JP2001324674A - Optical system and optical equipment - Google Patents

Optical system and optical equipment

Info

Publication number
JP2001324674A
JP2001324674A JP2001060351A JP2001060351A JP2001324674A JP 2001324674 A JP2001324674 A JP 2001324674A JP 2001060351 A JP2001060351 A JP 2001060351A JP 2001060351 A JP2001060351 A JP 2001060351A JP 2001324674 A JP2001324674 A JP 2001324674A
Authority
JP
Japan
Prior art keywords
diffraction grating
optical system
lens surface
curvature
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001060351A
Other languages
Japanese (ja)
Other versions
JP3467018B2 (en
Inventor
Hideki Ogawa
秀樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001060351A priority Critical patent/JP3467018B2/en
Publication of JP2001324674A publication Critical patent/JP2001324674A/en
Application granted granted Critical
Publication of JP3467018B2 publication Critical patent/JP3467018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an optical system capable of always obtaining excellent diffraction efficiency over an entire image plane. SOLUTION: In this optical system where a diffraction grating rotationally symmetric with respect to an optical axis is provided on a lens surface having curvature, the sign of the curvature of the lens surface on which the diffraction grating is provided is the same as the sign of a focal distance in the designed wavelength of a synthetic system from the surface of the optical system nearest to an object side to the surface thereof just before the lens surface on which the diffraction grating is provided, and is different from the sign of the distance of a position where the center light beam of off-axis luminous flux is made incident on the lens surface on which the diffraction grating is provided from the optical axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折光学素子を有
する光学系に関し、とくに回折光学素子と屈折光学素子
を組み合わせて色消しを良好に行ったフィルム用カメ
ラ、ビデオカメラ、デジタルカメラ、望遠鏡、プロジェ
クター等の光学機器に好適な光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system having a diffractive optical element. The present invention relates to an optical system suitable for an optical device such as a projector.

【0002】[0002]

【従来の技術】従来より光学系の色収差を補正する方法
の1つとして、分散の異なる2つの材質の硝材(レン
ズ)を組み合わせる方法がある。
2. Description of the Related Art Conventionally, as one method of correcting chromatic aberration of an optical system, there is a method of combining two glass materials (lenses) having different dispersions.

【0003】この従来の硝材の組み合わせにより色収差
を減じる方法に対して、レンズ面やあるいは光学系の一
部に回折作用を有する回折格子等の回折光学素子を設け
ることで、色収差を減じる方法がSPIE Vol. 1354 Inter
national LensD esignConference(1990)等の文献や特開
平4−213421号公報、特開平6−324262号
公報、USP5044706等により開示されている。
In contrast to the conventional method of reducing chromatic aberration by combining glass materials, SPIE is a method of reducing chromatic aberration by providing a diffractive optical element such as a diffraction grating having a diffractive effect on a lens surface or a part of an optical system. Vol. 1354 Inter
It is disclosed in documents such as national Lens DesignConference (1990), JP-A-4-213421, JP-A-6-324262, and US Pat. No. 5,044,706.

【0004】これは、光学系中の屈折面と回折面とで
は、ある基準波長の光線に対する色収差の出方が逆方向
に発現するという物理現象を利用したものである。さら
に、このような回折光学素子は、その周期的構造の周期
を変化させることで非球面レンズ的な効果をも持たせる
ことができ収差の低減に大きな効果がある。
[0004] This utilizes a physical phenomenon in which chromatic aberration for a light beam having a certain reference wavelength appears in the opposite direction between a refraction surface and a diffraction surface in an optical system. Further, such a diffractive optical element can have an effect like an aspheric lens by changing the period of the periodic structure, and has a great effect on reduction of aberration.

【0005】ここで、屈折においては、1本の光線は屈
折後も1本の光線であるのに対し、回折においては、各
次数に光が分かれてしまう。そこで、光学系に回折格子
を用いる場合には、使用波長領域の光束が1つの特定次
数(以後設計次数とも言う)に集中するように格子構造
を決定し、かつ画面全体にわたり、良好なる回折効率が
得られるようにする必要がある。
Here, in refraction, one light beam is one light beam after refraction, whereas in diffraction, light is divided into each order. Therefore, when a diffraction grating is used in the optical system, the grating structure is determined so that the luminous flux in the used wavelength region is concentrated on one specific order (hereinafter also referred to as a design order), and good diffraction efficiency is obtained over the entire screen. Needs to be obtained.

【0006】回折格子として、ブレーズ形状の回折格子
を用い、観察画面全体の回折効率の均一性を狙った光学
系が、特開平10−268115号公報で提案されてい
る。
Japanese Patent Application Laid-Open No. H10-268115 proposes an optical system which uses a blazed diffraction grating as a diffraction grating and aims at uniformity of diffraction efficiency over the entire observation screen.

【0007】特開平10−268115号公報では、光
軸を中心とした中心領域の格子(格子部)の深さより
も、周辺領域の格子の高さを低くしたブレーズ形状の回
折格子を用い、中心領域と周辺領域で回折効率がほぼ同
じとなるように構成したケプラー型ファインダー光学系
と、光軸を中心とした中心領域の非有効面(回折格子の
うちの回折作用をしない面で回折格子の側面に相当)を
ほぼ円柱面の一部とし、周辺領域の非有効面を円錐面の
一部としたブレーズ形状の回折格子を用い、周辺領域で
の非有効面での光線のケラレを防止したケプラー型ファ
インダー光学系を開示している。
Japanese Patent Laid-Open No. 10-268115 discloses a blazed diffraction grating in which the height of the grating in the peripheral region is lower than the depth of the grating (grating portion) in the central region centered on the optical axis. A Kepler-type finder optical system configured so that the diffraction efficiency is almost the same in the region and the peripheral region, and a non-effective surface in the center region centered on the optical axis. (Corresponding to the side surface) is almost a part of a cylindrical surface, and a blazed diffraction grating is used in which the non-effective surface in the peripheral region is a part of a conical surface to prevent vignetting of light rays on the non-effective surface in the peripheral region. A Kepler-type finder optical system is disclosed.

【0008】[0008]

【発明が解決しようとする課題】特開平10−2681
15号公報で提案されているケプラー型ファインダー光
学系では、軸上光束と最軸外光束が絞りから比較的離れ
た位置に設けた回折光学面上を通過する位置で各々の光
束が分離しており、該公報の構成では、この様な光線の
通過状態でないと光線のケラレを含む回折効率の均一性
の効果が得られないという性質がある。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. Hei 10-2681
In the Kepler-type finder optical system proposed in Japanese Patent Publication No. 15, each light beam is separated at a position where the on-axis light beam and the most off-axis light beam pass through a diffractive optical surface provided at a position relatively far from the stop. The configuration of the publication has a property that the effect of uniformity of diffraction efficiency including vignetting of the light beam cannot be obtained unless the light beam is in such a passing state.

【0009】つまり、本発明の光学系として想定してい
る撮影光学系では、後述の実施形態で説明する図1,図
2及び図3からも分るように、光学系の内部において軸
上光束と軸外光束が完全に分離していない為、絞りから
離れたレンズ面であっても、軸上光束と軸外光束の通過
領域は重なる傾向にある。
That is, in the photographing optical system assumed as the optical system of the present invention, as can be seen from FIGS. 1, 2 and 3 which will be described in the embodiments described later, the on-axis light flux inside the optical system will be described. And the off-axis luminous flux are not completely separated, so that even on the lens surface away from the stop, the passing regions of the on-axis luminous flux and the off-axis luminous flux tend to overlap.

【0010】従って、該公報の構成をそのまま撮影レン
ズに適用しても、軸上と軸外の双方で、同時に良好な回
折効率を得ることは困難である。
Therefore, it is difficult to obtain good diffraction efficiency both on-axis and off-axis at the same time, even if the configuration of this publication is applied to a photographic lens as it is.

【0011】特に、比較的大口径の撮影レンズでは、軸
上光束と軸外光束の回折格子を設けたレンズ面での入射
光束のそれぞれの領域は大きく重なることになるため、
このままの構成では更に不利となる。
In particular, in the case of a photographing lens having a relatively large aperture, the respective regions of the incident light beam on the lens surface provided with the diffraction grating of the on-axis light beam and the off-axis light beam largely overlap each other.
The configuration as it is further disadvantageous.

【0012】本発明の目的は、回折光学素子と屈折光学
素子を組み合わせて色消しを行うとき、画面の各位置に
到達する各光束が回折光学面上で互いに大きく重なりあ
っていても、画面全体にわたり良好な回折効率が得ら
れ、高い光学性能を有した光学系の提供を目的とする。
It is an object of the present invention to provide achromatization by combining a diffractive optical element and a refractive optical element, even if the light beams reaching each position on the screen greatly overlap each other on the diffractive optical surface. It is an object of the present invention to provide an optical system which has good diffraction efficiency over a wide range and has high optical performance.

【0013】[0013]

【課題を解決するための手段】請求項1の発明の光学系
は、光軸に対して回転対称の回折格子を、曲率を有する
レンズ面に設けた光学系において、該回折格子を設けた
レンズ面の曲率の符号は、該光学系の最も物体側の面か
ら、該回折格子が設けられたレンズ面の直前の面までの
合成系の設計波長における焦点距離の符号と同符号であ
り、かつ、軸外光束の中心光線が該回折格子を設けるレ
ンズ面に入射する位置の光軸からの距離の符号と異符号
であることを特徴としている。
According to a first aspect of the present invention, there is provided an optical system in which a diffraction grating rotationally symmetric with respect to an optical axis is provided on a lens surface having a curvature, and the lens provided with the diffraction grating is provided. The sign of the curvature of the surface is the same sign as the sign of the focal length at the design wavelength of the synthesis system from the most object side surface of the optical system to the surface immediately before the lens surface provided with the diffraction grating, and The sign of the distance from the optical axis at the position where the center ray of the off-axis light beam enters the lens surface on which the diffraction grating is provided is different in sign.

【0014】請求項2の発明は請求項1の発明におい
て、前記回折格子の非有効面のうち少なくとも一部を延
長したときに形成される仮想の円錐の頂点が該回折格子
を設けたレンズ面の曲率中心の近傍に位置することを特
徴としている。
According to a second aspect of the present invention, in the first aspect of the present invention, a vertex of a virtual cone formed when at least a part of the non-effective surface of the diffraction grating is extended is a lens surface provided with the diffraction grating. Is characterized by being located near the center of curvature.

【0015】請求項3の発明の光学系は、光軸に対して
回転対称な同心円状の回折格子を、曲率を有するレンズ
面に設けた回折光学面を有する光学系において、該回折
格子の非有効面の少なくとも一部を延長したときに形成
される仮想の円錐の頂点が該回折格子が設けられたレン
ズ面の曲率中心の近傍に位置することを特徴としてい
る。
According to a third aspect of the present invention, there is provided an optical system having a diffractive optical surface in which a concentric diffraction grating rotationally symmetric with respect to an optical axis is provided on a lens surface having a curvature. An apex of a virtual cone formed when at least a part of the effective surface is extended is located near the center of curvature of the lens surface on which the diffraction grating is provided.

【0016】請求項4の発明は請求項2又は3の発明に
おいて、前記仮想の円錐の頂点から前記回折格子が設け
られたレンズ面の曲率中心までの距離をDL、前記回折
格子が設けられたレンズ面の曲率半径をRとするとき |DL/R|<0.3 なる条件を満足することを特徴としている。
According to a fourth aspect of the present invention, in the second or third aspect, the distance from the vertex of the virtual cone to the center of curvature of the lens surface on which the diffraction grating is provided is DL, and the diffraction grating is provided. When a radius of curvature of the lens surface is R, | DL / R | <0.3 is satisfied.

【0017】請求項5の発明は請求項1,2、3又は4
の発明において、前記回折格子が設けられたレンズ面の
曲率中心から、前記光学系の最も物体側の面から前記回
折格子が設けられたレンズ面の直前の面までの合成系の
設計波長における焦点までの距離をD、前記回折格子が
設けられたレンズ面の曲率半径をRとするとき、 |D/R|<5 なる条件を満足することを特徴としている。
The invention of claim 5 is the invention of claim 1, 2, 3 or 4.
The focus at the design wavelength of the combining system from the center of curvature of the lens surface provided with the diffraction grating to the surface immediately before the lens surface provided with the diffraction grating from the most object side surface of the optical system. Where D is the distance to the lens and R is the radius of curvature of the lens surface on which the diffraction grating is provided, and | D / R | <5.

【0018】請求項6の発明は請求項1から5のいずれ
か1項の発明において、前記回折格子が設けられたレン
ズ面の屈折力をPとすると共に、光軸に対する垂直方向
の高さをY,設計波長をλ、位相係数をCi(i=1,
2,3…)を用いて、前記回折格子の位相形状が、 φ(Y)=(2π/λ0)(C12+C24+C36
…) で表されるとき、 C1・P<0 なる条件を満足することを特徴としている。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the refractive power of the lens surface on which the diffraction grating is provided is P, and the height in the direction perpendicular to the optical axis is P. Y, design wavelength is λ, phase coefficient is C i (i = 1,
2, 3,...), The phase shape of the diffraction grating is φ (Y) = (2π / λ 0 ) (C 1 Y 2 + C 2 Y 4 + C 3 Y 6 +
..), Is characterized by satisfying a condition of C 1 · P <0.

【0019】請求項7の発明は請求項1から6のいずれ
か1項の発明において、前記回折格子は積層型回折格子
であることを特徴としている。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the diffraction grating is a stacked diffraction grating.

【0020】請求項8の発明は請求項7の発明におい
て、前記積層型回折格子は、空気層を隔てて2つの回折
格子が隣接配置された隣接積層型回折格子であることを
特徴としている。
The invention of claim 8 is characterized in that, in the invention of claim 7, the stacked diffraction grating is an adjacent stacked diffraction grating in which two diffraction gratings are arranged adjacent to each other with an air layer therebetween.

【0021】請求項9の発明は請求項8の発明におい
て、前記隣接積層型回折格子は、略同じ曲率を有する隣
接する2つのレンズ面の間に設けられ、物体側より順
に、第1層、第2層、第3層の3層構造から成り、第2
層が空気層であることを特徴としている。
According to a ninth aspect of the present invention, in the invention of the eighth aspect, the adjacent laminated diffraction grating is provided between two adjacent lens surfaces having substantially the same curvature, and the first layer, the first layer, It has a three-layer structure of a second layer and a third layer.
It is characterized in that the layer is an air layer.

【0022】請求項10の発明は請求項8の発明におい
て、前記隣接積層型回折格子の2つの回折格子の各々
は、紫外線硬化性の樹脂であることを特徴としている。
A tenth aspect of the present invention is characterized in that, in the eighth aspect of the invention, each of the two diffraction gratings of the adjacent stacked type diffraction grating is made of an ultraviolet-curable resin.

【0023】請求項11の発明は請求項1から7のいず
れか1項の発明において、複数の前記回折光学面を有す
ることを特徴としている。
According to an eleventh aspect of the present invention, in any one of the first to seventh aspects of the present invention, a plurality of the diffractive optical surfaces are provided.

【0024】請求項12の発明は請求項1から6のいず
れか1項の発明において、前記回折格子はブレーズ型の
回折格子であることを特徴としている。
According to a twelfth aspect of the present invention, in any one of the first to sixth aspects, the diffraction grating is a blazed diffraction grating.

【0025】請求項13の発明の光学機器は、請求項1
から12のいずれか1項の光学系を有していることを特
徴としている。
The optical apparatus according to the thirteenth aspect of the present invention is the first aspect of the present invention.
13. The optical system according to any one of items 1 to 12, wherein

【0026】[0026]

【発明の実施の形態】図1、図2及び図3は、それぞれ
本発明の実施形態1,2,3の光学系OLの要部断面図
である。図1は望遠タイプ、図2はガウスタイプ、図3
は逆望遠タイプの撮影光学系OLに本発明を適用した例
である。図中、DOがレンズ面に回折格子を設けた回折
光学面であり、回折格子は、いずれも光軸に対して回転
対称な同心円状であって格子断面形状はブレーズ型であ
る。SPは光学系の明るさを定める開口絞り、IPは像
面である。
FIG. 1, FIG. 2, and FIG. 3 are cross-sectional views of a main part of an optical system OL according to embodiments 1, 2, and 3 of the present invention. 1 is a telephoto type, FIG. 2 is a Gaussian type, FIG.
Is an example in which the present invention is applied to a reverse telephoto type photographing optical system OL. In the drawing, DO denotes a diffractive optical surface having a diffraction grating provided on a lens surface, and each of the diffraction gratings is a concentric circle rotationally symmetric with respect to the optical axis, and has a blaze-shaped cross section. SP is an aperture stop that determines the brightness of the optical system, and IP is the image plane.

【0027】なお、レンズ面の曲率の符号は、レンズ面
に対し曲率中心が光射出側(像側)にある場合を正と
し、光入射側(物体側)にある場合を負としている。し
たがって、物体側に凸(像側に凹)のレンズ面が正符
号、物体側に凹(像側に凸)のレンズ面が負符号とな
る。一方、軸外光束の中心光線が回折格子が設けられた
レンズ面に入射する位置の光軸からの距離の符号は、光
軸を基準に光線の入射位置が入射方向と逆方向側にある
場合を正とし、入射方向と同方向側にある場合を負とし
ている。したがって、光線が光軸と交差する前であれば
負符号、光軸と交差した後であれば正符号となる。
The sign of the curvature of the lens surface is positive when the center of curvature is on the light exit side (image side) with respect to the lens surface, and negative when the center of curvature is on the light incident side (object side). Therefore, the lens surface convex toward the object side (concave toward the image side) has a positive sign, and the lens surface concave toward the object side (convex toward the image side) has a negative sign. On the other hand, the sign of the distance from the optical axis at the position where the central ray of the off-axis light beam enters the lens surface provided with the diffraction grating is when the incident position of the light ray is on the opposite side to the incident direction with respect to the optical axis. Is positive, and when it is on the same side as the incident direction, it is negative. Therefore, if the light beam crosses the optical axis, the sign is negative, and if it crosses the optical axis, the sign is positive.

【0028】図4、図5は本発明に係る回折光学面の説
明図であり、レンズ1の一方のレンズ面1aにブレーズ
型の回折格子2を設けた状態を示している。図中、4は
回折格子のうちの所望の回折作用をする有効面、3はブ
レーズド型の回折格子2をレンズ面1aに形成するとき
の回折作用にかかわりのない側面(以下「非有効面」と
いう。)である。
FIGS. 4 and 5 are explanatory diagrams of the diffractive optical surface according to the present invention, and show a state in which a blazed diffraction grating 2 is provided on one lens surface 1a of the lens 1. FIG. In the drawing, reference numeral 4 denotes an effective surface of the diffraction grating which performs a desired diffraction operation, and 3 denotes a side surface which is not involved in the diffraction operation when the blazed diffraction grating 2 is formed on the lens surface 1a (hereinafter referred to as "ineffective surface"). It is.)

【0029】これらの非有効面3は、その少なくとも一
部を延長したときに光軸5と一点で交わり、この交点を
頂点とした円錐面の一部である。図4ではこの仮想の円
錐の頂点をDOP、レンズ面1aの曲率中心をRCとし
て示している。
These ineffective surfaces 3 intersect the optical axis 5 at one point when at least a part thereof is extended, and are a part of a conical surface having the intersection as a vertex. In FIG. 4, the vertex of this virtual cone is shown as DOP, and the center of curvature of the lens surface 1a is shown as RC.

【0030】本実施形態では頂点DOPが曲率中心RC
の近傍に位置するようにしている。ここで近傍とは該円
錐の頂点DOPから、回折格子が設けられたベースのレ
ンズ面1aの曲率中心RCまでの距離をDL、該レンズ
面1aの曲率半径をRとしたとき、 |DL/R|<0.3 を満足することを意味している。
In this embodiment, the vertex DOP is the center of curvature RC.
In the vicinity. Here, the term “near” means that the distance from the vertex DOP of the cone to the center of curvature RC of the lens surface 1a of the base on which the diffraction grating is provided is DL, and the radius of curvature of the lens surface 1a is R, | DL / R | <0.3 is satisfied.

【0031】本実施形態では、回折格子が設けられるベ
ースのレンズ面への物点からの各軸上光線(軸上光束)
の入射方向が、それらの光線が回折格子が設けられるレ
ンズ面と交わる交点での各法線の方向とほぼ同方向とな
るようにして、例えば回折格子の各輪帯の高さを、光軸
と一致した光線の回折効率が100%となるような高さ
(光学光路長が設計波長の整数倍となる高さ)として、
回折格子が設けられるレンズ面の法線方向に均一に設定
している。これにより、軸上光束の回折効率を、ほぼ1
00%とすることができるようにしている。
In this embodiment, each axial ray (on-axis luminous flux) from an object point to the lens surface of the base on which the diffraction grating is provided.
The direction of incidence is approximately the same as the direction of each normal at the point of intersection of the rays with the lens surface on which the diffraction grating is provided, for example, by setting the height of each orbicular zone of the diffraction grating to the optical axis. The height (the height at which the optical path length is an integral multiple of the design wavelength) at which the diffraction efficiency of the light beam that matches with is 100%,
It is set uniformly in the normal direction of the lens surface on which the diffraction grating is provided. As a result, the diffraction efficiency of the on-axis light beam is reduced by almost 1
00%.

【0032】その結果、軸上光束全体のケラレをなく
し、回折効率として高い効率を得ている。
As a result, vignetting of the entire on-axis light beam is eliminated, and high diffraction efficiency is obtained.

【0033】まず、回折光学面で回折される光束のうち
の軸上光束の回折効率について説明する。
First, the diffraction efficiency of the on-axis light beam among the light beams diffracted by the diffractive optical surface will be described.

【0034】各実施形態とも、回折格子が設けられたレ
ンズ面の曲率Ra(1/R)の符号(像面側(光射出
側)に凹面を向けた面は正、逆は負の符号である)は、
光学系の最も物体側(光入射側)の面から、回折格子が
設けられたレンズ面の直前の面までの合成系の設計波長
における焦点距離faの符号と同符号となるようにして
ある。図1の実施形態1はRa,faが共に正、図2、
図3の実施形態2,3はRaとfaが共に負の符号とな
っている。
In each embodiment, the sign of the curvature Ra (1 / R) of the lens surface on which the diffraction grating is provided (the surface with the concave surface facing the image surface side (light exit side) is a positive sign, and the opposite sign is a negative sign). Is)
The sign of the focal length fa at the design wavelength of the combining system from the surface closest to the object (light incident side) of the optical system to the surface immediately before the lens surface provided with the diffraction grating is set to be the same. In the first embodiment of FIG. 1, Ra and fa are both positive.
In Embodiments 2 and 3 of FIG. 3, Ra and fa are both negative signs.

【0035】この時、画面中心へ到達する軸上光束を構
成する各光線が、回折格子を設けたレンズ面に入射する
ときの入射方向は、それらの光線が回折格子を設けたレ
ンズ面と交わる交点での各法線の方向とほぼ同方向とな
る。この状態で回折格子の非有効面が一部を形成する円
錐の頂点DOPが回折格子が設けられるレンズ面の曲率
中心(各法線が集まる位置)RCの近傍に位置するよう
に設定している。これにより、各軸上光線の回折格子の
非有効面でのケラレを少なくして、ケラレによる回折効
率の低下を防止している。
At this time, when the light rays constituting the axial light flux reaching the center of the screen are incident on the lens surface provided with the diffraction grating, the incident directions thereof intersect with the lens surface provided with the diffraction grating. The direction is almost the same as the direction of each normal line at the intersection. In this state, the vertex DOP of the cone in which the ineffective surface of the diffraction grating forms a part is set so as to be located near the center of curvature RC (the position where each normal is collected) RC of the lens surface on which the diffraction grating is provided. . This reduces vignetting of each axial ray on the ineffective surface of the diffraction grating, thereby preventing a reduction in diffraction efficiency due to vignetting.

【0036】次に、回折光学面で回折される光束のうち
の軸外光束の回折効率について説明する。
Next, the diffraction efficiency of an off-axis light beam among the light beams diffracted by the diffractive optical surface will be described.

【0037】各実施形態とも、軸外光束の中心光線が回
折格子を設けたレンズ面に入射する位置の光軸からの距
離Haの符号(光軸を基準に入射位置が入射方向と逆方
向を正、入射方向と同方向を負の符号とする)は、回折
格子を設けたレンズ面の曲率Raの符号と異符号となる
ようにしている。
In each of the embodiments, the sign of the distance Ha from the optical axis at the position where the center ray of the off-axis light beam enters the lens surface provided with the diffraction grating (the incident position is opposite to the incident direction with respect to the optical axis). The positive sign and the same direction as the incident direction are referred to as negative signs) are different signs from the sign of the curvature Ra of the lens surface provided with the diffraction grating.

【0038】図1の実施形態1では軸外光束の中心光線
LPaが回折格子を設けたレンズ面DOに入射してお
り、このとき光軸Laを基準に入射位置DOaが中心光
線LPaの入射方向と同方向である為、距離Ha<0で
ある。又、レンズ面DOの曲率RaはRa>0である。
In the first embodiment shown in FIG. 1, the central ray LPa of the off-axis light beam is incident on the lens surface DO on which the diffraction grating is provided. At this time, the incident position DOa is set in the incident direction of the central ray LPa with respect to the optical axis La. And the distance Ha <0. The curvature Ra of the lens surface DO is Ra> 0.

【0039】図2、図3の実施形態2,3では、軸外光
束の中心光線LPaが回折格子を設けたレンズ面DOへ
の入射位置DOaが光軸Laを基準にして中心光線LP
aの入射方向と逆方向である為、距離Ha>0である。
又、レンズ面DOの曲率RaはRa<0である。
In the second and third embodiments shown in FIGS. 2 and 3, the center ray LPa of the off-axis light beam is incident on the lens surface DO on which the diffraction grating is provided.
Since the direction is opposite to the incident direction of a, the distance Ha> 0.
The curvature Ra of the lens surface DO is Ra <0.

【0040】この時、画面周辺へ到達する各軸外光束を
構成する各光線の、回折格子を設けたレンズ面への入射
方向は、軸上光束の場合と同様に、それらの光線が回折
格子を設けたレンズ面と交わる交点での各法線の方向と
ほぼ同方向となる。
At this time, the direction of incidence of each ray constituting each off-axis light beam reaching the periphery of the screen on the lens surface provided with the diffraction grating is the same as that of the on-axis light beam. The direction is substantially the same as the direction of each normal line at the intersection that intersects the lens surface provided with.

【0041】したがって、軸上光束の場合と同様に回折
格子の非有効面3が一部を形成する円錐の頂点DOPが
該回折格子が設けられたレンズ面の曲率中心位置(各法
線が集まる位置)RCの近傍になるように設定すること
により、画面周辺付近へ到達する各軸外光束の各光線の
回折格子の非有効面でのケラレを少なくして、回折効率
の低下を防止できる。
Therefore, as in the case of the on-axis light flux, the vertex DOP of the cone in which the ineffective surface 3 of the diffraction grating forms a part is located at the center of curvature of the lens surface on which the diffraction grating is provided (each normal line is gathered). (Position) Near the RC, vignetting of each ray of each off-axis light beam reaching the vicinity of the screen on the ineffective surface of the diffraction grating can be reduced, and a decrease in diffraction efficiency can be prevented.

【0042】また、画面周辺へ到達する各軸外光束を構
成する各光線の、回折格子を設けたレンズ面への入射方
向が、それらの光線が回折格子を設けるレンズ面と交わ
る交点での各法線の方向とほぼ同方向であるので、先に
軸上光束で決めた回折格子の高さのままでも、高い回折
効率が得られるようにしている。
The direction of incidence of each ray constituting each off-axis luminous flux reaching the periphery of the screen on the lens surface provided with the diffraction grating is determined at each intersection point at which the ray intersects the lens surface provided with the diffraction grating. Since the direction is almost the same as the direction of the normal line, high diffraction efficiency can be obtained even if the height of the diffraction grating previously determined by the on-axis light flux remains.

【0043】本発明では以上のように構成することによ
り、画面全体にわたりケラレを少なくし、高い回折効率
が得られ、特に高輝度被写体撮影時の各色光の不要回折
光によって生ずる色フレアの影響を緩和している。
According to the present invention, by virtue of the above construction, vignetting can be reduced over the entire screen and high diffraction efficiency can be obtained. In particular, the influence of color flare caused by unnecessary diffracted light of each color light when photographing a high-luminance object is obtained. It has eased.

【0044】本発明では以上のように各要素を特定する
ことにより、画面全体にわたり良好なる光学性能を有し
た光学系を達成しているが、更に好ましくは次の構成の
うちの少なくとも1つを満足させるのが良い。
In the present invention, an optical system having good optical performance over the entire screen is achieved by specifying each element as described above. More preferably, at least one of the following structures is used. Good to be satisfied.

【0045】これによれば、比較的、画質の重要度の大
きい画面中心付近に到達する光束の回折格子の非有効面
でのケラレを更に少なくすることができ、画面中心付近
に到達する光束の回折効率を更に良好にすることができ
る。
According to this, it is possible to further reduce the vignetting on the ineffective surface of the diffraction grating of the light beam that arrives near the center of the screen where the image quality is relatively important. The diffraction efficiency can be further improved.

【0046】(ア−1)下記の条件式を満足することで
ある。
(A-1) The following conditional expression must be satisfied.

【0047】|D/R|<5 ・・・ 但し、D:回折格子が設けられたレンズ面の曲率中心位
置から、光学系全体の中で最も物体側の面から該回折格
子が設けられたレンズ面の直前の面までの合成系の設計
波長における焦点位置までの距離 R:前記回折格子が設けられたレンズ面の曲率半径 条件式を外れると、特に、画面中心付近の回折効率が
悪化するので良くない。本発明において更に望ましく
は、条件式の数値範囲を次の如くするのが良く、これ
により回折効率を更に良好とすることができる。即ち、 |D/R|<3 ・・・' である。
| D / R | <5 where D: the diffraction grating is provided from the center of curvature of the lens surface on which the diffraction grating is provided and from the surface closest to the object in the entire optical system. Distance to the focal position at the design wavelength of the combining system up to the surface immediately before the lens surface R: radius of curvature of the lens surface on which the diffraction grating is provided If the conditional expression is not satisfied, the diffraction efficiency particularly near the center of the screen is deteriorated. Not so good. In the present invention, it is more preferable that the numerical range of the conditional expression be as follows, whereby the diffraction efficiency can be further improved. That is, | D / R | <3 ... '.

【0048】(ア−2)下記の条件式を満足することで
ある。
(A-2) The following conditional expression must be satisfied.

【0049】C1・P<0 ・・・ 但し、Pは前記回折格子が設けられたレンズ面の屈折
力、C1は回折面の位相形状を次の式で与えたときの、
2次の項の位相係数である。
C 1 · P <0 where P is the refractive power of the lens surface on which the diffraction grating is provided, and C 1 is the phase shape of the diffraction surface given by the following equation:
This is the phase coefficient of the second order term.

【0050】 φ(Y)=(2π/λ0)(C12+C24+C36…) ・・・(a) ここに、Y:光軸に対して垂直方向の高さ λ0:設計波長 Ci:位相係数(i=1,2,3…)である。Φ (Y) = (2π / λ 0 ) (C 1 Y 2 + C 2 Y 4 + C 3 Y 6 ...) (A) where, Y: height in the direction perpendicular to the optical axis λ 0 : design wavelength C i : phase coefficient (i = 1, 2, 3,...)

【0051】条件式は主に本発明に係る回折格子を高
精度に製作する為のものである。
The conditional expression is mainly for producing the diffraction grating according to the present invention with high accuracy.

【0052】以下、条件式の技術的意味について説明
する。
Hereinafter, the technical meaning of the conditional expression will be described.

【0053】任意の波長λ、任意の回折次数mに対する
回折面の光学パワー(屈折力に相当、焦点距離の逆数で
表される)φD(λ,m)は、前記(a)式の位相係数
1を用いて次のように表すことができる。
The optical power (corresponding to the refractive power and represented by the reciprocal of the focal length) φ D (λ, m) of the diffraction surface for an arbitrary wavelength λ and an arbitrary diffraction order m is the phase of the above equation (a). it can be expressed as follows using the coefficients C 1.

【0054】 φD(λ,m)=−2C1mλ/m0λ0 ・・・(b) 設計波長、設計次数における回折面の光学パワーは、 φD(λ0,m0)=−2C1 ・・・(c) となる。Φ D (λ, m) = − 2 C 1 mλ / m 0 λ 0 (b) The optical power of the diffraction surface at the design wavelength and design order is φ D0 , m 0 ) = − 2C 1 ... (C).

【0055】つまり条件式は、設計波長、設計次数に
おける回折格子の光学パワーφD(λ0,m0)を、回折
格子を設けるレンズ面の屈折力と同じ符号を持つように
設けることを意味している。
That is, the conditional expression means that the optical power φ D0 , m 0 ) of the diffraction grating at the design wavelength and the design order is provided so as to have the same sign as the refractive power of the lens surface on which the diffraction grating is provided. are doing.

【0056】更にこのことが、本発明において果たす意
味を、C1の符号の異なる2つのブレーズ形状の図4,
図5を用いて説明する。
[0056] Further, this is the meaning of play in the present invention, FIG. 4 of the two blazed with different codes of C 1,
This will be described with reference to FIG.

【0057】図4及び図5は、式の位相形状を、位相
係数C1の符号の異なるブレーズ形状に変換した回折格
子の概略断面図を示している。回折格子2が設けられた
レンズ面1aの屈折力Pの符号は、それぞれ式を満足
するような曲率符号を選択している。図4がC1<0
(回折格子の光学パワーが正の値)かつP>0の場合で
あり、図5がC1>0(回折格子の光学パワーが負の
値)かつP<0の場合である。前述したように図中、1
は回折格子を設けるレンズ、2は回折格子、3は回折格
子の非有効面を示し、非有効面3によって形成される仮
想の円錐の頂点DOPが回折格子2を設けるそれぞれの
レンズ面1aの曲率中心位置RCの近傍にある円錐面と
してある。
FIGS. 4 and 5 are schematic sectional views of a diffraction grating obtained by converting the phase shape of the equation into a blazed shape having a different sign of the phase coefficient C 1 . As the sign of the refractive power P of the lens surface 1a on which the diffraction grating 2 is provided, a curvature sign that satisfies the respective equations is selected. FIG. 4 shows that C 1 <0
FIG. 5 shows the case where C 1 > 0 (the optical power of the diffraction grating is a negative value) and P <0, and FIG. 5 shows the case where P <0. As described above, in the figure, 1
Denotes a lens on which a diffraction grating is provided, 2 denotes a diffraction grating, 3 denotes an ineffective surface of the diffraction grating, and a vertex DOP of a virtual cone formed by the ineffective surface 3 is a curvature of each lens surface 1a on which the diffraction grating 2 is provided. It is a conical surface near the center position RC.

【0058】この様なブレーズ形状の回折格子の製造方
法として、例えば、ガラスを高温で融解しながら金型等
でプレス成形を行う方法、あるいは、ガラス基板等の表
面に紫外線硬化性のプラスチック樹脂等を型でプレス成
形し、紫外線を照射して硬化させる方法、あるいは、プ
ラスチック樹脂そのものでレンズと共に型で成形する方
法等が適用可能である。ガラスを直接切削して回折格子
を成形する方法、あるいは、SiO2等をウェットエッ
チングないしドライエッチングにより細かい階段状の回
折格子を成形する方法も適用可能である。
As a method for manufacturing such a blazed diffraction grating, for example, a method in which glass is melted at a high temperature and press-molded with a mold or the like, or an ultraviolet-curable plastic resin or the like on the surface of a glass substrate or the like is used. Is press-molded in a mold and cured by irradiating ultraviolet rays, or a method of molding the plastic resin itself in a mold together with a lens is applicable. A method of forming a diffraction grating by directly cutting glass or a method of forming a fine step-like diffraction grating by wet etching or dry etching of SiO 2 or the like is also applicable.

【0059】図4,図5からも明らかな様に、回折格子
2の非有効面3は円錐面の一部であるので、仮に回折格
子を設けるレンズ面の屈折力Pと回折格子の光学パワー
φDをそれぞれ逆符号とし、C1・P>0とするのはあま
り良くない。例えば、型加工においては型の加工がしず
らく、型の転写時には融解ガラスあるいは樹脂が格子の
深さ方向に回り込み難く、転写性が悪化する場合があ
る。更に離型時には、特にガラスを融解して成形を行う
方法及びプラスチック樹脂でレンズと共に型で成形する
方法等では、最悪のとき型が離型できず、格子部の先端
部を破損し、回折効率の悪化を招く場合がある。紫外線
硬化性のプラスチック樹脂をガラス基板等へ転写する方
法では、樹脂の粘度が比較的小さいことから何とか離型
できるかもしれないが、格子部の先端部付近が離型時の
応力により変形し、やはり回折効率が悪化する場合があ
る。
As is clear from FIGS. 4 and 5, since the ineffective surface 3 of the diffraction grating 2 is a part of a conical surface, it is assumed that the refractive power P of the lens surface on which the diffraction grating is provided and the optical power of the diffraction grating. It is not very good to set φ D to have the opposite sign and C 1 · P> 0. For example, in mold processing, it is difficult to process the mold, and when transferring the mold, it is difficult for the molten glass or resin to flow in the depth direction of the lattice, and transferability may be deteriorated. Furthermore, at the time of mold release, especially in the method of molding by melting glass and the method of molding with a plastic resin lens together with the lens, the mold cannot be released at the worst, and the tip of the grating part is damaged, resulting in diffraction efficiency. May be worsened. In the method of transferring an ultraviolet-curable plastic resin to a glass substrate or the like, the resin may have a relatively small viscosity, so it may be able to be released from the mold, but the vicinity of the tip of the lattice portion is deformed by the stress at the time of release, Again, the diffraction efficiency may deteriorate.

【0060】つまり、C1・P1>0のときは、型を用い
た成形方法の内、いずれの成形方法であっても型の転写
性、離型性等が良くなく、所望の回折効率を得るのが難
しくなってくるので、なるべくなら条件式を満足する
ことが良い。尚、後述する数値例1ではC1・P>0、
数値例2,3ではC1・P<0となっている。
That is, when C 1 · P 1 > 0, the transferability and releasability of the mold are not good in any of the molding methods using the mold, and the desired diffraction efficiency is obtained. Is difficult to obtain, so it is better to satisfy the conditional expression if possible. In numerical example 1 described later, C 1 · P> 0,
In Numerical Examples 2 and 3, C 1 · P <0.

【0061】(ア−3)前記回折格子は、積層型回折格
子であることである。
(A-3) The diffraction grating is a stacked diffraction grating.

【0062】(ア−4)前記積層型回折格子は、少なく
とも1つの薄い空気層を有し、該空気層を隔てて回折格
子が隣接配置された隣接積層型回折格子であることであ
る。
(A-4) The stacked diffraction grating is an adjacent stacked diffraction grating having at least one thin air layer, and the diffraction gratings are arranged adjacent to each other with the air layer interposed therebetween.

【0063】(ア−5)前記隣接積層型回折格子は、略
同じ曲率を有する隣接する2つのレンズ面の間に設けら
れ、物体側より順に、第1層、第2層、第3層の3層構
造から成り、第2層が薄い空気層であることである。
(A-5) The adjacent laminated diffraction grating is provided between two adjacent lens surfaces having substantially the same curvature, and the first, second, and third layers are arranged in order from the object side. It has a three-layer structure, and the second layer is a thin air layer.

【0064】(ア−6)前記隣接積層型回折格子の第1
層目と第2層目は、紫外線硬化性の樹脂で成形されてい
ることである。
(A-6) First of the adjacent stacked diffraction gratings
The second layer and the second layer are formed of an ultraviolet curable resin.

【0065】構成(ア−3)〜(ア−6)は、使用波長
域全体で回折効率を高める為の格子構造を特定したもの
である。次にこれらの構成について説明する。
In the structures (A-3) to (A-6), a grating structure for increasing the diffraction efficiency over the entire use wavelength range is specified. Next, these configurations will be described.

【0066】回折効率の絶対値を、使用する波長域全体
で高める方法として、複数のブレーズ型の回折格子を互
いに密着、あるいは隣接させて配置し、それぞれの格子
材料の屈折率、アッベ数、そして格子の深さ等を適切に
設定した積層型の回折格子が知られている。
As a method for increasing the absolute value of the diffraction efficiency over the entire wavelength range to be used, a plurality of blazed diffraction gratings are arranged in close contact with or adjacent to each other, and the refractive index, Abbe number, 2. Description of the Related Art A stacked diffraction grating in which the depth of the grating is appropriately set is known.

【0067】図7は図6に示す単層のブレーズ型回折格
子に光束を垂直に入射させたときの1次回折光の回折効
率の波長依存特性を示している。実際の回折格子の構成
は、図6に示すように基材11の表面に紫外線硬化樹脂
を塗布し、樹脂部に波長530nmで1次回折光の回折
効率が100%となるような格子厚dの格子12を形成
している。図7で明らかなように設計次数での回折効率
は最適化した波長530nmから離れるに従って低下
し、逆に設計次数近傍の次数0次、2次回折光が増大し
ている。この設計次数以外の回折光の増加はフレアとな
り、光学系の解像度の低下につながる。
FIG. 7 shows the wavelength dependence of the diffraction efficiency of the first-order diffracted light when a light beam is vertically incident on the single-layer blazed diffraction grating shown in FIG. As shown in FIG. 6, the actual structure of the diffraction grating is such that an ultraviolet-curing resin is applied to the surface of the base material 11 and the resin portion has a grating thickness d such that the diffraction efficiency of the first-order diffraction light at a wavelength of 530 nm is 100%. A grid 12 is formed. As is clear from FIG. 7, the diffraction efficiency at the design order decreases as the distance from the optimized wavelength of 530 nm increases, and conversely, the 0th-order and second-order diffracted lights near the design order increase. This increase in diffracted light other than the design order causes a flare, which leads to a decrease in the resolution of the optical system.

【0068】一方、図9は図8に示す密着積層型の回折
格子に光束を垂直に入射させたときの1次回折光の回折
効率の波長依存特性を示している。具体的な構成として
は、図8に示すように、基材11上に紫外線硬化樹脂
(nd=1.499、νd=54)からなる第1の回折格子13を
形成し、その上に別の紫外線硬化樹脂(nd=1.598、ν
d=28)からなる第2の回折格子14を形成している。こ
の材質の組み合わせでは、第1の回折格子部13の格子
厚d1はd1=13.8μm、第2の回折格子部14の格子
厚d2はd=10.5μmとしている。図9からわかるよう
に積層構造の回折格子にすることで、設計次数の回折効
率は、使用波長域全域で95%以上の高い回折効率を有
している。
On the other hand, FIG. 9 shows the wavelength dependence of the diffraction efficiency of the first-order diffracted light when a light beam is vertically incident on the close-stacked diffraction grating shown in FIG. As a specific configuration, as shown in FIG. 8, a first diffraction grating 13 made of an ultraviolet curable resin (nd = 1.499, νd = 54) is formed on a base material 11, and another ultraviolet curable resin is formed thereon. Resin (nd = 1.598, ν
d = 28) is formed. In this combination of materials, the grating thickness d1 of the first diffraction grating portion 13 is d1 = 13.8 μm, and the grating thickness d2 of the second diffraction grating portion 14 is d = 10.5 μm. As can be seen from FIG. 9, the diffraction efficiency of the design order has a high diffraction efficiency of 95% or more over the entire use wavelength range by using the diffraction grating having the laminated structure.

【0069】このように、本発明の実施形態の回折格子
として積層構造の回折格子を用いることで、光学性能は
さらに改善され、同時に、前述のごとく構成することに
より、画面全体で、波長依存特性が良好な回折効率が得
られる。この為、積層型とすることが望ましい。
As described above, by using a diffraction grating having a laminated structure as the diffraction grating of the embodiment of the present invention, the optical performance is further improved. At the same time, by configuring as described above, the wavelength dependence of the entire screen is improved. , A good diffraction efficiency can be obtained. For this reason, it is desirable to use a laminated type.

【0070】次に、積層型回折格子の内、格子部が互い
に密着した密着積層タイプと、薄い空気層を隔てて隣接
配置した隣接積層タイプ回折格子において回折格子の非
有効面が回折効率に及ぼす影響について説明する。
Next, among the stacked diffraction gratings, the non-effective surface of the diffraction grating affects the diffraction efficiency in the close-stacking type in which the grating portions are in close contact with each other and in the adjacent stacking type in which the thin air layer is disposed adjacent to the adjacent stack type. The effect will be described.

【0071】この2つのタイプの回折格子をほぼ同材料
で構成した場合、必要な回折光を得る為の格子部の深さ
は、格子部の入射側と射出側の屈折率の差の絶対値に反
比例することから、空気層を持った隣接積層タイプの方
が、密着積層タイプよりも格子部全体の深さの合計を小
さくすることが出来る。
When these two types of diffraction gratings are made of substantially the same material, the depth of the grating portion for obtaining the required diffracted light is determined by the absolute value of the difference in the refractive index between the incident side and the emission side of the grating portion. Therefore, the adjacent stacked type having an air layer can make the total depth of the entire lattice portion smaller than that of the close stacked type.

【0072】その結果、隣接積層タイプの方が、密着積
層タイプよりも非有効面での光線ケラレが少なくなり、
回折効率の向上の上で有利となる。
As a result, the adjacent lamination type has less vignetting on the non-effective surface than the close lamination type.
This is advantageous in improving diffraction efficiency.

【0073】従って、薄い空気層を隔てた隣接積層型の
回折格子とするのが良い。
Therefore, it is preferable to form a diffraction grating of an adjacent lamination type with a thin air layer separated.

【0074】この時、光学系を構成する1つのレンズを
レンズ面が略同じ曲率を有するように2つに分割し、隣
接積層型回折格子を分割されたレンズ面の間に設け、物
体側より順に、第1層、第2層、第3層の3層構造と
し、第2層目を薄い空気層とすれば比較的簡単な構成の
まま光学系全体の諸収差に影響を与えることなく、更に
良好な回折効率を得ることが出来る。
At this time, one lens constituting the optical system is divided into two such that the lens surfaces have substantially the same curvature, and an adjacent laminated diffraction grating is provided between the divided lens surfaces, and the adjacent diffraction grating is provided from the object side. If a three-layer structure of a first layer, a second layer, and a third layer is used in order, and the second layer is a thin air layer, it does not affect various aberrations of the entire optical system with a relatively simple configuration. Further better diffraction efficiency can be obtained.

【0075】レンズ面がほぼ同曲率となるように1つの
レンズを2つに分割した場合、分割されたレンズ面の曲
率は、ほぼ同曲率のままで如何なる値に設定しても、諸
収差には寄与しにくい。このため、画面中心付近と周辺
付近の回折効率の最適化に特定化した曲率を任意に設定
することができる。従って、このような隣接積層型の回
折格子とするのが良い。
When one lens is divided into two so that the lens surface has substantially the same curvature, the curvature of the divided lens surface is set to be substantially the same and set to any value even if the curvature is set to any value. Is hard to contribute. Therefore, it is possible to arbitrarily set the curvature specified for optimizing the diffraction efficiency near the center of the screen and near the periphery. Therefore, it is preferable to use such an adjacent laminated type diffraction grating.

【0076】この時、分割されたレンズの硝材は、同じ
である必要はなく、必要に応じて変えてもよい。更に、
この格子部を設ける2つのレンズ面が、回折格子を導入
する以前に光学系が色収差補正、球面収差補正、あるい
はコマ収差補正等、収差補正構造上の理由から元々存在
し、曲率の条件等が本発明の構成を満足する接合面であ
れば、新たにレンズを分割する必要はなく、そこに回折
格子を設ければ良い。
At this time, the glass materials of the divided lenses need not be the same, and may be changed as necessary. Furthermore,
Before the introduction of the diffraction grating, the two lens surfaces provided with the grating portion originally exist in the optical system due to the aberration correction structure such as chromatic aberration correction, spherical aberration correction, or coma aberration correction, and the curvature conditions and the like are different. If the cemented surface satisfies the configuration of the present invention, it is not necessary to newly split the lens, and a diffraction grating may be provided there.

【0077】図10は実施形態1の光学系に適用した隣
接積層型回折格子の一部分の拡大概略図である。図中、
21、22は、それぞれほぼ同曲率で分割されたレンズ
であり、23、24は、それぞれ第1層(nd=1.6
685,νd=19.7)、第3層(nd=1.524
0,νd=50.8)回折格子、25は、空気層である
第2層、Oは光学系の光軸である。また、P、Qは回折
格子23へ入射する光線、Vは光線P(Q)と回折面を
設けたレンズ面21aの交点における法線、θは光線P
(Q)とレンズ面21aの法線Vが成す角であり、図1
0では時計回りを正の角度としてある。更に、d1、d
2は第1層、第3層の格子厚であり、d1=5μm,d
2=7.5μmに設定してある。Piは第1層(第1層
と第3層の第i輪帯目における格子ピッチは等しく設定
してある)の第i輪帯目の格子ピッチであり、最小ピッ
チは最周辺部の第155輪帯目で、156μmである。
FIG. 10 is an enlarged schematic view of a part of the adjacent laminated diffraction grating applied to the optical system of the first embodiment. In the figure,
Reference numerals 21 and 22 denote lenses divided at substantially the same curvature, and reference numerals 23 and 24 denote first layers (nd = 1.6, respectively).
685, νd = 19.7), third layer (nd = 1.524)
0, vd = 50.8) diffraction grating, 25 is a second layer which is an air layer, and O is an optical axis of the optical system. P and Q are light rays incident on the diffraction grating 23, V is a normal line at the intersection of the light ray P (Q) and the lens surface 21a provided with the diffraction surface, and θ is a light ray P
FIG. 1 shows an angle formed between (Q) and a normal line V of the lens surface 21a.
At 0, clockwise is a positive angle. Further, d1, d
2 is the lattice thickness of the first and third layers, d1 = 5 μm, d
2 = 7.5 μm. Pi is the lattice pitch of the first layer (the lattice pitch of the first layer and the third layer in the i-th annular zone is set to be equal), and the minimum pitch is 155th of the outermost peripheral portion. In the orbicular zone, it is 156 μm.

【0078】尚、隣接積層型回折格子の形状としては本
出願人が先の特願平11−213374号で提案したも
のが適用可能である。
As the shape of the adjacent laminated diffraction grating, the shape proposed by the present applicant in the above-mentioned Japanese Patent Application No. 11-213374 can be applied.

【0079】図11は実施形態1の光学系の軸上光束及
び最軸外光束のメリジオナル光線の内、光束中心光線と
マージナル光線(上線、下線)のθの値である。又、図
12は図10に示す隣接積層型回折格子のθ=0°、±
10°入射光に対する回折格子の非有効面でのケラレを
含めた1次回折光の回折効率の、波長450nm、55
0nm、650nmにおける格子ピッチの依存特性であ
る。
FIG. 11 shows the values of θ of the central ray and the marginal rays (upper and lower lines) of the meridional rays of the on-axis light flux and the most off-axis light flux of the optical system of the first embodiment. FIG. 12 shows θ = 0 ° and ±± of the adjacent stacked diffraction grating shown in FIG.
The diffraction efficiency of the first-order diffracted light including the vignetting on the ineffective surface of the diffraction grating with respect to the incident light at 10 ° is 450 nm at a wavelength of 450 nm.
This is the dependency of the grating pitch at 0 nm and 650 nm.

【0080】一般的に、格子ピッチが小さいほど、光線
入射角度の変化に対して、格子部を通過する光線の換算
光路長が大きく変化するため、回折効率の劣化が激しく
なる。図12に示す実施形態1の光学系に適用した隣接
積層型回折格子の回折効率は、波長依存特性を含めて、
良好な回折効率を有していることが分る。
In general, the smaller the grating pitch, the greater the converted optical path length of the light beam passing through the grating portion with respect to the change in the incident angle of the light beam, so that the diffraction efficiency is greatly deteriorated. The diffraction efficiency of the adjacent stacked diffraction grating applied to the optical system of Embodiment 1 shown in FIG.
It can be seen that it has good diffraction efficiency.

【0081】そして図11に示す様に、実施形態1の光
学系の光線入射角度θは、最大画角(半画角3.16
°)のマージナル光線(下線)で最も絶対値が大きく、
θ=+2.5°となる。また、このマージナル光線通過
位置は格子部の最周辺部であり、前述した様に格子部の
ピッチはこの位置で最小値Pi=156μm(i=15
5)となる。この位置を通過する光線の回折効率が最も
低くなるが、図12からθ=0°入射と同等の高い効率
を維持できていることが分る。
As shown in FIG. 11, the light incident angle θ of the optical system of the first embodiment is the maximum angle of view (half angle of view 3.16).
°) marginal ray (underline) has the largest absolute value,
θ = + 2.5 °. The marginal ray passing position is the outermost peripheral portion of the grating portion, and the pitch of the grating portion is the minimum value Pi = 156 μm (i = 15 μm) at this position as described above.
5). Although the diffraction efficiency of the light beam passing through this position is the lowest, it can be seen from FIG. 12 that a high efficiency equivalent to θ = 0 ° incidence can be maintained.

【0082】次に、積層型回折格子の成形方法と収差補
正と回折効率の設計自由度について説明する。
Next, a description will be given of a method of forming a laminated diffraction grating, a degree of freedom in designing aberration correction and diffraction efficiency.

【0083】レンズ等の屈折部材を有する光学系へ回折
格子を導入する1つの目的として、屈折光学系で発生す
る色収差を回折格子で打ち消すことがある。
One purpose of introducing a diffraction grating into an optical system having a refractive member such as a lens is to cancel chromatic aberration generated in the refractive optical system by the diffraction grating.

【0084】従って、回折格子をレンズ面に設ける場合
は、回折格子との色収差分担において、回折格子を設け
るレンズは屈折光学系として必要な色収差分担を担って
いるため、回折格子を設けるレンズの材質を任意に選ぶ
ことが困難である。
Therefore, when the diffraction grating is provided on the lens surface, the lens provided with the diffraction grating shares the necessary chromatic aberration as a refractive optical system in the chromatic aberration sharing with the diffraction grating. It is difficult to choose arbitrarily.

【0085】つまり、ガラスを高温で融解しながら金型
等でレンズと共にプレス成形を行う方法、あるいは、プ
ラスチック樹脂でレンズと共に型で成形する方法等で
は、レンズと回折格子が同材料となり、回折格子の材料
の選択の自由度が奪われるため、色収差と積層型格子に
おける回折効率の波長依存性の向上の両立が難しくなっ
てくる。
In other words, in a method in which glass is press-molded with a lens or the like while melting glass at a high temperature, or a method in which a glass is molded with a lens using a plastic resin, the lens and the diffraction grating are made of the same material. Therefore, it is difficult to achieve both the chromatic aberration and the improvement of the wavelength dependence of the diffraction efficiency of the laminated grating.

【0086】従って、レンズと回折格子の材質を独立に
選択可能とする、例えば、紫外線硬化性のプラスチック
樹脂等を用いた成形方法とすれば、色収差と回折効率が
共に良好な光学系が得られることになり、この様な成形
方法とするのが良い。
Therefore, if a molding method using an ultraviolet-curable plastic resin or the like is used, for example, in which the materials of the lens and the diffraction grating can be independently selected, an optical system having good chromatic aberration and good diffraction efficiency can be obtained. That is, it is preferable to adopt such a molding method.

【0087】尚、本発明の光学系は、フィルム用カメ
ラ、ビデオカメラ、デジタルカメラ等の撮像装置、望遠
鏡や双眼鏡等の観察装置、半導体素子製造用のステッパ
ー、そして各種の光学測定器等に広く適用することがで
きる。
The optical system of the present invention is widely used in image pickup devices such as film cameras, video cameras, digital cameras, etc., observation devices such as telescopes and binoculars, steppers for manufacturing semiconductor devices, and various optical measuring instruments. Can be applied.

【0088】ここでは実施形態1〜3に示した光学系を
光学機器に適用した1つの実施例を図13を用いて説明
する。
Here, one example in which the optical system shown in the first to third embodiments is applied to an optical apparatus will be described with reference to FIG.

【0089】図13は一眼レフカメラの要部概略図であ
る。図13において、10は実施形態1〜3のいずれか
の光学系1を有する撮影レンズである。光学系1は保持
部材である鏡筒2に保持されている。20はカメラ本体
であり、撮影レンズ10からの光束を上方に反射するク
イックリターンミラー3、撮影レンズ10の像形成位置
に配置された焦点板4、焦点板4に形成された逆像を正
立像に変換するペンタダハプリズム5、その正立像を観
察するための接眼レンズ6等によって構成されている。
7はフィルム面である。撮影時にはクイックリターンミ
ラー3が光路から退避すると共に不図示のシャッターが
開かれ、フィルム面7上に撮影レンズ10によって像が
形成される。
FIG. 13 is a schematic view of a main part of a single-lens reflex camera. In FIG. 13, reference numeral 10 denotes a photographing lens having any one of the optical systems 1 according to the first to third embodiments. The optical system 1 is held by a lens barrel 2 which is a holding member. Reference numeral 20 denotes a camera body, which includes a quick return mirror 3 for reflecting a light beam from the photographing lens 10 upward, a focusing plate 4 disposed at an image forming position of the photographing lens 10, and an upright image formed on the focusing plate 4. A penta roof prism 5 for converting the image into an image, and an eyepiece 6 for observing the erect image.
7 is a film surface. At the time of photographing, the quick return mirror 3 is retracted from the optical path, a shutter (not shown) is opened, and an image is formed on the film surface 7 by the photographing lens 10.

【0090】実施形態1〜3にて説明した利益は、本実
施形態に開示したような光学機器において効果的に享受
される。
The advantages described in the first to third embodiments can be effectively obtained in the optical apparatus disclosed in the present embodiment.

【0091】次に本発明の実施形態1〜3の光学系の数
値実施例を示す。
Next, numerical examples of the optical systems according to the first to third embodiments of the present invention will be described.

【0092】各数値実施例においてfは焦点距離、fn
oはfナンバー、riは物体側より順に第i番目の面の
曲率半径、diは物体側より順に第i番目の面と第(i
+1)番目の面の間隔、niとνiは各々物体側より順
に第i番目の光学部材の屈折率とアッベ数である。
In each numerical example, f is the focal length, fn
o is the f-number, ri is the radius of curvature of the i-th surface in order from the object side, and di is the i-th surface and (i) in order from the object side.
The (+1) -th surface interval, ni and νi are the refractive index and Abbe number of the i-th optical member in order from the object side.

【0093】又、非球面形状は光軸方向をX軸、光軸と
垂直な方向の高さをH、レンズの交点とX軸の交点を原
点にとり、rをレンズ面の近軸曲率半径、A,B,C,
D,Eを各々非球面係数としたとき、
For the aspherical shape, the optical axis direction is the X axis, the height in the direction perpendicular to the optical axis is H, the intersection point of the lens and the X axis is the origin, and r is the paraxial radius of curvature of the lens surface. A, B, C,
When D and E are each aspheric coefficients,

【0094】[0094]

【数1】 (Equation 1)

【0095】なる式で表わしている。This is represented by the following equation.

【0096】又、回折格子の形状の各係数C1,C2...
は前述の式(a)に基づいて示している。又、「D−0
X」は10-Xを意味している。前述の各条件式と数値例
における諸数値との関係を表1に示す。
The respective coefficients C 1 , C 2 .
Is based on the above equation (a). Also, "D-0
"X" means 10- X . Table 1 shows the relationship between the above-described conditional expressions and various numerical values in numerical examples.

【0097】又、前述の各条件式と数値実施例の関係を
表1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions and the numerical examples.

【0098】[0098]

【外1】 [Outside 1]

【0099】[0099]

【外2】 [Outside 2]

【0100】[0100]

【外3】 [Outside 3]

【0101】[0101]

【表1】 [Table 1]

【0102】[0102]

【発明の効果】本発明によれば以上の各要素を特定する
ことにより、回折光学素子と屈折光学素子を組み合わせ
て色消しを行うとき、画面の各位置に到達する各光束が
回折光学面上で互いに大きく重なりあっていても、画面
全体にわたり良好な回折効率が得られ、高い光学性能を
有した光学系を達成することができる。
According to the present invention, by specifying each of the above elements, when performing achromatism by combining a diffractive optical element and a refractive optical element, each light beam reaching each position on the screen is on the diffractive optical surface. However, even if they overlap greatly, good diffraction efficiency can be obtained over the entire screen, and an optical system having high optical performance can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1の要部断面図FIG. 1 is a sectional view of a main part of a first embodiment of the present invention.

【図2】 本発明の実施形態2の要部断面図FIG. 2 is a sectional view of a main part according to a second embodiment of the present invention.

【図3】 本発明の実施形態3の要部断面図FIG. 3 is a sectional view of a main part of a third embodiment of the present invention.

【図4】 回折格子およびレンズ面の屈折力が正の場合
のブレーズ形状概略図
FIG. 4 is a schematic diagram of a blaze shape when the refractive power of the diffraction grating and the lens surface is positive.

【図5】 回折格子およびレンズ面の屈折力が負の場合
のブレーズ形状概略図
FIG. 5 is a schematic diagram of a blaze shape when the refractive power of the diffraction grating and the lens surface is negative.

【図6】 単層回折格子の概略図FIG. 6 is a schematic diagram of a single-layer diffraction grating.

【図7】 図6の回折格子の回折効率波長依存特性図FIG. 7 is a graph showing the wavelength dependence of diffraction efficiency of the diffraction grating of FIG. 6;

【図8】 積層回折格子例(密着型)の概略図FIG. 8 is a schematic diagram of an example of a laminated diffraction grating (contact type).

【図9】 図8の回折格子の回折効率波長依存特性図FIG. 9 is a graph showing the diffraction efficiency and wavelength dependence of the diffraction grating of FIG. 8;

【図10】 本発明の実施形態1に適用した、積層回折
格子例(空気層を隔てた隣接型)の概略図
FIG. 10 is a schematic view of an example of a laminated diffraction grating (adjacent type with an air layer interposed) applied to the first embodiment of the present invention.

【図11】 本発明の実施形態1の軸上光束及び軸外光
束のメリジオナル光線の内、光束中心光線(主光線)と
マージナル光線(上線、下線)の格子への入射角度
(θ)を表わす説明図
FIG. 11 shows angles of incidence (θ) of a central ray (principal ray) and a marginal ray (upper and lower lines) of a meridional ray of an on-axis ray and an off-axis ray according to the first embodiment of the present invention. Illustration

【図12】 本発明の実施形態1の隣接積層型回折格子
のθ=0°、±10°入射光に対する非有効面でのケラ
レを含めた1次回折効率の、波長450nm、550n
m、650nmにおける格子ピッチ依存特性を示す説明
FIG. 12 shows wavelengths of 450 nm and 550 n of first-order diffraction efficiency including vignetting on a non-effective surface with respect to θ = 0 ° and ± 10 ° incident light of the adjacent stacked diffraction grating of the first embodiment of the present invention.
Explanatory diagram showing grating pitch dependence characteristics at m and 650 nm

【図13】 本発明の光学機器(一眼レフカメラ)の実
施形態の要部概略図
FIG. 13 is a schematic diagram of a main part of an embodiment of an optical apparatus (single-lens reflex camera) of the present invention.

【符号の説明】[Explanation of symbols]

OL 光学系 DO 回折光学面 SP 絞り LP 像面 1 レンズ 1a レンズ面 2 回折格子 3 非レンズ面 4 レンズ面 5 光軸 DOP 円錐の頂点 RC 曲率中心 11 基板 12,13,14,23,24 回折格子 21,22 レンズ 25 空気層 OL optical system DO diffractive optical surface SP stop LP image surface 1 lens 1a lens surface 2 diffraction grating 3 non-lens surface 4 lens surface 5 optical axis DOP vertex of cone RC center of curvature 11 substrate 12, 13, 14, 23, 24 diffraction grating 21,22 lens 25 air layer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 13/18 G02B 13/18 Fターム(参考) 2H049 AA04 AA18 AA37 AA39 AA43 AA45 AA53 AA55 AA65 2H087 KA02 KA03 LA02 LA03 LA06 NA14 PA06 PA09 PA12 PA16 PA18 PB07 PB10 PB16 QA02 QA06 QA07 QA12 QA17 QA21 QA22 QA25 QA26 QA32 QA34 QA41 QA45 QA46 RA05 RA13 RA46 UA01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G02B 13/18 G02B 13/18 F term (reference) 2H049 AA04 AA18 AA37 AA39 AA43 AA45 AA53 AA55 AA65 2H087 KA02 KA03 LA02 LA03 LA06 NA14 PA06 PA09 PA12 PA16 PA18 PB07 PB10 PB16 QA02 QA06 QA07 QA12 QA17 QA21 QA22 QA25 QA26 QA32 QA34 QA41 QA45 QA46 RA05 RA13 RA46 UA01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】光軸に対して回転対称の回折格子を、曲率
を有するレンズ面に設けた光学系において、該回折格子
を設けたレンズ面の曲率の符号は、該光学系の最も物体
側の面から、該回折格子が設けられたレンズ面の直前の
面までの合成系の設計波長における焦点距離の符号と同
符号であり、かつ、軸外光束の中心光線が該回折格子を
設けるレンズ面に入射する位置の光軸からの距離の符号
と異符号であることを特徴とする光学系。
In an optical system in which a diffraction grating rotationally symmetric with respect to the optical axis is provided on a lens surface having a curvature, the sign of the curvature of the lens surface provided with the diffraction grating is the closest to the object side of the optical system. Lens having the same sign as the sign of the focal length at the design wavelength of the combining system from the surface to the surface immediately before the lens surface provided with the diffraction grating, and the center ray of the off-axis light beam is provided with the diffraction grating. An optical system characterized by having a sign different from the sign of the distance from the optical axis at the position of incidence on the surface.
【請求項2】前記回折格子の非有効面のうち少なくとも
一部を延長したときに形成される仮想の円錐の頂点が該
回折格子を設けたレンズ面の曲率中心の近傍に位置する
ことを特徴とする請求項1の光学系。
2. The method according to claim 1, wherein a vertex of a virtual cone formed when at least a part of the ineffective surface of the diffraction grating is extended is located near a center of curvature of a lens surface provided with the diffraction grating. The optical system according to claim 1, wherein
【請求項3】光軸に対して回転対称な同心円状の回折格
子を、曲率を有するレンズ面に設けた回折光学面を有す
る光学系において、該回折格子の非有効面の少なくとも
一部を延長したときに形成される仮想の円錐の頂点が該
回折格子が設けられたレンズ面の曲率中心の近傍に位置
することを特徴とする光学系。
3. An optical system having a diffractive optical surface in which a concentric diffraction grating rotationally symmetric with respect to an optical axis is provided on a lens surface having a curvature, at least a part of an ineffective surface of the diffraction grating is extended. An apex of an imaginary cone formed when the optical system is located near the center of curvature of a lens surface on which the diffraction grating is provided.
【請求項4】前記仮想の円錐の頂点から前記回折格子が
設けられたレンズ面の曲率中心までの距離をDL、前記
回折格子が設けられたレンズ面の曲率半径をRとすると
き |DL/R|<0.3 なる条件を満足することを特徴とする請求項2又は3の
光学系。
4. When the distance from the vertex of the virtual cone to the center of curvature of the lens surface on which the diffraction grating is provided is DL, and the radius of curvature of the lens surface on which the diffraction grating is provided is R. 4. The optical system according to claim 2, wherein a condition of R | <0.3 is satisfied.
【請求項5】前記回折格子が設けられたレンズ面の曲率
中心から、前記光学系の最も物体側の面から前記回折格
子が設けられたレンズ面の直前の面までの合成系の設計
波長における焦点までの距離をD、前記回折格子が設け
られたレンズ面の曲率半径をRとするとき、 |D/R|<5 なる条件を満足することを特徴とする請求項1,2、3
又は4の光学系。
5. A design wavelength of a combining system from a center of curvature of a lens surface on which the diffraction grating is provided to a surface immediately before the lens surface on which the diffraction grating is provided from a surface closest to the object of the optical system. 4. A lens according to claim 1, wherein a distance to a focal point is D, and a radius of curvature of a lens surface on which the diffraction grating is provided is R. | D / R | <5
Or the optical system of 4.
【請求項6】前記回折格子が設けられたレンズ面の屈折
力をPとすると共に、光軸に対する垂直方向の高さを
Y,設計波長をλ0、位相係数をCi(i=1,2,3
…)を用いて、前記回折格子の位相形状が、 φ(Y)=(2π/λ0)(C12+C24+C36
…) で表されるとき、 C1・P<0 なる条件を満足することを特徴とする請求項1から5の
いずれか1項の光学系。
6. The refractive power of the lens surface on which the diffraction grating is provided is P, the height in the direction perpendicular to the optical axis is Y, the design wavelength is λ 0 , and the phase coefficient is C i (i = 1, Two, three
..), The phase shape of the diffraction grating is φ (Y) = (2π / λ 0 ) (C 1 Y 2 + C 2 Y 4 + C 3 Y 6 +
The optical system according to any one of claims 1 to 5, wherein the following condition is satisfied: C 1 · P <0.
【請求項7】前記回折格子は積層型回折格子であること
を特徴とする請求項1から6のいずれか1項の光学系。
7. The optical system according to claim 1, wherein said diffraction grating is a stacked diffraction grating.
【請求項8】前記積層型回折格子は、空気層を隔てて2
つの回折格子が隣接配置された隣接積層型回折格子であ
ることを特徴とする請求項7の光学系。
8. The multi-layer diffraction grating according to claim 1, further comprising:
The optical system according to claim 7, wherein the two diffraction gratings are adjacent stacked diffraction gratings arranged adjacent to each other.
【請求項9】前記隣接積層型回折格子は、略同じ曲率を
有する隣接する2つのレンズ面の間に設けられ、物体側
より順に、第1層、第2層、第3層の3層構造から成
り、第2層が空気層であることを特徴とする請求項8の
光学系。
9. The adjacent laminated diffraction grating is provided between two adjacent lens surfaces having substantially the same curvature, and has a three-layer structure of a first layer, a second layer, and a third layer in order from the object side. The optical system according to claim 8, wherein the second layer is an air layer.
【請求項10】前記隣接積層型回折格子の2つの回折格
子の各々は、紫外線硬化性の樹脂であることを特徴とす
る請求項8の光学系。
10. The optical system according to claim 8, wherein each of the two diffraction gratings of the adjacent stacked diffraction grating is made of an ultraviolet curable resin.
【請求項11】複数の前記回折光学面を有することを特
徴とする請求項1から7のいずれか1項の光学系。
11. The optical system according to claim 1, comprising a plurality of said diffractive optical surfaces.
【請求項12】前記回折格子はブレーズ型の回折格子で
あることを特徴とする請求項1から6のいずれか1項の
光学系。
12. The optical system according to claim 1, wherein said diffraction grating is a blazed diffraction grating.
【請求項13】請求項1から12のいずれか1項の光学
系を有していることを特徴とする光学機器。
13. An optical apparatus having the optical system according to claim 1. Description:
JP2001060351A 2000-03-08 2001-03-05 Optical system and optical equipment Expired - Fee Related JP3467018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060351A JP3467018B2 (en) 2000-03-08 2001-03-05 Optical system and optical equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-63398 2000-03-08
JP2000063398 2000-03-08
JP2001060351A JP3467018B2 (en) 2000-03-08 2001-03-05 Optical system and optical equipment

Publications (2)

Publication Number Publication Date
JP2001324674A true JP2001324674A (en) 2001-11-22
JP3467018B2 JP3467018B2 (en) 2003-11-17

Family

ID=26587012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060351A Expired - Fee Related JP3467018B2 (en) 2000-03-08 2001-03-05 Optical system and optical equipment

Country Status (1)

Country Link
JP (1) JP3467018B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139985A (en) * 2005-11-16 2007-06-07 Ricoh Opt Ind Co Ltd Super-wide-angle lens
JP2009092765A (en) * 2007-10-04 2009-04-30 Canon Inc Image display device
JP2010102353A (en) * 2003-06-19 2010-05-06 Nikon Corp Optical element
JP2011233315A (en) * 2010-04-27 2011-11-17 Hitachi Ltd Optical sheet, light source module, lighting system using light source module, liquid crystal display, and image display device
JP4921618B2 (en) * 2010-01-13 2012-04-25 パナソニック株式会社 Diffraction grating lens, manufacturing method thereof, and imaging device using the same
JP2017146561A (en) * 2016-02-19 2017-08-24 株式会社タムロン Diffractive optical element, optical system, and image capturing device

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214516A (en) * 1990-12-12 1992-08-05 Olympus Optical Co Ltd Projecting lens system
JPH06194571A (en) * 1992-12-25 1994-07-15 Olympus Optical Co Ltd Objective lens of endoscope
JPH06331898A (en) * 1993-05-24 1994-12-02 Olympus Optical Co Ltd Objective lens
JPH06347700A (en) * 1993-06-07 1994-12-22 Olympus Optical Co Ltd Objective lens
JPH0862504A (en) * 1994-08-22 1996-03-08 Olympus Optical Co Ltd Objective lens
JPH09197283A (en) * 1996-01-12 1997-07-31 Olympus Optical Co Ltd Objective lens
JPH09197274A (en) * 1996-01-16 1997-07-31 Minolta Co Ltd Zoom lens
JPH09197273A (en) * 1996-01-19 1997-07-31 Minolta Co Ltd Zoom lens
JPH09211329A (en) * 1996-02-06 1997-08-15 Minolta Co Ltd Zoom lens
JPH09265042A (en) * 1996-03-29 1997-10-07 Minolta Co Ltd Photographing optical system provided with camera shake correcting function
JPH1082953A (en) * 1996-09-09 1998-03-31 Minolta Co Ltd Finder optical system
JPH1082952A (en) * 1996-09-09 1998-03-31 Minolta Co Ltd Finder optical system
JPH1090596A (en) * 1996-09-13 1998-04-10 Matsushita Electric Ind Co Ltd Optical system with grating element and image pickup device formed by using the same
JPH10111449A (en) * 1996-09-30 1998-04-28 Eastman Kodak Co Lens system
JPH10115777A (en) * 1996-10-11 1998-05-06 Olympus Optical Co Ltd Photographic lens
JPH10148768A (en) * 1996-11-21 1998-06-02 Minolta Co Ltd Zoom finder optical system
JPH10148757A (en) * 1996-09-19 1998-06-02 Canon Inc Zoom lens and optical instrument using it
JPH10148769A (en) * 1996-11-21 1998-06-02 Minolta Co Ltd Zoom finder optical system
JPH10161020A (en) * 1996-12-02 1998-06-19 Olympus Optical Co Ltd Photographic optical system using diffraction optical element
JPH10186223A (en) * 1996-10-24 1998-07-14 Asahi Optical Co Ltd Triplet lens
JPH10213744A (en) * 1997-01-30 1998-08-11 Minolta Co Ltd Zoom lens
JPH10311956A (en) * 1997-05-14 1998-11-24 Olympus Optical Co Ltd Finder
JPH10311946A (en) * 1997-05-12 1998-11-24 Olympus Optical Co Ltd Triplet lens
JPH10333036A (en) * 1997-05-02 1998-12-18 Nikon Corp Zoom lens having diffraction optical element
JPH10339843A (en) * 1997-06-05 1998-12-22 Asahi Optical Co Ltd Achromatic reading lens system
JPH1123968A (en) * 1997-07-03 1999-01-29 Olympus Optical Co Ltd Zoom lens having diffraction surface
JPH1152244A (en) * 1997-08-01 1999-02-26 Canon Inc Small-sized zoom lens
JPH1152238A (en) * 1997-08-01 1999-02-26 Canon Inc Zoom lens
JPH1152237A (en) * 1997-08-01 1999-02-26 Canon Inc Zoom lens
JPH1152236A (en) * 1997-08-04 1999-02-26 Canon Inc Rear focus type zoom lens
JPH1152233A (en) * 1997-07-31 1999-02-26 Canon Inc Attachment lens and optical system loaded therewith
JPH1164726A (en) * 1997-08-22 1999-03-05 Olympus Optical Co Ltd Wide-angle lens
JPH1172702A (en) * 1997-06-23 1999-03-16 Minolta Co Ltd Zoom lens
JPH11119096A (en) * 1997-10-17 1999-04-30 Olympus Optical Co Ltd Front converter lens using diffraction surface
JPH11133302A (en) * 1997-10-30 1999-05-21 Canon Inc Zoom lens and image scanner using the same
JPH11133305A (en) * 1997-10-31 1999-05-21 Canon Inc Zoom lens
JPH11149043A (en) * 1997-11-17 1999-06-02 Canon Inc Small zoom lens
JPH11223766A (en) * 1998-02-05 1999-08-17 Canon Inc Lens for reading picture
JPH11271616A (en) * 1998-03-24 1999-10-08 Olympus Optical Co Ltd Zoom lens
JPH11271514A (en) * 1998-03-23 1999-10-08 Minolta Co Ltd Diffracting optical element and optical system
JPH11295591A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Image pickup optical system and image pickup device using the same
JPH11295598A (en) * 1998-04-10 1999-10-29 Olympus Optical Co Ltd Zoom lens using diffraction optical element
JPH11305126A (en) * 1998-04-21 1999-11-05 Minolta Co Ltd Optical lens system
JPH11311743A (en) * 1998-04-30 1999-11-09 Olympus Optical Co Ltd Zoom lens using diffraction optical element and image pickup device using the zoom lens
JPH11326772A (en) * 1998-05-13 1999-11-26 Olympus Optical Co Ltd Objective lens
JPH11344671A (en) * 1998-05-29 1999-12-14 Canon Inc Image reader
JP2000105335A (en) * 1998-09-29 2000-04-11 Minolta Co Ltd Lens for reading color image
JP2001042112A (en) * 1999-07-28 2001-02-16 Canon Inc Diffraction optical device and optical system using the device

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214516A (en) * 1990-12-12 1992-08-05 Olympus Optical Co Ltd Projecting lens system
JPH06194571A (en) * 1992-12-25 1994-07-15 Olympus Optical Co Ltd Objective lens of endoscope
JPH06331898A (en) * 1993-05-24 1994-12-02 Olympus Optical Co Ltd Objective lens
JPH06347700A (en) * 1993-06-07 1994-12-22 Olympus Optical Co Ltd Objective lens
JPH0862504A (en) * 1994-08-22 1996-03-08 Olympus Optical Co Ltd Objective lens
JPH09197283A (en) * 1996-01-12 1997-07-31 Olympus Optical Co Ltd Objective lens
JPH09197274A (en) * 1996-01-16 1997-07-31 Minolta Co Ltd Zoom lens
JPH09197273A (en) * 1996-01-19 1997-07-31 Minolta Co Ltd Zoom lens
JPH09211329A (en) * 1996-02-06 1997-08-15 Minolta Co Ltd Zoom lens
JPH09265042A (en) * 1996-03-29 1997-10-07 Minolta Co Ltd Photographing optical system provided with camera shake correcting function
JPH1082953A (en) * 1996-09-09 1998-03-31 Minolta Co Ltd Finder optical system
JPH1082952A (en) * 1996-09-09 1998-03-31 Minolta Co Ltd Finder optical system
JPH1090596A (en) * 1996-09-13 1998-04-10 Matsushita Electric Ind Co Ltd Optical system with grating element and image pickup device formed by using the same
JPH10148757A (en) * 1996-09-19 1998-06-02 Canon Inc Zoom lens and optical instrument using it
JPH10111449A (en) * 1996-09-30 1998-04-28 Eastman Kodak Co Lens system
JPH10115777A (en) * 1996-10-11 1998-05-06 Olympus Optical Co Ltd Photographic lens
JPH10186223A (en) * 1996-10-24 1998-07-14 Asahi Optical Co Ltd Triplet lens
JPH10148768A (en) * 1996-11-21 1998-06-02 Minolta Co Ltd Zoom finder optical system
JPH10148769A (en) * 1996-11-21 1998-06-02 Minolta Co Ltd Zoom finder optical system
JPH10161020A (en) * 1996-12-02 1998-06-19 Olympus Optical Co Ltd Photographic optical system using diffraction optical element
JPH10213744A (en) * 1997-01-30 1998-08-11 Minolta Co Ltd Zoom lens
JPH10333036A (en) * 1997-05-02 1998-12-18 Nikon Corp Zoom lens having diffraction optical element
JPH10311946A (en) * 1997-05-12 1998-11-24 Olympus Optical Co Ltd Triplet lens
JPH10311956A (en) * 1997-05-14 1998-11-24 Olympus Optical Co Ltd Finder
JPH10339843A (en) * 1997-06-05 1998-12-22 Asahi Optical Co Ltd Achromatic reading lens system
JPH1172702A (en) * 1997-06-23 1999-03-16 Minolta Co Ltd Zoom lens
JPH1123968A (en) * 1997-07-03 1999-01-29 Olympus Optical Co Ltd Zoom lens having diffraction surface
JPH1152233A (en) * 1997-07-31 1999-02-26 Canon Inc Attachment lens and optical system loaded therewith
JPH1152244A (en) * 1997-08-01 1999-02-26 Canon Inc Small-sized zoom lens
JPH1152238A (en) * 1997-08-01 1999-02-26 Canon Inc Zoom lens
JPH1152237A (en) * 1997-08-01 1999-02-26 Canon Inc Zoom lens
JPH1152236A (en) * 1997-08-04 1999-02-26 Canon Inc Rear focus type zoom lens
JPH1164726A (en) * 1997-08-22 1999-03-05 Olympus Optical Co Ltd Wide-angle lens
JPH11119096A (en) * 1997-10-17 1999-04-30 Olympus Optical Co Ltd Front converter lens using diffraction surface
JPH11133302A (en) * 1997-10-30 1999-05-21 Canon Inc Zoom lens and image scanner using the same
JPH11133305A (en) * 1997-10-31 1999-05-21 Canon Inc Zoom lens
JPH11149043A (en) * 1997-11-17 1999-06-02 Canon Inc Small zoom lens
JPH11223766A (en) * 1998-02-05 1999-08-17 Canon Inc Lens for reading picture
JPH11271514A (en) * 1998-03-23 1999-10-08 Minolta Co Ltd Diffracting optical element and optical system
JPH11271616A (en) * 1998-03-24 1999-10-08 Olympus Optical Co Ltd Zoom lens
JPH11295591A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Image pickup optical system and image pickup device using the same
JPH11295598A (en) * 1998-04-10 1999-10-29 Olympus Optical Co Ltd Zoom lens using diffraction optical element
JPH11305126A (en) * 1998-04-21 1999-11-05 Minolta Co Ltd Optical lens system
JPH11311743A (en) * 1998-04-30 1999-11-09 Olympus Optical Co Ltd Zoom lens using diffraction optical element and image pickup device using the zoom lens
JPH11326772A (en) * 1998-05-13 1999-11-26 Olympus Optical Co Ltd Objective lens
JPH11344671A (en) * 1998-05-29 1999-12-14 Canon Inc Image reader
JP2000105335A (en) * 1998-09-29 2000-04-11 Minolta Co Ltd Lens for reading color image
JP2001042112A (en) * 1999-07-28 2001-02-16 Canon Inc Diffraction optical device and optical system using the device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102353A (en) * 2003-06-19 2010-05-06 Nikon Corp Optical element
JP2007139985A (en) * 2005-11-16 2007-06-07 Ricoh Opt Ind Co Ltd Super-wide-angle lens
JP2009092765A (en) * 2007-10-04 2009-04-30 Canon Inc Image display device
JP4921618B2 (en) * 2010-01-13 2012-04-25 パナソニック株式会社 Diffraction grating lens, manufacturing method thereof, and imaging device using the same
US8649095B2 (en) 2010-01-13 2014-02-11 Panasonic Corporation Diffraction grating lens and method of producing the same, and imaging device in which the same is used
JP2011233315A (en) * 2010-04-27 2011-11-17 Hitachi Ltd Optical sheet, light source module, lighting system using light source module, liquid crystal display, and image display device
JP2017146561A (en) * 2016-02-19 2017-08-24 株式会社タムロン Diffractive optical element, optical system, and image capturing device

Also Published As

Publication number Publication date
JP3467018B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
US6825979B2 (en) Optical system having a diffractive optical element, and optical apparatus
KR101174180B1 (en) Diffractive optical element
JP4776988B2 (en) Optical system and optical apparatus having the same
US9535240B2 (en) Zoom optical system
JP2002244044A (en) Zoom lens and optical instrument using it
JP2005215389A (en) Optical system and imaging apparatus having the same
US11294155B2 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US20020041451A1 (en) Lens system and optical device having the same
JP2004205813A (en) Zoom lens
JP2005062526A (en) Optical element and optical system
TWI554782B (en) A zoom optical system and a photographing device having a zoom optical system
JP3833754B2 (en) Electronic camera with diffractive optical element
JP2005164840A (en) Optical system and its designing method
JP3467018B2 (en) Optical system and optical equipment
JP3880147B2 (en) camera
JP2000147379A (en) Zoom lens
JP5333406B2 (en) Photographic lens, optical apparatus, and method of manufacturing photographic lens
JP7071085B2 (en) Diffractive optical element, optical system, and image pickup device
JP4590082B2 (en) Diffractive optical element and optical system using the same
JP4323595B2 (en) Imaging optical system and camera
JP4393252B2 (en) Diffractive optical element and optical system having the same
JP2018146879A (en) Optical system and imaging apparatus having the same
JPH1152233A (en) Attachment lens and optical system loaded therewith
JP2001305429A (en) Zoom lens and optical equipment using the same
JPH1073706A (en) Diffraction type optical element having both surfaces consisting of diffraction surface

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees