 -143.401-143.401 -137.234-137.234 -128.367-128.367 -117.279-117.279 -104.532-104.532 -90.7307-90.7307 -8-8 -191.154-191.154 -186.848-186.848 -178.583-178.583 -166.85-166.85 -152.285-152.285 -135.62-135.62 -117.638-117.638 -9-9 -241.648-241.648 -235.881-235.881 -225.161-225.161 -210.13-210.13 -191.599-191.599 -170.493-170.493 -147.796-147.796 -10-10 -297.945-297.945 -290.44-290.44 -276.894-276.894 -258.122-258.122 -235.133-235.133 -209.067-209.067 -181.126-181.126

如果按照从超表面的中心到边缘的距离r为准,则所需的长方体翅片的旋转角度可从上述表中提取并列在一起如表6和图12所示。If the distance r from the center to the edge of the metasurface is the criterion, the required rotation angle of the cuboid fins can be extracted from the above table and listed together as shown in Table 6 and Figure 12.

表6长方体翅片的旋转角度φ随r的变化Table 6 Rotation angle φ of cuboid fins as a function of r

Figure BDA0002661041090000141
Figure BDA0002661041090000141

Figure BDA0002661041090000151
Figure BDA0002661041090000151

实施例4Example 4

在再一个示例中,设CRA最大为36°,波长为500纳米,共布置6个同心的环形区域,每个区域的宽度以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为50微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应应如表7和图13所示。在本实施例中,基准位置与实施例1类似定义。In another example, the maximum CRA is 36° and the wavelength is 500 nanometers, and 6 concentric annular regions are arranged in total. The width of each region and the radius of the aperture are both 20 microns, and the distance between the aperture and the metasurface mirror is 200 μm, f is 50 μm, then the rotation angle φ of the phase compensation structure fin at the distance Δr relative to the corresponding reference position in each region should be as shown in Table 7 and Figure 13. In this embodiment, the reference position is defined similarly to Embodiment 1.

表7在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φTable 7 Rotation angle φ of phase compensation structural fins at distance Δr from center in each region

示例1Example 1 CRA=0°CRA=0° CRA=6°CRA=6° CRA=12°CRA=12° CRA=18°CRA=18° CRA=24°CRA=24° CRA=30°CRA=30° CRA=36°CRA=36° Δr(μm)Δr(μm) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) φ(°)φ(°) 1010 -356.47-356.47 -358.019-358.019 -347.77-347.77 -326.042-326.042 -294.132-294.132 -254.294-254.294 -209.567-209.567 99 -289.276-289.276 -289.937-289.937 -281.04-281.04 -262.928-262.928 -236.731-236.731 -204.321-204.321 -168.163-168.163 88 -228.944-228.944 -228.994-228.994 -221.498-221.498 -206.793-206.793 -185.832-185.832 -160.126-160.126 -131.624-131.624 77 -175.544-175.544 -175.219-175.219 -169.125-169.125 -157.574-157.574 -141.335-141.335 -121.591-121.591 -99.8272-99.8272 66 -129.137-129.137 -128.629-128.629 -123.895-123.895 -115.199-115.199 -103.138-103.138 -88.5923-88.5923 -72.6514-72.6514 55 -89.7761-89.7761 -89.2367-89.2367 -85.7723-85.7723 -79.5933-79.5933 -71.1319-71.1319 -61.0089-61.0089 -49.9761-49.9761 44 -57.5081-57.5081 -57.0431-57.0431 -54.7147-54.7147 -50.6733-50.6733 -45.207-45.207 -38.7174-38.7174 -31.6824-31.6824 33 -32.3709-32.3709 -32.0419-32.0419 -30.6707-30.6707 -28.3504-28.3504 -25.2489-25.2489 -21.5942-21.5942 -17.6527-17.6527 22 -14.3942-14.3942 -14.2182-14.2182 -13.5819-13.5819 -12.5306-12.5306 -11.1412-11.1412 -9.51571-9.51571 -7.77139-7.77139 11 -3.59964-3.59964 -3.54819-3.54819 -3.38256-3.38256 -3.11491-3.11491 -2.76504-2.76504 -2.35856-2.35856 -1.92445-1.92445 00 00 00 00 00 00 00 00 -1-1 -3.59964-3.59964 -3.53347-3.53347 -3.35516-3.35516 -3.07851-3.07851 -2.72425-2.72425 -2.31806-2.31806 -1.88819-1.88819 -2-2 -14.3942-14.3942 -14.1005-14.1005 -13.3629-13.3629 -12.2396-12.2396 -10.815-10.815 -9.19183-9.19183 -7.48136-7.48136 -3-3 -32.3709-32.3709 -31.6454-31.6454 -29.9324-29.9324 -27.3693-27.3693 -24.149-24.149 -20.5017-20.5017 -16.6741-16.6741 -4-4 -57.5081-57.5081 -56.105-56.105 -52.9678-52.9678 -48.3512-48.3512 -42.6026-42.6026 -36.1293-36.1293 -29.3633-29.3633 -5-5 -89.7761-89.7761 -87.4093-87.4093 -82.3684-82.3684 -75.0665-75.0665 -66.0522-66.0522 -55.9583-55.9583 -45.4482-45.4482 -6-6 -129.137-129.137 -125.481-125.481 -118.029-118.029 -107.395-107.395 -94.3747-94.3747 -79.8738-79.8738 -64.8304-64.8304 -7-7 -175.544-175.544 -170.239-170.239 -159.841-159.841 -145.214-145.214 -127.448-127.448 -107.763-107.763 -87.4141-87.4141 -8-8 -228.944-228.944 -221.592-221.592 -207.693-207.693 -188.402-188.402 -165.15-165.15 -139.515-139.515 -113.106-113.106 -9-9 -289.276-289.276 -279.448-279.448 -261.469-261.469 -236.835-236.835 -207.36-207.36 -175.021-175.021 -141.814-141.814 -10-10 -356.47-356.47 -343.706-343.706 -321.052-321.052 -290.39-290.39 -253.959-253.959 -214.175-214.175 -173.451-173.451

如果按照从超表面的中心到边缘的距离r为准,则所需的长方体翅片的旋转角度可从上述表中提取并列在一起如表8和图14所示。If the distance r from the center to the edge of the metasurface is the criterion, the required rotation angle of the cuboid fins can be extracted from the above table and listed together as shown in Table 8 and Figure 14.

表8长方体翅片的旋转角度φ随r的变化Table 8 Rotation angle φ of cuboid fins as a function of r

r(μm)r(μm) φ(°)φ(°) r(μm)r(μm) φ(°)φ(°) r(μm)r(μm) φ(°)φ(°) r(μm)r(μm) φ(°)φ(°) 00 00 3535 -159.841-159.841 7070 -157.574-157.574 105105 00 11 -3.59964-3.59964 3636 -118.029-118.029 7171 -206.793-206.793 106106 -2.35856-2.35856 22 -14.3942-14.3942 3737 -82.3684-82.3684 7272 -262.928-262.928 107107 -9.51571-9.51571 33 -32.3709-32.3709 3838 -52.9678-52.9678 7373 -326.042-326.042 108108 -21.5942-21.5942 44 -57.5081-57.5081 3939 -29.9324-29.9324 7474 -253.959-253.959 109109 -38.7174-38.7174 55 -89.7761-89.7761 4040 -13.3629-13.3629 7575 -207.36-207.36 110110 -61.0089-61.0089 66 -129.137-129.137 4141 -3.35516-3.35516 7676 -165.15-165.15 111111 -88.5923-88.5923 77 -175.544-175.544 4242 00 7777 -127.448-127.448 112112 -121.591-121.591 88 -228.944-228.944 4343 -3.38256-3.38256 7878 -94.3747-94.3747 113113 -160.126-160.126 99 -289.276-289.276 4444 -13.5819-13.5819 7979 -66.0522-66.0522 114114 -204.321-204.321 1010 -356.47-356.47 4545 -30.6707-30.6707 8080 -42.6026-42.6026 115115 -254.294-254.294 1111 -343.706-343.706 4646 -54.7147-54.7147 8181 -24.149-24.149 116116 -173.451-173.451 1212 -279.448-279.448 4747 -85.7723-85.7723 8282 -10.815-10.815 117117 -141.814-141.814 1313 -221.592-221.592 4848 -123.895-123.895 8383 -2.72425-2.72425 118118 -113.106-113.106 1414 -170.239-170.239 4949 -169.125-169.125 8484 00 119119 -87.4141-87.4141 1515 -125.481-125.481 5050 -221.498-221.498 8585 -2.76504-2.76504 120120 -64.8304-64.8304 1616 -87.4093-87.4093 5151 -281.04-281.04 8686 -11.1412-11.1412 121121 -45.4482-45.4482 1717 -56.105-56.105 5252 -347.77-347.77 8787 -25.2489-25.2489 122122 -29.3633-29.3633 1818 -31.6454-31.6454 5353 -290.39-290.39 8888 -45.207-45.207 123123 -16.6741-16.6741 1919 -14.1005-14.1005 5454 -236.835-236.835 8989 -71.1319-71.1319 124124 -7.48136-7.48136 2020 -3.53347-3.53347 5555 -188.402-188.402 9090 -103.138-103.138 125125 -1.88819-1.88819 21twenty one 00 5656 -145.214-145.214 9191 -141.335-141.335 126126 00 22twenty two -3.54819-3.54819 5757 -107.395-107.395 9292 -185.832-185.832 127127 -1.92445-1.92445 23twenty three -14.2182-14.2182 5858 -75.0665-75.0665 9393 -236.731-236.731 128128 -7.77139-7.77139 24twenty four -32.0419-32.0419 5959 -48.3512-48.3512 9494 -294.132-294.132 129129 -17.6527-17.6527 2525 -57.0431-57.0431 6060 -27.3693-27.3693 9595 -214.175-214.175 130130 -31.6824-31.6824 2626 -89.2367-89.2367 6161 -12.2396-12.2396 9696 -175.021-175.021 131131 -49.9761-49.9761 2727 -128.629-128.629 6262 -3.07851-3.07851 9797 -139.515-139.515 132132 -72.6514-72.6514 2828 -175.219-175.219 6363 00 9898 -107.763-107.763 133133 -99.8272-99.8272 2929 -228.994-228.994 6464 -3.11491-3.11491 9999 -79.8738-79.8738 134134 -131.624-131.624 3030 -289.937-289.937 6565 -12.5306-12.5306 100100 -55.9583-55.9583 135135 -168.163-168.163 3131 -358.019-358.019 6666 -28.3504-28.3504 101101 -36.1293-36.1293 136136 -209.567-209.567 3232 -321.052-321.052 6767 -50.6733-50.6733 102102 -20.5017-20.5017 3333 -261.469-261.469 6868 -79.5933-79.5933 103103 -9.19183-9.19183 3434 -207.693-207.693 6969 -115.199-115.199 104104 -2.31806-2.31806

本申请的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本申请限于所公开的形式。很多修改和变化对于本领域技术人员而言是显然的。例如,本领域技术人员能够在本公开的教导下使用其它半导体工艺来制备超透镜。选择和描述实施方式是为了更好说明本申请的原理和实际应用,并且使本领域技术人员能够理解本申请从而设计适于特定用途的带有各种修改的各种实施方式。The description of the present application is presented for the purpose of illustration and description, and is not intended to be exhaustive or to limit the application to the form disclosed. Many modifications and variations will be apparent to those skilled in the art. For example, one of ordinary skill in the art can use other semiconductor processes to fabricate metalens under the teachings of this disclosure. The embodiment was chosen and described in order to better explain the principles of the application and the practical application, and to enable others skilled in the art to understand the application for various embodiments with various modifications as are suited to the particular use.

Claims (10)

1. A super-surface imaging apparatus, the super-surface imaging apparatus comprising:
the diaphragm is used for limiting the incident light beam;
at least one super-surface lens aligned with the diaphragm and having a plurality of phase compensation structures to deflect the light beam limited by the diaphragm for phase compensation thereof; and
an imaging sensor that converts the phase-compensated light into an electrical signal proportional to a signal of the light;
wherein the super-surface lens has a plurality of phase compensation structures, and the equivalent focal length of the phase compensation structures gradually increases in a direction away from the center of the super-surface lens.
2. The super surface imaging device of claim 1, wherein a center of the stop is aligned with a center of the super surface mirror in an optical axis direction.
3. The super surface imaging device as claimed in claim 2, wherein the phase compensation varies with a decaying periodicity from the center of the super surface lens in a radial direction of the super surface lens.
4. The super surface imaging device of any one of claims 1 to 3, wherein the super surface mirror further comprises a transparent substrate, wherein the phase compensation structure is formed on the transparent substrate by a dielectric material.
5. The super surface imaging device according to claim 4, wherein the dielectric material forming the phase compensation structure is an inorganic dielectric material having a refractive index different from a refractive index of a material forming the transparent substrate.
6. The super surface imaging apparatus according to claim 5, wherein the inorganic dielectric material has a refractive index greater than a refractive index of a material forming the transparent substrate.
7. The super surface imaging device of claim 5, wherein the inorganic dielectric material comprises at least one of zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide.
8. The super surface imaging device according to claim 5, wherein the material forming the transparent substrate is an inorganic material comprising one of conductive glass ITO, alumina, zinc oxide, magnesium fluoride, silicon dioxide.
9. The super surface imaging device according to claim 5, wherein a material forming the transparent substrate is a resin-based organic transparent material.
10. The super surface imaging device as claimed in claim 5, wherein the distance of the super surface mirror from the imaging sensor is less than the distance of the super surface mirror from the diaphragm.
CN202010904854.8A 2020-04-24 2020-04-24 Super-surface imaging device Active CN113485009B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010904854.8A CN113485009B (en) 2020-04-24 2020-04-24 Super-surface imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010904854.8A CN113485009B (en) 2020-04-24 2020-04-24 Super-surface imaging device
CN202010331976.2A CN111352237B (en) 2020-04-24 2020-04-24 A super surface imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202010331976.2A Division CN111352237B (en) 2020-04-24 2020-04-24 A super surface imaging device

Publications (2)

Publication Number Publication Date
CN113485009A true CN113485009A (en) 2021-10-08
CN113485009B CN113485009B (en) 2023-07-18

Family

ID=71197778

Family Applications (4)

Application Number Title Priority Date Filing Date
CN202010904852.9A Active CN113485008B (en) 2020-04-24 2020-04-24 Super-surface imaging device
CN202010903302.5A Active CN113485007B (en) 2020-04-24 2020-04-24 Super-surface imaging device
CN202010904854.8A Active CN113485009B (en) 2020-04-24 2020-04-24 Super-surface imaging device
CN202010331976.2A Active CN111352237B (en) 2020-04-24 2020-04-24 A super surface imaging device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202010904852.9A Active CN113485008B (en) 2020-04-24 2020-04-24 Super-surface imaging device
CN202010903302.5A Active CN113485007B (en) 2020-04-24 2020-04-24 Super-surface imaging device

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010331976.2A Active CN111352237B (en) 2020-04-24 2020-04-24 A super surface imaging device

Country Status (2)

Country Link
CN (4) CN113485008B (en)
WO (1) WO2021212811A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485008B (en) * 2020-04-24 2023-08-29 浙江舜宇光学有限公司 Super-surface imaging device
CN111897036A (en) * 2020-08-05 2020-11-06 南开大学 Achromatic Microlens Array Metasurface
CN111897137A (en) * 2020-09-04 2020-11-06 浙江舜宇光学有限公司 Metasurface lens imaging device and method
CN112135028A (en) * 2020-09-25 2020-12-25 Oppo(重庆)智能科技有限公司 Image sensor, imaging module and electronic device
CN114488525B (en) 2022-04-15 2022-08-23 中国科学院光电技术研究所 Super-structure surface imaging system, design method and detector
US12298469B2 (en) 2022-05-17 2025-05-13 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Single nanostructure-integrated metalens

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170129402A1 (en) * 2015-11-05 2017-05-11 Delphi Technologies, Inc. Camera With Light-Guide Array For Automated Vehicles
CN107453050A (en) * 2017-06-20 2017-12-08 南京航空航天大学 Surpass the broadband lens on surface based on phase gradient
CN108241208A (en) * 2018-02-08 2018-07-03 南京大学 Optical zoom method based on metalens using wavelength control
CN108291983A (en) * 2015-09-23 2018-07-17 奥斯兰姆施尔凡尼亚公司 Collimating metalens and techniques for fusing collimating metalens
CN108306111A (en) * 2017-12-15 2018-07-20 西安电子科技大学 Pascal Greggory antenna based on super surface
CN108419070A (en) * 2018-04-04 2018-08-17 东南大学 A Light Field Imaging Method Based on PB Phase Modulation
CN108873121A (en) * 2018-08-09 2018-11-23 上海理工大学 A kind of super surface recombination lenticule of super apochromatism
CN109061780A (en) * 2018-09-11 2018-12-21 鲁东大学 A kind of super surface lens that dual-wavelength coaxial independently focuses
CN109301417A (en) * 2018-08-28 2019-02-01 北京邮电大学 Broadband achromatic microwave metasurface lens and method for generating the same
CN109346492A (en) * 2018-10-11 2019-02-15 长春长光辰芯光电技术有限公司 Linear image sensor pixel array and object surface defect detection method
CN109343217A (en) * 2018-11-13 2019-02-15 南京大学 An achromatic light-field camera system and achromatic method based on metalens array
US20190064532A1 (en) * 2017-08-31 2019-02-28 Metalenz, Inc. Transmissive Metasurface Lens Integration
CN110297287A (en) * 2019-07-08 2019-10-01 苏州大学 A kind of circuit dichroism super lens and the light path system including the super lens
CN110333560A (en) * 2019-07-09 2019-10-15 合肥工业大学 A Broadband Achromatic Device Based on Dielectric Metasurface
CN110927965A (en) * 2019-12-20 2020-03-27 易思维(杭州)科技有限公司 Design method of compensation lens for compensating error caused by light deflection
CN111352237A (en) * 2020-04-24 2020-06-30 浙江舜宇光学有限公司 A metasurface imaging device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516128A (en) * 2016-04-05 2019-06-13 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Metalens for sub-wavelength resolution imaging
US11092815B2 (en) * 2016-09-15 2021-08-17 Magna International Inc. Metasurface lens assembly for chromatic separation
CN107315206B (en) * 2017-06-23 2019-03-22 南京大学 Surpass the efficient infrared optics lens and preparation method thereof of surface texture based on all dielectric
TWI696297B (en) * 2017-12-26 2020-06-11 中央研究院 Broadband achromatic metalens in the visible spectrum
US11977221B2 (en) * 2018-02-20 2024-05-07 President And Fellows Of Harvard College Aberration correctors based on dispersion-engineered metasurfaces
CN108445555A (en) * 2018-05-09 2018-08-24 华南师范大学 Super surface lens
CN109683310A (en) * 2019-01-10 2019-04-26 上海理工大学 A kind of super surface design method of cascade that THz wave ultra wide band achromatism focuses
CN109802242B (en) * 2019-03-05 2020-12-11 南京理工大学 metasurface lens
CN110099201B (en) * 2019-04-24 2020-07-03 浙江大学 An off-screen camera device based on a metasurface lens and its integration method
CN110515215B (en) * 2019-09-27 2024-03-12 深圳惠牛科技有限公司 Ultrathin optical module and ultrathin display device
US20200064523A1 (en) * 2019-10-31 2020-02-27 Intel Corporation Metasurface optical systems and methods
CN211979329U (en) * 2020-04-24 2020-11-20 浙江舜宇光学有限公司 A metasurface imaging device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291983A (en) * 2015-09-23 2018-07-17 奥斯兰姆施尔凡尼亚公司 Collimating metalens and techniques for fusing collimating metalens
US20170129402A1 (en) * 2015-11-05 2017-05-11 Delphi Technologies, Inc. Camera With Light-Guide Array For Automated Vehicles
CN107453050A (en) * 2017-06-20 2017-12-08 南京航空航天大学 Surpass the broadband lens on surface based on phase gradient
US20190064532A1 (en) * 2017-08-31 2019-02-28 Metalenz, Inc. Transmissive Metasurface Lens Integration
CN108306111A (en) * 2017-12-15 2018-07-20 西安电子科技大学 Pascal Greggory antenna based on super surface
CN108241208A (en) * 2018-02-08 2018-07-03 南京大学 Optical zoom method based on metalens using wavelength control
CN108419070A (en) * 2018-04-04 2018-08-17 东南大学 A Light Field Imaging Method Based on PB Phase Modulation
CN108873121A (en) * 2018-08-09 2018-11-23 上海理工大学 A kind of super surface recombination lenticule of super apochromatism
CN109301417A (en) * 2018-08-28 2019-02-01 北京邮电大学 Broadband achromatic microwave metasurface lens and method for generating the same
CN109061780A (en) * 2018-09-11 2018-12-21 鲁东大学 A kind of super surface lens that dual-wavelength coaxial independently focuses
CN109346492A (en) * 2018-10-11 2019-02-15 长春长光辰芯光电技术有限公司 Linear image sensor pixel array and object surface defect detection method
CN109343217A (en) * 2018-11-13 2019-02-15 南京大学 An achromatic light-field camera system and achromatic method based on metalens array
CN110297287A (en) * 2019-07-08 2019-10-01 苏州大学 A kind of circuit dichroism super lens and the light path system including the super lens
CN110333560A (en) * 2019-07-09 2019-10-15 合肥工业大学 A Broadband Achromatic Device Based on Dielectric Metasurface
CN110927965A (en) * 2019-12-20 2020-03-27 易思维(杭州)科技有限公司 Design method of compensation lens for compensating error caused by light deflection
CN111352237A (en) * 2020-04-24 2020-06-30 浙江舜宇光学有限公司 A metasurface imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘仕良,余彬彬,陈 旭,文 静: "关于超透镜斜入射时调制传递函数曲线的研究", 光学仪器 *

Also Published As

Publication number Publication date
WO2021212811A1 (en) 2021-10-28
CN113485007B (en) 2023-06-13
CN113485007A (en) 2021-10-08
CN111352237A (en) 2020-06-30
CN111352237B (en) 2025-05-16
CN113485009B (en) 2023-07-18
CN113485008B (en) 2023-08-29
CN113485008A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
CN113485008B (en) Super-surface imaging device
KR102778195B1 (en) Meta-lens and optical apparatus including the same
CN211979329U (en) A metasurface imaging device
Zuo et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging
US20210103075A1 (en) Meta lens and optical apparatus including the same
CN113917578A (en) Large-caliber chromatic aberration correction super lens, super lens system and optical system
US12072511B2 (en) Meta-lens, image capturing lens including the meta-lens, image capturing device including the image capturing lens, and electronic apparatus including the image capturing device
KR20200099832A (en) Multilayered meta lens and optical apparatus including the same
CN104932043B (en) Reflective off-axis lens based on metal micro-nanostructure antenna array
KR20200067074A (en) Meta-lens and optical apparatus including the same
CN114593689B (en) Optical fiber end face detection method and device
TW202246831A (en) Optical imaging system
CN114296155A (en) Wide-spectrum optical zoom system based on double-layer medium super-surface
TWI477810B (en) Optical device based on non-periodic sub-wavelength grating
JP2007226033A (en) Lens system
Luo et al. Meta‐Optics Based Parallel Convolutional Processing for Neural Network Accelerator
CN111897137A (en) Metasurface lens imaging device and method
TWI865417B (en) Optical imaging system and portable terminal
JP7071085B2 (en) Diffractive optical element, optical system, and image pickup device
CN111474611A (en) Super lens group and super imaging device
Chattopadhyay et al. Fiber positioning in microlens-fiber coupled integral field unit
US20140268371A1 (en) Apparatuses and Methods to Image Surfaces with Small Spot-Size and Large Field of View
CN114719976A (en) Push-broom type imaging spectrometer and imaging method thereof
JP2001324674A (en) Optical system and optical equipment
WO2024161881A1 (en) Optical lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant