JP4393252B2 - Diffractive optical element and optical system having the same - Google Patents

Diffractive optical element and optical system having the same Download PDF

Info

Publication number
JP4393252B2
JP4393252B2 JP2004109092A JP2004109092A JP4393252B2 JP 4393252 B2 JP4393252 B2 JP 4393252B2 JP 2004109092 A JP2004109092 A JP 2004109092A JP 2004109092 A JP2004109092 A JP 2004109092A JP 4393252 B2 JP4393252 B2 JP 4393252B2
Authority
JP
Japan
Prior art keywords
grating
optical element
diffractive optical
diffraction grating
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004109092A
Other languages
Japanese (ja)
Other versions
JP2005292571A (en
JP2005292571A5 (en
Inventor
中井  武彦
裕人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004109092A priority Critical patent/JP4393252B2/en
Publication of JP2005292571A publication Critical patent/JP2005292571A/en
Publication of JP2005292571A5 publication Critical patent/JP2005292571A5/ja
Application granted granted Critical
Publication of JP4393252B2 publication Critical patent/JP4393252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、回折光学素子及びそれを有する光学系に関し、例えば複数の波長、あるいは帯域光で使用するデジタルカメラ、ビデオカメラ、フィルム用カメラ、望遠鏡、双眼鏡等の各種の光学機器に好適なものである。   The present invention relates to a diffractive optical element and an optical system having the diffractive optical element, and is suitable for various optical devices such as a digital camera, a video camera, a film camera, a telescope, and binoculars used with a plurality of wavelengths or band lights. is there.

従来より、分散の異なる複数の硝材の組み合わせにより光学系の色収差を減じる方法に対して、レンズ面やあるいは光学系の1部に回折作用を有する回折光学素子(以下回折格子とも言う)を設けることで、色収差を減じる方法が知られている(非特許文献1、特許文献1〜3)。これは、光学系中の屈折面と回折面とでは、ある基準波長の光線に対する色収差の出方が逆方向に発現するという物理現象を利用したものである。   Conventionally, a diffractive optical element (hereinafter also referred to as a diffraction grating) having a diffractive action is provided on a lens surface or a part of an optical system, in contrast to a method of reducing chromatic aberration of an optical system by combining a plurality of glass materials having different dispersions. Thus, a method of reducing chromatic aberration is known (Non-patent Document 1, Patent Documents 1 to 3). This utilizes a physical phenomenon in which chromatic aberration with respect to a light beam having a certain reference wavelength appears in the opposite direction between the refracting surface and the diffractive surface in the optical system.

さらに、このような回折光学素子は、その周期的構造の周期を変化させることで非球面レンズ的な効果をも持たせることができ収差の低減に大きな効果がある。   Furthermore, such a diffractive optical element can have an aspherical lens effect by changing the period of the periodic structure, and has a great effect on reducing aberrations.

ここで、屈折においては、1本の光線は屈折後も1本の光線であるのに対し、回折においては1本の光線が、各次数の複数の光に分かれてしまう。そこで、レンズ系の一要素として回折光学素子を用いる場合には、使用波長領域の光束が1つの特定次数(以後設計次数とも言う)に集中するように格子構造を決定する必要がある。   Here, in refraction, one light beam is still one light after refraction, but in diffraction, one light beam is divided into a plurality of lights of each order. Therefore, when a diffractive optical element is used as one element of the lens system, it is necessary to determine the grating structure so that the luminous flux in the used wavelength region is concentrated in one specific order (hereinafter also referred to as a design order).

そこで、一般的に図25に示すように、レンズと同様に用いられる回折光学素子(回折レンズ)1は、格子面4と、格子側面5から構成されるブレーズ構造より成っている。このような、ブレーズ構造の回折光学素子1は、特定の回折次数と、特定の波長に対して、高い効率で光を回折できる。しかしながらその一方で、格子側面5に入射した光束は、格子側面5で反射、屈折など格子面4と異なる振る舞いをするため、回折レンズとしては、不要な光となり好ましくない。   Therefore, as shown in FIG. 25, a diffractive optical element (diffractive lens) 1 generally used in the same manner as a lens has a blazed structure including a grating surface 4 and a grating side surface 5. Such a blazed diffractive optical element 1 can diffract light with high efficiency for a specific diffraction order and a specific wavelength. However, on the other hand, the light beam incident on the grating side surface 5 behaves differently from the grating surface 4 such as reflection and refraction at the grating side surface 5, so that it becomes unnecessary light as a diffractive lens.

そこで、この格子側面5での不要光を抑制するようにした回折光学素子が知られている(特許文献4〜6)。   Therefore, diffractive optical elements are known that suppress unnecessary light on the grating side surface 5 (Patent Documents 4 to 6).

図26はUSP5801889で提案されている回折光学素子を有した光学系の要部概略図である。図26においては、光学系に回折光学素子を配置する際に、格子側面5に入射光束が当たりにくいように、格子溝を連ねた包絡面7の曲率と格子側面5の角度を最適化している。尚、図26において、40は絞り、41は像面である。図26では、特定の入射角に対して最適な側面形状を与える方法として、入射角に概平行となるように格子側面5を形成している。   FIG. 26 is a schematic view of the essential part of an optical system having a diffractive optical element proposed in US Pat. No. 5,801,889. In FIG. 26, when the diffractive optical element is arranged in the optical system, the curvature of the envelope surface 7 with the grating grooves and the angle of the grating side surface 5 are optimized so that the incident light beam does not easily hit the grating side surface 5. . In FIG. 26, 40 is a stop, and 41 is an image plane. In FIG. 26, as a method of giving an optimum side shape for a specific incident angle, the grating side surface 5 is formed so as to be approximately parallel to the incident angle.

また、特開平10−268115号公報や、特開平2003−294924号公報でも、同様に入射光または、射出角が格子側面で、ケラレないように配置する構成であるため、本質的に格子側面で発生する不要光を低減する考え方は同じである。   Also, in Japanese Patent Laid-Open No. 10-268115 and Japanese Patent Laid-Open No. 2003-294924, the configuration is such that the incident light or the emission angle is arranged on the grating side surface so that there is no vignetting. The idea of reducing the unnecessary light generated is the same.

上記、従来例のように、格子側面を、入射光の方向に概平行に形成されるのは、格子側面での不要光を抑制する手段として好ましいが、様々な形状の回折格子を含む回折光学素子を考えた場合、入射角と概平行方向に格子側面を形成できない場合が発生する。以下、順をおって説明する。   As described above, it is preferable to form the grating side surface substantially parallel to the direction of the incident light as in the conventional example as a means for suppressing unnecessary light on the grating side surface, but the diffractive optics including diffraction gratings of various shapes. Considering the element, there are cases where the grating side face cannot be formed in a direction substantially parallel to the incident angle. Hereinafter, it will be described in order.

回折光学素子の製法としては、型を作成し、型から複製を行なうことで回折光学素子を製造するのが、量産性、コストの観点から一般的である。このような製法を前提とした場合、型から回折光学素子を良好に形状を転写しながら離型できる形状には制約がある。今図25に示すような、同心円形状の回折格子部より成る回折光学素子を、型から離型する場合、図31(A)で示したように、成形用型8を用い、外周の1箇所を起点Sとし、反対側の外周を離型の終点Eとする。そうすると、格子形状にもよるが、回折面4と格子側面5には特定の方向に図32に示すような変形が発生し、光学性能上問題となる。図30に示す回折格子の格子形状では、回折光学素子の中心から離型終点方向の格子形状に変形が発生しやすい。そこで、格子形状の変形を発生しないためには、図31(B)で示したように、外周部全域を離型起点Sとし、中心部が離型終点Eとなるように、離型を行なっていくことが必要となってくる。このような離型方法では、微小領域では、回折光学素子が面法線方向に離型されていると見なすことができる。   As a manufacturing method of a diffractive optical element, it is common from the viewpoint of mass productivity and cost to manufacture a diffractive optical element by creating a mold and replicating from the mold. When such a manufacturing method is assumed, there is a limitation on the shape in which the diffractive optical element can be released while the shape is transferred from the mold. When the diffractive optical element composed of the concentric diffraction grating part as shown in FIG. 25 is released from the mold, as shown in FIG. Is the starting point S and the outer periphery on the opposite side is the releasing end point E. Then, although depending on the grating shape, the diffractive surface 4 and the grating side surface 5 are deformed as shown in FIG. 32 in a specific direction, which causes a problem in optical performance. In the grating shape of the diffraction grating shown in FIG. 30, deformation tends to occur in the grating shape from the center of the diffractive optical element toward the release end point. Therefore, in order to prevent the deformation of the lattice shape, as shown in FIG. 31 (B), the mold is released so that the entire outer peripheral portion is the release start point S and the center is the release end point E. It is necessary to continue. In such a mold release method, it can be considered that the diffractive optical element is released in the surface normal direction in a minute region.

このような、比較的一般に用いられている回折光学素子の製法では、図30に示すような凸面に正のパワー(焦点距離の逆数)の回折格子部3を付加したような形状で、格子側面5が光軸Oに平行な方向となるような回折光学素子1は格子形状の変形という観点から製造上かなり困難な形状である。従って、凸面に正のパワーの回折格子部を付加したような形状では、図23に示すように格子側面5は凸面の面法線6a方向に概平行となる構成となる。このような形状にすることで、図31(B)に示した離型方法で、格子変形は大幅に改善される。   In such a relatively commonly used method for manufacturing a diffractive optical element, the side surface of the grating is shaped like a diffraction surface 3 having a positive power (reciprocal of focal length) added to the convex surface as shown in FIG. The diffractive optical element 1 in which 5 is in a direction parallel to the optical axis O has a considerably difficult shape in manufacturing from the viewpoint of deformation of the grating shape. Therefore, in a shape in which a positive power diffraction grating portion is added to the convex surface, the grating side surface 5 is substantially parallel to the surface normal 6a direction of the convex surface as shown in FIG. By adopting such a shape, the lattice deformation is greatly improved by the mold release method shown in FIG.

図34はこのときの成形型8と回折光学素子1の成形における離型方法を示す概略図である。
SPIE Vol.1354 International Lens Design Conference(1990) 特開平4−213421号公報 特開平6−324262号公報 USP5044706号 USP5801889号 特開平10−268115号公報 特開平2003−294924号公報
FIG. 34 is a schematic view showing a mold release method in molding the mold 8 and the diffractive optical element 1 at this time.
SPIE Vol.1354 International Lens Design Conference (1990) JP-A-4-213421 JP-A-6-324262 USP 5044706 USP5801889 JP-A-10-268115 Japanese Patent Laid-Open No. 2003-294924

図33に示す形状の回折光学素子は、図から明らかのように、回折光学素子1に、光軸Oに近い方向(図中a)から光束が入射すると、格子側面5で不要光が発生し、これを抑制することが難しい。回折光学素子の製作に問題がなく、従来の構成が適用できるのは、図33中の光軸Oに離れた側から光軸O側に進むbの方向から光が入射する場合であるが、bの方向からの光束が通常、結像に寄与することは稀である。   As is clear from the drawing, the diffractive optical element having the shape shown in FIG. 33 generates unnecessary light on the grating side surface 5 when a light beam enters the diffractive optical element 1 from a direction close to the optical axis O (a in the figure). It is difficult to suppress this. There is no problem in the production of the diffractive optical element, and the conventional configuration can be applied when light is incident from the direction b traveling from the side away from the optical axis O to the optical axis O side in FIG. The light flux from the direction b usually rarely contributes to image formation.

また、この不要光の発生は、上述した1種類の回折格子から構成される回折光学素子だけでなく、積層構造の回折光学素子にも当てはまる。積層構造の回折光学素子は、回折格子の数も増え、回折格子の格子高さも高くなる傾向にあるので、不要光の発生はより多くなってくる。   The generation of unnecessary light applies not only to the above-described diffractive optical element composed of one type of diffraction grating, but also to a diffractive optical element having a laminated structure. In a diffractive optical element having a laminated structure, the number of diffraction gratings increases and the grating height of the diffraction grating tends to increase, so that unnecessary light is generated more.

本発明は、格子側面に入射光が到達するような場合であっても、格子側面で生ずる不要光が、像性能を低下させにくい回折光学素子及びそれを有する光学系の提供を目的とする。   An object of the present invention is to provide a diffractive optical element and an optical system having the diffractive optical element in which unnecessary light generated on a grating side face hardly deteriorates image performance even when incident light reaches the grating side face.

さらに、製造上からも型での成形など量産性の良い製造方式を使用できるような回折光学素子の提供を目的としている。   Furthermore, another object of the present invention is to provide a diffractive optical element that can be used for manufacturing because of its high mass productivity such as molding with a mold.

請求項1の発明の回折光学素子は、格子面と格子側面を含み、使用波長領域全域で特定次数に回折するブレーズ型の回折格子を同心円状の周期構造とした回折格子部を有する回折光学素子に於いて、
前記回折格子部は、2種類の異なる材料の境界に回折格子が形成されており、
該格子側面の回折格子の格子先端を連ねた包絡面の面法線に対する傾き角度θkは、該回折格子部の中心では実質的に0であり、該回折格子部の中心領域から周辺領域に向かって、該格子側面が該回折格子の格子先端を連ねた包絡面の各格子先端位置における面法線と格子面がなす角度に対してより鈍角となる方向に変化し、
且つ隣接する回折格子間の傾き角度が連続してほぼ0の第1の領域を前記回折格子部の中心を含む領域に有し、前記第1の領域よりも周辺に前記変化量Δθkが0.2より大きい第2の領域を有することを特徴としている。
The diffractive optical element of the invention of claim 1 includes a diffraction grating portion including a grating surface and a grating side surface, and a blazed diffraction grating that diffracts to a specific order over the entire wavelength region to be used has a concentric periodic structure. In
The diffraction grating portion has a diffraction grating formed at the boundary between two different materials,
The inclination angle θk with respect to the surface normal of the envelope surface connecting the grating tips on the side surface of the grating is substantially 0 at the center of the diffraction grating portion, and extends from the central region of the diffraction grating portion to the peripheral region . Then, the grating side surface changes in a direction that becomes more obtuse than the angle formed by the surface normal and the grating surface at each grating tip position of the envelope surface connecting the grating tips of the diffraction grating ,
In addition, a first region in which the tilt angles between adjacent diffraction gratings are continuously zero is provided in a region including the center of the diffraction grating portion, and the variation Δθk is about 0.1 mm in the periphery of the first region. It has the 2nd area | region larger than 2, It is characterized by the above-mentioned.

請求項2の発明の回折光学素子は、分散の異なる材料からなる回折格子を2つ以上近接させて重ね合わされた積層格子構造の回折光学部を持ち、使用波長領域で、設計波長を2つ以上有する回折光学素子に於いて、
該回折格子部は、格子面と格子側面を含むブレーズ型の回折格子が同心円状の周期構造より成り、
前記回折格子部は、2種類の異なる材料の境界に回折格子が形成されており、
該格子側面の回折格子の格子先端を連ねた包絡面の面法線に対する傾き角度θkは、該回折格子部の中心では実質的に0であり、該回折格子部の中心領域から周辺領域に向かって、該格子側面が該回折格子の格子先端を連ねた包絡面の各格子先端位置における面法線と格子面がなす角度に対してより鈍角となる方向に変化し、
且つ隣接する回折格子間の傾き角度が連続してほぼ0の第1の領域を前記回折格子部の中心を含む領域に有し、前記第1の領域よりも周辺に前記変化量Δθkが0.2より大きい第2の領域を有する
ことを特徴としている。
The diffractive optical element of the invention of claim 2 has a diffractive optical part of a laminated grating structure in which two or more diffraction gratings made of materials having different dispersions are stacked close to each other, and has two or more design wavelengths in the used wavelength region. In a diffractive optical element having
The diffraction grating portion has a periodic structure in which a blazed diffraction grating including a grating surface and a grating side surface is concentric,
The diffraction grating portion has a diffraction grating formed at the boundary between two different materials,
The inclination angle θk with respect to the surface normal of the envelope surface connecting the grating tips on the side surface of the grating is substantially 0 at the center of the diffraction grating portion, and extends from the central region of the diffraction grating portion to the peripheral region. Then, the grating side surface changes in a direction that becomes more obtuse than the angle formed by the surface normal and the grating surface at each grating tip position of the envelope surface connecting the grating tips of the diffraction grating,
In addition, a first region in which the tilt angles between adjacent diffraction gratings are continuously zero is provided in a region including the center of the diffraction grating portion, and the variation Δθk is about 0.1 mm in the periphery of the first region. Characterized by having a second region greater than two .

本発明によれば、格子側面に入射光が到達するような場合であっても、格子側面で生ずる不要光が、像性能を低下させにくい回折光学素子及びそれを有する光学系を達成することができる。   According to the present invention, it is possible to achieve a diffractive optical element and an optical system having the diffractive optical element in which unnecessary light generated on the grating side face hardly deteriorates the image performance even when incident light reaches the grating side face. it can.

この他本発明によれば、製造上からも型での成形など量産性の良い製造方式を使用できるような回折光学素子を得ることができる。   In addition, according to the present invention, it is possible to obtain a diffractive optical element capable of using a manufacturing method with good mass productivity such as molding with a mold.

以下、本発明の各実施例を各図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1の回折光学素子の正面図及び側面図である。回折光学素子1は平板又はレンズより成る基板2の片側又は両方の面に回折格子部3を設けて形成されている。そして、本実施例では、回折格子部3が形成されている基板2の面は、曲面(図では凸面)となっている。回折格子部3は光軸Oを中心とした同心円状の回折格子形状からなり、レンズ作用を有している。   1A and 1B are a front view and a side view of a diffractive optical element according to Example 1 of the present invention. The diffractive optical element 1 is formed by providing a diffraction grating portion 3 on one or both surfaces of a substrate 2 made of a flat plate or a lens. In this embodiment, the surface of the substrate 2 on which the diffraction grating portion 3 is formed is a curved surface (convex surface in the figure). The diffraction grating portion 3 has a concentric diffraction grating shape with the optical axis O as the center, and has a lens action.

図2は図1の回折光学素子1を図中A−A′断面で切断した断面形状の一部の拡大図である。図2は格子深さ方向にかなりデフォルメされた図となっている。また、構成を分かりやすくするために格子数も実際よりは少なく描かれている。   FIG. 2 is an enlarged view of a part of the sectional shape of the diffractive optical element 1 of FIG. FIG. 2 is a view that is considerably deformed in the lattice depth direction. Also, in order to make the configuration easy to understand, the number of grids is drawn smaller than the actual number.

回折格子部3は、格子面4と格子側面5から構成されるブレーズ構造の回折格子3aからなり、光軸Oから外周部にいくに従って格子ピッチpL(L=1,2…)を徐々に変化させることで、レンズ作用(光の収斂作用や発散作用)を有するようにしている。また、ブレーズ構造にすることで、回折光学素子1に入射した入射光は、回折格子3aで回折せずに透過する0次回折方向に対し、特定の回折次数(図では1次)方向に集中して回折する。また、回折格子部3の格子先端部(格子先端)3bを連ねた包絡面6は曲面からなり、基板2の格子形成側の面2aの曲率半径とほぼ等しい曲率半径の曲面である。 The diffraction grating unit 3 is composed of a blazed diffraction grating 3a composed of a grating surface 4 and a grating side surface 5, and gradually changes the grating pitch pL (L = 1, 2,...) From the optical axis O to the outer periphery. By doing so, it has a lens action (light convergence action or diverging action). Further, by using the blazed structure, incident light incident on the diffractive optical element 1 is concentrated in a specific diffraction order (first order in the figure) direction with respect to the 0th order diffraction direction that is transmitted without being diffracted by the diffraction grating 3a. And diffract. In addition, the envelope surface 6 connecting the grating tip portions (grating tip) 3b of the diffraction grating portion 3 is a curved surface, and is a curved surface having a curvature radius substantially equal to the curvature radius of the surface 2a on the grating forming side of the substrate 2.

厳密には、基板2の曲率中心と包絡面6の曲率中心が一致する曲率半径となっている。一方、格子溝部3cを連ねた包絡面7は、後述するが、中心から数えてk番目の格子高さd(k)が、回折格子3a毎に変化しているので、非球面の曲面となっている。   Strictly speaking, the radius of curvature coincides with the center of curvature of the substrate 2 and the center of curvature of the envelope surface 6. On the other hand, the envelope surface 7 in which the grating grooves 3c are connected, as will be described later, is an aspherical curved surface because the k-th grating height d (k) from the center changes for each diffraction grating 3a. ing.

そして、本実施例において、格子側面5は、格子先端部3bを連ねた包絡面6と中心から数えてk番目の格子先端部3bとの交点での包絡面6の面法線6aに対して、特定の角度θkを有しており、その格子側面5の傾き角θkが、格子毎に変化している。さらに、格子側面5の傾き角θkの隣り合う回折格子3a間の差分Δθkを
Δθk=θk+1−θk (1)
としたとき、Δθkが連続して0でない領域を少なくとも1箇所以上有している。
In this embodiment, the lattice side surface 5 is relative to the surface normal 6a of the envelope surface 6 at the intersection of the envelope surface 6 connecting the lattice tip portions 3b and the kth lattice tip portion 3b counting from the center. And a specific angle θk, and the inclination angle θk of the lattice side surface 5 varies for each lattice. Further, the difference Δθk between the adjacent diffraction gratings 3a having the inclination angle θk of the grating side surface 5 is set to Δθk = θk + 1−θk (1)
In this case, there are at least one region where Δθk is not continuously zero.

又、格子側面は円錐面の一部から成るようにしている。   Further, the lattice side surface is formed of a part of a conical surface.

以下、図を用いて説明する。   This will be described below with reference to the drawings.

説明をわかりやすくするために、図3に示すように、基板2の回折格子部3が形成される面を平面とする。このとき、回折格子部3の格子先端部3bを連ねた包絡面6は、光軸Oに垂直な平面となる。さらに、前述の格子先端部3bとの交点での包絡面6の面法線6aは、全て、光軸Oと平行な方向になる。   For easy understanding, as shown in FIG. 3, the surface of the substrate 2 on which the diffraction grating portion 3 is formed is a plane. At this time, the envelope surface 6 connecting the grating tip portions 3b of the diffraction grating portion 3 is a plane perpendicular to the optical axis O. Furthermore, all of the surface normals 6a of the envelope surface 6 at the intersections with the lattice tip 3b described above are in a direction parallel to the optical axis O.

また、包絡面6の面法線6aと格子側面5がなす傾き角θkの符号は、図3で各格子側面が傾いている方向を正とする。つまり、格子面4と包絡面6の面法線6aがなす角度S1に対し、格子面4と格子側面5がなす角度S2がより鈍角となる方向を、格子側面5の傾き角θkが正とする。格子側面5の傾き角θkが正となる形状は、型から回折光学素子を離型するときに、格子変形が発生しない形状である。   The sign of the inclination angle θk formed by the surface normal 6a of the envelope surface 6 and the lattice side surface 5 is positive in the direction in which each lattice side surface is inclined in FIG. That is, with respect to the angle S1 formed by the surface normal 6a between the lattice surface 4 and the envelope surface 6, the angle S2 formed by the lattice surface 4 and the lattice side surface 5 is a more obtuse angle, and the inclination angle θk of the lattice side surface 5 is positive. To do. The shape in which the inclination angle θk of the grating side surface 5 is positive is a shape in which no grating deformation occurs when the diffractive optical element is released from the mold.

次に、回折格子3aの格子高さd(k)について説明する。一番簡単な例として、図3の回折光学素子1に、包絡面6に垂直な方向、つまり光軸0と平行な方向から波長λの光束が入射する場合を考える。入射側の媒質を空気とし、回折格子部3の材料の屈折率をn1(λ)としたとき、波長λの光束が、m次回折光で最大の回折光を得るためには、以下の式を満足するように格子高さdを決定すれば良い。   Next, the grating height d (k) of the diffraction grating 3a will be described. As the simplest example, let us consider a case where a light flux having a wavelength λ is incident on the diffractive optical element 1 in FIG. 3 from a direction perpendicular to the envelope surface 6, that is, a direction parallel to the optical axis 0. In order to obtain the maximum diffracted light by the m-order diffracted light when the medium on the incident side is air and the refractive index of the material of the diffraction grating part 3 is n1 (λ), the following formula is obtained. What is necessary is just to determine the lattice height d so that it may be satisfied.

{n1(λ)−1}d=mλ (2)
格子高さ以外は、既知の値であるので、格子高さは一意的に決定することができる。
{N1 (λ) −1} d = mλ (2)
Since the values other than the lattice height are known values, the lattice height can be uniquely determined.

図4に、実際の格子高さd(k)の決定方法を示す。図4(a)は、格子側面5の傾き角θa=0のときの格子形状を示している。この場合の格子高さdaは、(2)式で求められたdとすれば良い(da=d)。一般的に、回折格子3aの格子高さは、図2、図3で示す格子先端3bの包絡面6の法線方向6aに測った高さで定義される。図4(b)は、格子側面5の傾き角θb>0のときの格子形状を示している。   FIG. 4 shows a method for determining the actual grid height d (k). FIG. 4A shows the lattice shape when the inclination angle θa = 0 of the lattice side surface 5. The lattice height da in this case may be d obtained by the equation (2) (da = d). In general, the grating height of the diffraction grating 3a is defined by the height measured in the normal direction 6a of the envelope surface 6 of the grating tip 3b shown in FIGS. FIG. 4B shows the lattice shape when the inclination angle θb> 0 of the lattice side surface 5.

ここで、格子面4は、図4(a)で、決定された形状と同じである。同形状にすることで、格子面4を通過する光束は、最適な回折光が得られるように伝播される。格子側面5のほうは、格子先端3bを基準にして、傾き角θbだけ傾くように形成する。図4からも明らかなように、傾き角θbが正の値をとるときは、格子面4と格子側面5の溝側の交点Bは、先端3bよりにずれるため、格子高さdbは、格子高さdaに比べて小さくなる。   Here, the lattice plane 4 has the same shape as that determined in FIG. By adopting the same shape, the light beam passing through the grating surface 4 is propagated so as to obtain optimum diffracted light. The grating side surface 5 is formed so as to be inclined by the inclination angle θb with respect to the grating tip 3b. As is clear from FIG. 4, when the inclination angle θb takes a positive value, the intersection B on the groove side of the lattice plane 4 and the lattice side surface 5 is shifted from the tip 3b. It becomes smaller than the height da.

以上説明したように、格子側面5の傾き角θkによって、格子高さd(k)が変わるので、図2、図3の格子溝3cを連ねた包絡面7は、球面や平面にはならず、非球面形状となる。   As described above, since the lattice height d (k) changes depending on the inclination angle θk of the lattice side surface 5, the envelope surface 7 connecting the lattice grooves 3c in FIGS. 2 and 3 does not become a spherical surface or a flat surface. It becomes an aspherical shape.

次に、図2に示したように、包絡面6が曲面となる回折格子部3に任意の入射角αで入射した光束を考える。m次回折光で最大の回折光を得るためには、(2)式は、
{n1(λ)cosα′m−cosα}d=mλ (3)
となる。ここで、α′mは、m次回折光の回折角である。なお、このときの、入射角、回折角の角度は、格子先端3bを連ねた包絡面6の面法線6aと、入射光、回折光のなす角度である。
Next, as shown in FIG. 2, a light beam that is incident on the diffraction grating portion 3 having an envelope surface 6 having a curved surface at an arbitrary incident angle α will be considered. In order to obtain the maximum diffracted light with m-order diffracted light, the equation (2) is
{N1 (λ) cos α′m−cos α} d = mλ (3)
It becomes. Here, α′m is the diffraction angle of the m-th order diffracted light. At this time, the incident angle and the diffraction angle are angles formed by the surface normal 6a of the envelope surface 6 connecting the grating tips 3b and the incident light and diffracted light.

この場合も、前述のように、各格子面4を最適な回折光が得られるように決定し、その後、格子側面5の傾き角θkを最適化し、格子高さd(k)を決めていく手順を取ればよい。   Also in this case, as described above, each grating surface 4 is determined so that optimum diffracted light can be obtained, and thereafter the inclination angle θk of the grating side surface 5 is optimized to determine the grating height d (k). Just follow the steps.

最後に、格子側面5の傾き角θkについて説明する。図5は、実施例1における各回折格子での傾き角θkのグラフである。横軸は、輪帯番号kであり、中心(光軸O)側が第1輪帯、最外周部が第50輪帯となるようにした回折光学素子の例である(尚、輪帯の数は仕様により任意である)。縦軸は、格子側面5の傾き角θkの値である。図5で、第1輪帯から第15輪帯までの第1の領域における傾き角θkは、連続してほぼ0の値であり、第16輪帯から第40輪帯まで、徐々に増加している。そして、第41輪帯から第50輪帯で、傾き角は約14°となる。 Finally, the inclination angle θk of the grating side surface 5 will be described. FIG. 5 is a graph of the tilt angle θk at each diffraction grating in the first embodiment. The horizontal axis is an example of a diffractive optical element in which the ring number is k, the center (optical axis O) side is the first ring zone, and the outermost periphery is the 50th ring zone (note that the number of ring zones) Is optional depending on the specification). The vertical axis represents the value of the inclination angle θk of the lattice side surface 5. In FIG. 5, the inclination angle θk in the first region from the first annular zone to the fifteenth annular zone has a value of substantially 0 continuously , and gradually increases from the 16th annular zone to the 40th annular zone. ing. The inclination angle is about 14 ° from the 41st to 50th zones.

実施例1の特徴は、第16輪帯から第40輪帯の領域のように、傾き角が急激に変化する領域を有することである。即ち傾き角の変化量が連続して0でない領域を1以上有することである。図6は、(1)式で表わした差分Δθkを、図5の傾き角θkに対して計算したグラフである。差分Δθkが0とならず、増加している領域と、減少している領域があることが、グラフから見て取れる。図6における実施例1の特徴は、差分Δθkが0でない値が複数の回折格子に連続してあることである。   The characteristic of Example 1 is that it has the area | region where an inclination angle changes rapidly like the area | region of the 16th ring zone to the 40th ring zone. That is, it has one or more regions where the change amount of the inclination angle is not continuously zero. FIG. 6 is a graph in which the difference Δθk expressed by the equation (1) is calculated with respect to the inclination angle θk of FIG. It can be seen from the graph that the difference Δθk does not become 0 but there are an increasing area and a decreasing area. The feature of the first embodiment in FIG. 6 is that a value of the difference Δθk that is not 0 is continuously present in a plurality of diffraction gratings.

従来例との、格子側面の形状との違いを明らかにするため、従来例の回折光学素子について、同様のグラフを図35、図36に示す。図35、図36は、格子側面5が、包絡面6の法線方向6aと一致する図33の回折光学素子1のグラフである。法線方向6aと一致しているため、傾き角θkは全域で0となり、差分Δθkも全域で0となる。   In order to clarify the difference between the shape of the grating side surface and the conventional example, similar graphs are shown in FIGS. 35 and 36 for the diffractive optical element of the conventional example. 35 and 36 are graphs of the diffractive optical element 1 in FIG. 33 in which the grating side surface 5 coincides with the normal direction 6 a of the envelope surface 6. Since it coincides with the normal direction 6a, the inclination angle θk is 0 in the entire region, and the difference Δθk is also 0 in the entire region.

図27は、従来例である特開平10−268115号公報に提案されている回折光学素子1の説明図である。この回折光学素子1は、中央領域で、格子側面5が法線6a方向と一致し、周辺領域は、特定の傾き角rを有する構成である。   FIG. 27 is an explanatory diagram of the diffractive optical element 1 proposed in Japanese Patent Laid-Open No. 10-268115, which is a conventional example. This diffractive optical element 1 has a configuration in which the grating side surface 5 coincides with the direction of the normal 6a in the central region, and the peripheral region has a specific inclination angle r.

図28、図29は、図27の従来例に対応するグラフである。図28からわかるように、傾き角θkが離散的に変化しているので、差分Δθkは、離散的に変化している境界の1輪帯でだけ、大きな変化量を有することになる。このように、グラフの上からも、実施例1である格子側面5の傾き角θkは、従来例と異なっていることが明らかである。また、傾き角θkの最大値は、図2中の格子側面5の格子ピッチ方向(図2中のy方向)の射影長さ(格子先端部3bと溝部3cとの光軸Oの垂直方向の長さ)ΔpLが、
0<ΔpL/pL<0.05 (4)
を満足する範囲で、変化させるのが好ましい。この範囲とすることで、格子面4を通過する使用光束の回折効率を大幅に低下させることなく、格子側面5の不要光を抑制できる。
28 and 29 are graphs corresponding to the conventional example of FIG. As can be seen from FIG. 28, since the inclination angle θk changes discretely, the difference Δθk has a large amount of change only in one ring zone of the boundary changing discretely. Thus, also from the top of the graph, it is clear that the inclination angle θk of the grating side surface 5 which is Example 1 is different from the conventional example. Further, the maximum value of the inclination angle θk is the projection length in the grating pitch direction (y direction in FIG. 2) of the grating side surface 5 in FIG. 2 (in the direction perpendicular to the optical axis O between the grating tip 3b and the groove 3c). Length) ΔpL is
0 <ΔpL / pL <0.05 (4)
It is preferable to change within a range that satisfies the above. By setting it as this range, the unnecessary light of the grating side surface 5 can be suppressed without significantly reducing the diffraction efficiency of the used light beam passing through the grating surface 4.

続いて、実施例1の格子側面5の形状による、不要光の発生を抑制する考え方について説明を行う。   Next, the concept of suppressing the generation of unnecessary light by the shape of the grating side surface 5 of Example 1 will be described.

実施例1では、格子側面5を透過する光束が、不要光として振る舞う場合を対象としている。さらに、実施例1により、不要光の発生を抑制するのに特に効果があるのは、図7に示すように、入射角ω0より透過屈折角ω1が大きくなるな関係で、格子側面5に光束が入射する場合である。ここで、入射角、透過屈折角は、格子側面5の面法線5aと、入射光、透過光のなす角ω0、ω1である。   The first embodiment is intended for the case where the light beam transmitted through the grating side surface 5 behaves as unnecessary light. Furthermore, the embodiment 1 is particularly effective in suppressing the generation of unnecessary light because the transmission refraction angle ω1 is larger than the incident angle ω0 as shown in FIG. Is incident. Here, the incident angle and the transmission refraction angle are angles ω0 and ω1 formed by the surface normal 5a of the grating side surface 5 and the incident light and transmitted light.

格子面4を形成する入射側の媒質の波長λでの屈折率をn1(λ)、射出側の媒質の波長λでの屈折率をn2(λ)とすると、上記関係は入射側の媒質の屈折率が射出側に比べて高いn1(λ)>n2(λ)であるときに成立する。   When the refractive index at the wavelength λ of the incident side medium forming the grating plane 4 is n1 (λ), and the refractive index at the wavelength λ of the emission side medium is n2 (λ), the above relationship is as follows. This holds when n1 (λ)> n2 (λ) is higher than the refractive index on the exit side.

このとき、入射光、透過光の関係は、スネルの法則で考えて差し障りがない。図8、図9に2つの格子形状における入射角ω0と透過屈折角ω1の関係を示す。図8は、入射側に空気以外の媒質があり、射出側が空気である構成である。図8は入射側の材料に大日本インキ化学工業(株)製の紫外線硬化樹脂RC−C001(nd=1.524、νd=50.8)を用いたときのグラフであり、実線がd線の波長における関係、点線がg線の波長における関係を表わしている。入射光が臨界角を超えて入射するまで透過光は存在し、透過屈折角ω1は0°から90°の全範囲に存在可能である。ただし、d線とg線の波長における透過屈折光の振る舞いに大きな差はない。   At this time, the relationship between the incident light and the transmitted light can be considered by Snell's law. 8 and 9 show the relationship between the incident angle ω0 and the transmission refraction angle ω1 in the two grating shapes. FIG. 8 shows a configuration in which a medium other than air is present on the incident side and air is present on the emission side. FIG. 8 is a graph when using UV-curable resin RC-C001 (nd = 1.524, νd = 50.8) manufactured by Dainippon Ink & Chemicals, Inc. as the incident side material, and the solid line is the d line. The dotted line represents the relationship in the wavelength of the g-line. The transmitted light exists until the incident light enters beyond the critical angle, and the transmission refraction angle ω1 can exist in the entire range from 0 ° to 90 °. However, there is no significant difference in the behavior of transmitted refracted light at the wavelengths of d-line and g-line.

図9は、入射側と射出側が分散の異なる媒質(材料)の境界に格子面(回折格子)が形成されている構成である。図9は、入射側の材料の屈折率が出射側の材料の屈折率に比べて高い場合であり、入射側の材料に紫外線硬化樹脂(nd=1.636、νd=22.8)、射出側の材料に大日本インキ化学工業(株)製の紫外線硬化樹脂RC−C001(nd=1.524、νd=50.8)を用いたときのグラフであり、図8と同様に実線がd線の波長における関係、点線がg線の波長における関係を表わしている。   FIG. 9 shows a configuration in which a grating surface (diffraction grating) is formed at the boundary of a medium (material) having different dispersions on the incident side and the emission side. FIG. 9 shows a case where the refractive index of the material on the incident side is higher than the refractive index of the material on the outgoing side. As the material on the incident side, ultraviolet curable resin (nd = 1.636, νd = 22.8), FIG. 9 is a graph when using UV-curable resin RC-C001 (nd = 1.524, νd = 50.8) manufactured by Dainippon Ink & Chemicals, Inc. as the material on the side, and the solid line is d as in FIG. The relationship in the wavelength of the line, and the dotted line represents the relationship in the wavelength of the g-line.

この場合、図8の構成に比べて格子面を構成する材料の屈折率差が小さいので、入射角ω0が0°から70°とかなり広い範囲で透過屈折光が発生する。また、d線とg線の臨界角がそれぞれ、68.74°、66.56°と約2°異なっている。従って、67°の入射角で入射した光束は、d線の波長は透過し、g線の波長は全反射するので、透過屈折光は、色づいた光束となる。   In this case, since the difference in refractive index of the material constituting the lattice plane is smaller than that in the configuration of FIG. 8, transmitted refracted light is generated in a considerably wide range of the incident angle ω 0 from 0 ° to 70 °. Further, the critical angles of the d-line and the g-line are different from each other by 68.74 ° and 66.56 °, respectively. Accordingly, since the light beam incident at an incident angle of 67 ° transmits the wavelength of the d-line and totally reflects the wavelength of the g-line, the transmitted refracted light becomes a colored light beam.

以上のように本実施例では、回折光学素子として、2種類の異なる材料の境界に回折光学素子部が形成されている構成を用いることにより、格子側面に光束が入射する場合でも、不要光が像性能を低下させるのを少なくし、又光学系に組み込んだ場合でも、フレア等を有効に抑制している。   As described above, in this embodiment, by using a configuration in which the diffractive optical element portion is formed at the boundary between two different materials as the diffractive optical element, unnecessary light is generated even when the light beam is incident on the grating side surface. It reduces the degradation of image performance and effectively suppresses flare and the like even when incorporated in an optical system.

以下、実施例1の効果を説明するのに、従来例との差が顕著となるように、図10に媒質の境界に回折格子面を有する回折格子部をもつ回折光学素子を用いた光学系を例に説明を行う。   Hereinafter, in order to explain the effects of the first embodiment, an optical system using a diffractive optical element having a diffraction grating portion having a diffraction grating surface at the boundary of the medium is shown in FIG. 10 so that the difference from the conventional example becomes significant. An example will be described.

図10は、上記回折光学素子21の概略図である。回折光学素子21は第1の回折光学素子22と第2の回折光学素子(第2の素子部)23が近接した構成よりなっている。そして、近接した境界面に回折格子部が形成されている。 FIG. 10 is a schematic view of the diffractive optical element 21. The diffractive optical element 21 has a configuration in which a first diffractive optical element 22 and a second diffractive optical element (second element part) 23 are close to each other. A diffraction grating portion is formed on the adjacent boundary surface.

図10中A−A′線で切断した断面形状の概略を図11に示す。基板24の曲面(図では凹面)24a上に形成され、正のパワーの回折レンズとして作用する第1の回折格子部26を有する第1の素子部22と、基板25の曲面(図では凸面)上に形成され、負のパワーの回折レンズとして作用する第2の回折格子部27を有する第2の素子部23が、空気層28を介して近接した構成となっている。ここでパワーとは焦点距離の逆数である。   FIG. 11 shows an outline of a cross-sectional shape cut along the line AA ′ in FIG. A first element portion 22 having a first diffraction grating portion 26 formed on a curved surface (concave surface in the figure) 24a of the substrate 24 and acting as a positive power diffraction lens, and a curved surface (convex surface in the figure) of the substrate 25. The second element part 23 having the second diffraction grating part 27 formed above and acting as a diffractive lens having a negative power has a configuration in which the second element part 23 is in close proximity via the air layer 28. Here, power is the reciprocal of the focal length.

第2の回折格子部27は、基板25の表面側に正の光学パワーの回折レンズとして作用する回折格子29と、その上に負の光学パワーの回折レンズとして作用する回折格子30が、格子面32で貼り合わされた構成であり、全体として負のパワーを有している。回折格子30の格子面32と反対の面33は回折格子が形成されていない曲面33で、基板25の回折格子を形成する側の曲面25aと実効的に等しい曲率を有している。   The second diffraction grating portion 27 includes a diffraction grating 29 that acts as a diffraction lens with a positive optical power on the surface side of the substrate 25 and a diffraction grating 30 that acts as a diffraction lens with a negative optical power on the grating surface. 32, and has a negative power as a whole. A surface 33 opposite to the grating surface 32 of the diffraction grating 30 is a curved surface 33 on which no diffraction grating is formed, and has a curvature that is effectively equal to the curved surface 25a of the substrate 25 on the side where the diffraction grating is formed.

36、37、38、39は各々第1の回折格子部26の格子溝部、格子先端部、第2の回折格子部27の格子先端部、格子溝部を連ねた包絡面である。   Reference numerals 36, 37, 38, and 39 denote envelope surfaces in which the grating groove portion and the grating tip portion of the first diffraction grating portion 26, the grating tip portion and the grating groove portion of the second diffraction grating portion 27 are connected.

上記、第2の回折格子部27が、前述の図9で示した特性を有する回折格子部である。そしてこれらの第1、第2の回折格子部26、27を合成して、一つの回折光学素子21として作用するようにしている。   The second diffraction grating portion 27 is a diffraction grating portion having the characteristics shown in FIG. These first and second diffraction grating portions 26 and 27 are combined so as to act as one diffractive optical element 21.

上記回折光学素子21に、光束が入射したときの、各格子側面34、35での不要光の振る舞いについて説明する。   The behavior of unnecessary light on the grating side surfaces 34 and 35 when a light beam enters the diffractive optical element 21 will be described.

図12に回折格子部26、27を拡大した模式図を示す。微小領域の回折格子部26、27は、微少領域における包絡面36にδだけ傾いた回折格子で構成されていると考えられる。まず、図中Aで示した第1の回折格子部26の格子側面34へ入射する光束の振る舞いを調べる。   FIG. 12 shows an enlarged schematic diagram of the diffraction grating portions 26 and 27. It is considered that the diffraction grating portions 26 and 27 in the minute region are constituted by diffraction gratings inclined by δ with respect to the envelope surface 36 in the minute region. First, the behavior of the light beam incident on the grating side surface 34 of the first diffraction grating portion 26 indicated by A in the figure is examined.

第1の回折格子部26は、材質の屈折率n1(λ)と空気により形成されている。図中左の方向から側面に到達する光束Aは、一旦格子面31を射出した後に、格子側面34に到達する。そのため、空気から媒質への透過となり、図に示したように、光軸に対して大きな角度を有して射出されるため、一般的な光学系では問題とならない。   The first diffraction grating portion 26 is formed of a material refractive index n1 (λ) and air. The light beam A that reaches the side surface from the left direction in the drawing reaches the grating side surface 34 after exiting the grating surface 31 once. Therefore, the air is transmitted from the medium to the medium, and is emitted with a large angle with respect to the optical axis as shown in the figure, so that there is no problem in a general optical system.

次に、図中Bで示した第2の回折格子部27の格子側面35へ入射する光束の振る舞いを説明する。   Next, the behavior of the light beam incident on the grating side surface 35 of the second diffraction grating portion 27 shown by B in the figure will be described.

図中Bの光束は、第1の回折格子部26を通過後、曲面33で屈折し、格子側面35へ入射する。回折格子30内を伝播する光束の光軸とのなす角度をωiとする。格子側面34へ入射する入射角ω0は、以下のようになる。   The light beam B in the drawing passes through the first diffraction grating portion 26, is refracted by the curved surface 33, and enters the grating side surface 35. The angle formed by the optical axis of the light beam propagating through the diffraction grating 30 is assumed to be ωi. The incident angle ω 0 incident on the grating side surface 34 is as follows.

ω0(度)=90−ωi−δ−θk (5)
格子側面35を透過屈折した光Bの屈折角をω1としたとき、この光束が、光軸となす角度ωeは、
ωe(度)=90−ω1−δ−θk (6)
となる。角度ω0と角度ω1の関係は、スネルの法則により計算されるので、入射角ωiと、ωeの関係は、各格子側面で一意的に決定できる。
ω0 (degrees) = 90−ωi−δ−θk (5)
When the refraction angle of the light B transmitted and refracted through the grating side surface 35 is ω1, the angle ωe formed by this light beam and the optical axis is
ωe (degrees) = 90−ω1−δ−θk (6)
It becomes. Since the relationship between the angle ω0 and the angle ω1 is calculated according to Snell's law, the relationship between the incident angle ωi and ωe can be uniquely determined on each grating side surface.

図13、図14に入射光ωiと透過屈折角ωeの関係を表わす。第2の回折格子部27を形成する材質は、図9と同じとし、包絡面36の傾き角を図13はδ=5°図14はδ=15°とする。また、各グラフ中実線と点線は、波長d線の光束に対して、格子側面35の傾き角θkが14°と0°を表わしている。   13 and 14 show the relationship between the incident light ωi and the transmission refraction angle ωe. The material for forming the second diffraction grating portion 27 is the same as in FIG. 9, and the inclination angle of the envelope surface 36 is δ = 5 ° in FIG. 13 and δ = 15 ° in FIG. In each graph, the solid line and the dotted line represent the inclination angle θk of the grating side surface 35 of 14 ° and 0 ° with respect to the light flux of wavelength d line.

グラフの符号は、図12の入射光束の向きが正、透過屈折光の向きが負となる。傾き角θk=0°のグラフ(図中実線)を見ると、δ=5°の構成では、殆どの入射角で臨界角を越えた入射となるため、透過屈折光は存在していない。δ=15°では、入射角が約6°以下は、臨界角を越えた入射となるため、透過屈折光は存在していないが、入射角6〜11°付近で透過屈折角ωeが負となっていることがわかる。   The sign of the graph is that the direction of the incident light beam in FIG. 12 is positive and the direction of the transmitted refracted light is negative. Looking at the graph of the inclination angle θk = 0 ° (solid line in the figure), in the configuration where δ = 5 °, the incident angle exceeds the critical angle at almost all incident angles, so there is no transmitted refracted light. At δ = 15 °, when the incident angle is about 6 ° or less, the incident angle exceeds the critical angle. Therefore, there is no transmitted refracted light, but the transmitted refracting angle ωe is negative near the incident angle of 6 to 11 °. You can see that

それに対し傾き角θk=14°のグラフ(図中点線)は、δ=5°の構成では、入射角が約2°以下の時に、透過屈折光が存在しない領域があるものの、δ=15°では、入射角が20°までの範囲では、全入射角度で透過屈折光が存在していることがわかる。また、傾き角θk=14°では、屈折角ωeが負となる入射角ωiがθk=0°に比べ、低入射角側へシフトしていることがわかる。   On the other hand, the graph of the inclination angle θk = 14 ° (dotted line in the figure) shows that in the configuration where δ = 5 °, there is a region where transmitted refracted light does not exist when the incident angle is about 2 ° or less, but δ = 15 °. Then, it can be seen that transmitted refracted light exists at all incident angles in the range of incident angles up to 20 °. It can also be seen that at the inclination angle θk = 14 °, the incident angle ωi at which the refraction angle ωe is negative is shifted to the low incident angle side compared to θk = 0 °.

続いて、実際の光学系へ、上記回折光学素子を適用した場合の不要光について説明する。   Next, unnecessary light when the diffractive optical element is applied to an actual optical system will be described.

最初に、傾き角θk=0°の回折光学素子を適用した場合の、不要光について簡単に説明し、その後、本実施例の回折光学素子21についての説明を行う。   First, unnecessary light when a diffractive optical element having an inclination angle θk = 0 ° is applied will be briefly described, and then the diffractive optical element 21 of the present embodiment will be described.

図37は回折光学素子での不要光の模式図である。図38に、回折光学素子21を用いた結像光学系の概念図を示す。図11、図12、図37、図38において、光軸Oに対して入射角ωで入射した光束は、回折光学素子21の前側に配置された屈折レンズ(図示せず)を通過し、第1の回折光学素子22の基板24および格子面31を通過後、回折格子30の格子面32と反対の曲面33で屈折し、格子側面35に角度ωiで入射する。   FIG. 37 is a schematic view of unnecessary light in the diffractive optical element. FIG. 38 shows a conceptual diagram of an imaging optical system using the diffractive optical element 21. In FIG. 11, FIG. 12, FIG. 37, and FIG. 38, a light beam incident at an incident angle ω with respect to the optical axis O passes through a refractive lens (not shown) disposed on the front side of the diffractive optical element 21, and After passing through the substrate 24 and the grating surface 31 of the first diffractive optical element 22, the light is refracted by a curved surface 33 opposite to the grating surface 32 of the diffraction grating 30 and is incident on the grating side surface 35 at an angle ωi.

格子側面35で透過屈折した光束は、屈折角ωeで射出し、第2の回折光学素子23の基板25を通過後、絞り40の前後に配置された屈折レンズ(図示せず)を介して、結像面41に到達する。   The light beam transmitted and refracted by the grating side surface 35 exits at a refraction angle ωe, passes through the substrate 25 of the second diffractive optical element 23, and then passes through a refractive lens (not shown) disposed before and after the stop 40. It reaches the imaging plane 41.

図38中にm番目とn番目の2箇所の格子側面から透過屈折した不要光を示す。図からわかるように、不要光が、絞り40を通過し、結像面41に到達するのは、屈折角ωeが負となる方向である。また、外周部の回折格子ほど、負の値が大きくならないと不要光として結像面41には到達しないことが図から見て取れる。   FIG. 38 shows unnecessary light that has been transmitted and refracted from the grating side surfaces of the m-th and n-th two locations. As can be seen from the figure, the unnecessary light passes through the diaphragm 40 and reaches the image plane 41 in the direction in which the refraction angle ωe is negative. Further, it can be seen from the drawing that the diffraction grating at the outer peripheral portion does not reach the imaging plane 41 as unnecessary light unless the negative value is increased.

さらに、図9で説明したように、格子側面を透過する光は波長により屈折角が異なり、短波長ほど屈折角が大きくなるので、ひとつの格子側面からの不要光は、波長毎に結像面上での到達位置が異なる。図38では、下線側が短波長となる。つまり、m番目の格子側面からの不要光は、上線の波長λm,2より、下線の波長λm,1のほうが短波長となる。   Furthermore, as described with reference to FIG. 9, the light transmitted through the grating side surface has a refraction angle different depending on the wavelength, and the shorter the shorter wavelength, the larger the refraction angle. The arrival position on the top is different. In FIG. 38, the underline is the short wavelength. In other words, the unnecessary light from the mth grating side surface is shorter in the underline wavelength λm, 1 than in the overline wavelength λm, 2.

図15に、本実施例の不要光について説明する。従来例に比べて、外周部では格子側面の傾き角θkが大きくなっている。従って、図13に示したように、同じ入射角では、射出する屈折角ωeは正の方向にシフトしている。そのため、外周部の格子側面を透過屈折した光は、図示したように絞り40で斜光され、結像面には到達しない。   FIG. 15 illustrates unnecessary light in this embodiment. Compared to the conventional example, the inclination angle θk of the lattice side surface is larger in the outer peripheral portion. Therefore, as shown in FIG. 13, at the same incident angle, the exiting refraction angle ωe is shifted in the positive direction. Therefore, the light that has been transmitted and refracted on the grating side surface of the outer peripheral portion is obliquely illuminated by the diaphragm 40 as shown, and does not reach the imaging surface.

一方、光軸付近の格子側面は、従来例と、実施例1ともに、概0°としてある。光軸付近の不要光は、図13で説明した包絡面36の傾き角が小さな構成に対応するので、傾き角θk=0°で格子側面35を透過する光束は存在しなくなる構成である。比較として、図39に、全域の格子側面35の傾き角をθk=14°としたときの不要光の振る舞いを示す。   On the other hand, the grating side surface in the vicinity of the optical axis is approximately 0 ° in both the conventional example and the first embodiment. The unnecessary light in the vicinity of the optical axis corresponds to the configuration in which the inclination angle of the envelope surface 36 described with reference to FIG. 13 is small, so that there is no light beam transmitted through the grating side surface 35 at the inclination angle θk = 0 °. For comparison, FIG. 39 shows the behavior of unnecessary light when the inclination angle of the grating side surface 35 in the entire region is θk = 14 °.

外周付近の格子側面を通過する不要光束は、本発明の実施例1と同じく低減されるが、逆に、光軸付近の不要光が、図13の点線で示したように、透過屈折してしまうため、従来例に比べて、悪化してしまう。   The unnecessary light flux passing through the grating side surface near the outer periphery is reduced as in the first embodiment of the present invention, but conversely, the unnecessary light near the optical axis is transmitted and refracted as shown by the dotted line in FIG. Therefore, it is worse than the conventional example.

以上のことを鑑みて、本発明の実施例1では、図5に示したように、光軸付近は傾き角θkを約0°とし、外周付近は傾き角θkを約14°とし、その間の回折格子部を、傾き角θkが徐々に変化するように構成している。   In view of the above, in the first embodiment of the present invention, as shown in FIG. 5, the inclination angle θk is set to about 0 ° near the optical axis, and the inclination angle θk is set to about 14 ° near the outer periphery. The diffraction grating portion is configured such that the inclination angle θk changes gradually.

これにより、光軸0付近の回折格子部は、臨界角を越えた入射角で、格子側面35に入射させることで、不要光の発生をなくし、外周部付近の回折格子部は、格子側面を屈折した光束の屈折角を調整し、結像面41へ到達しないようにしている。そして、中間の回折格子部は、急激に傾き角θkを変えることで、透過屈折角ωeが大きく負となる領域を低減させている。図6に示した傾き角の差分Δθkは、最大で0.6以上変化している。格子ピッチpLや、全輪帯数に依存するため、変化量は特定できないが、差分Δθkが0.2(Δθk>0.2)以上の領域(第2の領域)を有することが、透過屈折角ωeが大きく負となる領域を低減させるためには好ましい。 As a result, the diffraction grating portion near the optical axis 0 is made incident on the grating side surface 35 with an incident angle exceeding the critical angle, thereby eliminating unnecessary light generation. The refraction angle of the refracted light beam is adjusted so as not to reach the image plane 41. In the intermediate diffraction grating portion, the region in which the transmission refraction angle ωe is largely negative is reduced by changing the inclination angle θk abruptly. The difference Δθk in inclination angle shown in FIG. 6 changes by a maximum of 0.6 or more. Although the amount of change cannot be specified because it depends on the lattice pitch pL and the number of all zones, it is necessary to have a region (second region) in which the difference Δθk is 0.2 (Δθk> 0.2) or more. This is preferable for reducing a region where the angle ωe is largely negative.

図16に、特定の光学系へ、本発明の実施例1の回折光学素子を適用した場合の、結像面41へ不要光が到達する回折格子番号を数えた表を示す。回折格子形状は図5に示した形状で、総輪帯数は50である。格子側面を通過する光束には、一般のスネルの法則を適用し、それ以外の面には、通常屈折面、回折面に用いられる光線追跡の手法を適用した。   FIG. 16 shows a table in which the diffraction grating numbers at which unnecessary light reaches the imaging plane 41 when the diffractive optical element according to the first embodiment of the present invention is applied to a specific optical system are shown. The diffraction grating has the shape shown in FIG. The general Snell's law was applied to the light flux passing through the grating side surface, and the ray tracing method normally used for the refractive and diffractive surfaces was applied to the other surfaces.

光学系へ一様な入射角度ωをもつ光束が入射した場合を計算し、格子側面へ入射した光束が、光学系を介して結像面へ到達した場合を到達側面と数え、全格子側面に対して計算を行なった。計算波長は、可視域の400nmから700nmの波長であり、いずれかの波長の光束が、結像面へ到達した場合を、到達側面として数えている。   Calculate the case where a light beam with a uniform incident angle ω is incident on the optical system, and count the case where the light beam incident on the grating side surface reaches the imaging surface via the optical system as the arrival side surface. Calculations were performed on the results. The calculated wavelength is a wavelength of 400 nm to 700 nm in the visible range, and the case where a light beam having any wavelength reaches the imaging surface is counted as a reaching side surface.

例えば、実施例1の入射角ω=7.5°の光束では、第19輪帯目の格子側面から第30輪帯までの格子側面の光束が、結像面へ到達していることを表わし、到達側面の数は30−18=12より12である。本実施例において好ましくは回折格子間の傾き角度の変化量が0でない領域は10輪帯以上であるのが良い。特に全輪帯数の1/3以上が良い。図16に示す表から明らかであるが、いずれの入射角でも実施例1の回折光学素子21を用いた光学系のほうが、従来例に比べて不要光が結像面へ到達する格子側面の数は大幅に低減されていることがわかる。   For example, in the light beam with the incident angle ω = 7.5 ° in the first embodiment, the light beam on the grating side surface from the grating side surface of the 19th annular zone to the 30th annular zone reaches the imaging plane. The number of reaching side faces is 12 from 30-18 = 12. In the present embodiment, it is preferable that the region where the change amount of the tilt angle between the diffraction gratings is not 0 is 10 or more zones. In particular, 1/3 or more of the total number of rings is good. As is apparent from the table shown in FIG. 16, the optical system using the diffractive optical element 21 of Example 1 at any incident angle has a greater number of grating side surfaces where unnecessary light reaches the imaging plane than the conventional example. It can be seen that is significantly reduced.

上述した本発明の実施例1の回折光学素子は、格子面4へ入射する光束が、包絡面6の法線6a方向から一方向に偏っているとき、つまり格子側面5に面と平行でない方向から光束が入射する光学系で、効果が顕著となる。そのため、光学系へ回折光学素子を適用する際、最適な面を選定する必要がある。   In the diffractive optical element according to Example 1 of the present invention described above, when the light beam incident on the grating surface 4 is deviated in one direction from the normal 6a direction of the envelope surface 6, that is, in a direction not parallel to the surface of the grating side surface 5. The effect becomes remarkable in the optical system in which the luminous flux enters from the center. Therefore, when applying a diffractive optical element to an optical system, it is necessary to select an optimal surface.

例えば、包絡面の曲率半径が適用する光学系の焦点距離の1/2以下の曲率半径を持った面などへ回折光学素子が形成される場合に本発明の構成を適用すると効果的で好ましい。   For example, it is effective and preferable to apply the configuration of the present invention when the diffractive optical element is formed on a surface having a radius of curvature of 1/2 or less of the focal length of the optical system to which the radius of curvature of the envelope surface is applied.

以上の説明は、基準曲面が球面となる回折光学素子について行ったが、基準曲面が非球面や、シリンドリカル面、トーリック面など任意の面も同様に適用することができる。   The above description has been given for a diffractive optical element whose reference curved surface is a spherical surface, but any surface such as an aspherical surface, a cylindrical surface, or a toric surface can be applied in the same manner.

以上説明したように、本実施例によれば、格子面と格子側面を含む回折格子部を、使用波長領域全域で特定次数(設計次数)に回折するブレーズ型の回折格子を、レンズ作用をするように同心円状の周期構造とし、格子側面が、回折格子の格子先端を連ねた包絡面の各格子先端位置における面法線と格子側面がなす傾き角度が、格子中心領域から周辺領域で変化し、且つ隣接する回折格子間の傾き角度の変化量が連続して0でない領域を少なくとも1箇所以上有することで、格子側面に光束が比較的大きな角度で入射するような光学系に適用しても、不要光の発生を抑制することができる。   As described above, according to the present embodiment, the blazed diffraction grating that diffracts the diffraction grating portion including the grating surface and the grating side surface to the specific order (design order) over the entire wavelength range to be used has a lens effect. In this way, the angle of inclination between the surface normal and the grating side surface at each grating tip position of the envelope surface connecting the grating tips of the diffraction grating varies from the grating center region to the peripheral region. In addition, the present invention can be applied to an optical system in which a light flux is incident on a side surface of a grating at a relatively large angle by having at least one region where the amount of change in tilt angle between adjacent diffraction gratings is not continuously zero. Generation of unnecessary light can be suppressed.

また、基板と回折格子部を形成する材料を同一とし、基板と回折格子部を一体で作成することにより、基板外径と格子中心の位置精度や、基板がレンズの場合は、基板レンズの芯と格子中心を精度良く合せられるので、偏心による結像性能の劣化は大幅に低減することができ、性能の良い光学系が得られる。   Also, by making the substrate and the diffraction grating part the same material, and making the substrate and the diffraction grating part integrally, the substrate outer diameter and the position accuracy of the grating center, and if the substrate is a lens, the core of the substrate lens And the center of the grating can be aligned with high accuracy, so that the degradation of imaging performance due to decentration can be greatly reduced, and an optical system with good performance can be obtained.

次に本発明の実施例2について説明する。   Next, a second embodiment of the present invention will be described.

図17は、傾き角θkの値を各格子側面で図5の実施例1の半分にした回折光学素子に対し、図16と同様の計算を行なった表である。この場合、格子側面の結像面への到達数は、図16に比べて増加しているが、従来例に比べると、約2/3と十分減少している。この回折光学素子では、最大の傾き角が半分の7°になっているので、図2におけるΔp(格子先端部と溝部との光軸と垂直方向の長さ)は、全輪帯で減少し、実施例1に比べて、使用光束における回折効率の低下が改善されることになる。以上のように、使用光の回折効率と、格子側面の不要光の抑制を考慮し、最適な傾き角を設定すればよい。ただし、不要光の抑制効果を得るためには、最大の傾き角は最低でも5°以上であることが好ましい。   FIG. 17 is a table in which the same calculation as in FIG. 16 is performed on a diffractive optical element in which the value of the inclination angle θk is halved on each grating side surface as in Example 1 of FIG. In this case, the number of lattice side surfaces reaching the imaging surface is increased as compared with FIG. 16, but is sufficiently reduced to about 2/3 as compared with the conventional example. In this diffractive optical element, since the maximum inclination angle is 7 °, which is half, Δp in FIG. 2 (the length in the direction perpendicular to the optical axis of the grating tip and the groove) decreases in all the annular zones. Compared with Example 1, the reduction in diffraction efficiency in the used light beam is improved. As described above, the optimum tilt angle may be set in consideration of the diffraction efficiency of the used light and the suppression of unnecessary light on the side surfaces of the grating. However, in order to obtain the effect of suppressing unnecessary light, the maximum inclination angle is preferably at least 5 ° or more.

次に本発明の実施例3について説明する。   Next, a third embodiment of the present invention will be described.

実施例3は、図18、図19に示すように、実施例1とは異なり、傾き角θkを滑らかに変化させないで段階的に変化させる構成をとることも可能である。このような構成にすれば、型を加工する際に、領域に分けて格子側面の値を参照するようにすれば良く、また傾き角θkも直線近似で精度良く算出できるため、加工は比較的簡単に行なうことができる。   As shown in FIGS. 18 and 19, the third embodiment can be configured to change the inclination angle θk stepwise without changing smoothly, unlike the first embodiment. With such a configuration, when the mold is machined, it is only necessary to divide into regions and refer to the values of the lattice side surfaces, and the inclination angle θk can be calculated accurately by linear approximation. It can be done easily.

次に本発明の実施例4について説明する。   Next, a fourth embodiment of the present invention will be described.

実施例4では、図20に示すように、基板24の曲面(図では凹面)24a上に形成され、負のパワーの回折レンズとして作用する第1の回折格子部26を有する第1の回折光学素子22と、基板25の曲面(図では凸面)25a上に形成され、正のパワーの回折レンズとして作用する第2の回折格子部27を有する第2の回折光学素子23が、空気層28を介して近接した構成となる積層構造の回折光学素子21より成っている。   In the fourth embodiment, as shown in FIG. 20, the first diffractive optical element having the first diffraction grating portion 26 formed on the curved surface (concave surface in the figure) 24a of the substrate 24 and acting as a negative power diffractive lens. The second diffractive optical element 23 having the element 22 and the second diffraction grating portion 27 formed on the curved surface (convex surface in the figure) 25a of the substrate 25 and acting as a positive power diffractive lens has the air layer 28. It is composed of a diffractive optical element 21 having a laminated structure having a configuration close to each other.

この構成では、第1、第2回折格子部26、27の両方の回折格子部26、27に対して格子側面34、35を変化させることが可能である。この構成では、第1の回折格子部26と、第2の回折格子部27で、不要光が発生する入射角度の方向が異なっている。そのため、各々の回折格子部26、27で不要光が抑制できるように、独立に格子側面34、35の傾き角θkを最適化しても良いし、どちらか、一方だけに本発明を実施しても良い。   In this configuration, it is possible to change the grating side surfaces 34 and 35 with respect to both the diffraction grating portions 26 and 27 of the first and second diffraction grating portions 26 and 27. In this configuration, the first diffraction grating portion 26 and the second diffraction grating portion 27 have different incident angles at which unnecessary light is generated. For this reason, the inclination angle θk of the grating side surfaces 34 and 35 may be optimized independently so that unnecessary light can be suppressed in each of the diffraction grating portions 26 and 27, or the present invention is carried out on only one of them. Also good.

尚、第1、第2の回折格子部26、27の材料は互いに分散が異なった材料より成っている。使用波長領域で設計波長(積層格子での光学光路長差が波長の整数倍となる波長)を2以上有している。 The first and second diffraction grating portions 26 and 27 are made of materials having different dispersions. Two or more design wavelengths (wavelengths at which the optical optical path length difference in the laminated grating is an integral multiple of the wavelength) are used in the used wavelength region.

次に本発明の実施例5について説明する。   Next, a fifth embodiment of the present invention will be described.

前述の実施例で説明した回折光学素子は、格子側面の傾き角が、光軸付近で約0°、外周付近で、特定の角度をもち、光軸から周辺部に向けて徐々に傾き角が変化する構成である。しかしながら、本発明の回折光学素子は、このような構成に限定されるものではない。光学系へ回折光学素子を適用し、不要光の発生状況によって、図21や図22で示すように一定の傾き角(0°を含む)を有する領域と、傾き角が徐々に変化する領域を、少なくとも1つの領域有していれば良い。   In the diffractive optical element described in the above-described embodiments, the inclination angle of the grating side surface is approximately 0 ° near the optical axis, has a specific angle near the outer periphery, and gradually increases from the optical axis toward the peripheral portion. It is a configuration that changes. However, the diffractive optical element of the present invention is not limited to such a configuration. A diffractive optical element is applied to the optical system, and an area having a constant inclination angle (including 0 °) and an area where the inclination angle gradually changes as shown in FIGS. It suffices to have at least one region.

次に本発明の実施例6について説明する。   Next, a sixth embodiment of the present invention will be described.

本発明の回折光学素子は基板と回折格子部を形成する材料が異なっていたがこれに限定するものではなく、回折格子部を形成する材料を基板と同じ材料で構成し基板と一体で製造してもよい。このような構成にすることで、基板外径と回折格子中心の位置が精度良くあわせられる。或いは基板がレンズ形状を有する場合は、基板レンズの芯と回折格子中心を良好に合せることが可能になる。   In the diffractive optical element of the present invention, the material forming the diffraction grating portion is different from that of the substrate. However, the invention is not limited to this. The material forming the diffraction grating portion is made of the same material as the substrate and is manufactured integrally with the substrate. May be. With such a configuration, the outer diameter of the substrate and the position of the diffraction grating center can be matched with high accuracy. Alternatively, when the substrate has a lens shape, the core of the substrate lens and the center of the diffraction grating can be well matched.

従って、本発明の回折光学素子を他のレンズ系に組込む際の光軸合せ精度が向上し、回折光学素子が偏心することによって生じる結像性能等の収差の劣化は大幅に低減することができる。   Therefore, the optical axis alignment accuracy when the diffractive optical element of the present invention is incorporated into another lens system is improved, and the deterioration of aberration such as imaging performance caused by the diffractive optical element being decentered can be greatly reduced. .

次に本発明の実施例7について説明する。   Next, a seventh embodiment of the present invention will be described.

本発明の実施例7の概略図23に示す。図23はカメラ等の撮影光学系の断面を示したものであり、同図中、101は撮影レンズで、内部に絞り40と本発明の前述した各実施例の回折光学素子21を有している。41は結像面であるフィルムまたはCCDが配置されている。   A schematic diagram 23 of Example 7 of the present invention is shown in FIG. FIG. 23 shows a cross section of a photographic optical system such as a camera. In FIG. 23, reference numeral 101 denotes a photographic lens having an aperture 40 and the diffractive optical element 21 of each of the above-described embodiments of the present invention. Yes. Reference numeral 41 denotes a film or CCD which is an imaging plane.

特に回折光学素子の各回折格子部に入射する光束の入射角の分布の重心(図形の重心と同じ)が包絡面の回折格子の中心での面法線に対し、回折格子部の中心よりに分布するようにしている。   In particular, the center of gravity of the incident angle distribution of the light beam incident on each diffraction grating portion of the diffractive optical element (same as the center of gravity of the figure) is closer to the surface normal at the center of the envelope diffraction grating than the center of the diffraction grating portion. To be distributed.

本発明の回折光学素子を適用すれば、格子側面に光束が入射した場合でも、不要光の発生が大幅に改善されているので、フレアが少なく解像力も高い高性能な撮影レンズが得られる。また本発明の回折光学素子は、簡単な製法で作成できるので、撮影光学系としては量産性に優れた安価な光学系を提供できる。   When the diffractive optical element of the present invention is applied, even when a light beam is incident on the side surface of the grating, the generation of unnecessary light is greatly improved, so that a high-performance photographic lens with little flare and high resolving power can be obtained. Further, since the diffractive optical element of the present invention can be produced by a simple manufacturing method, an inexpensive optical system excellent in mass productivity can be provided as a photographing optical system.

図23では前玉のレンズの貼り合せ面に回折光学素子21を設けたが、これに限定するものではなく、レンズ表面に設けても良いし、撮影レンズ内に複数、回折光学素子を使用しても良い。   In FIG. 23, the diffractive optical element 21 is provided on the lens surface of the front lens. However, the present invention is not limited to this, and the diffractive optical element 21 may be provided on the lens surface. May be.

また、本実施例では、カメラの撮影レンズの場合を示したが、これに限定するものではなく、ビデオカメラの撮影レンズ、事務機のイメージスキャナーや、デジタル複写機のリーダーレンズなど広波長域で使用される結像光学系に使用しても同様の効果が得られる。   In this embodiment, the case of a camera taking lens is shown. However, the present invention is not limited to this. In a wide wavelength range, such as a video camera taking lens, an office machine image scanner, or a digital copier reader lens. The same effect can be obtained even when used for the imaging optical system used.

次に本実施例の実施例8について説明する。   Next, an eighth embodiment of the present embodiment will be described.

本発明の実施例8を概略を図24に示す。図24は、双眼鏡等の観察光学系の断面を示したものであり、同図中21は回折光学素子である対物レンズ、104は像を正立させるための像反転手段としてのプリズム、105は接眼レンズ、106は評価面(瞳面)である。回折光学素子21は対物レンズの結像面41での色収差等を補正する目的で使用されている。   FIG. 24 schematically shows Example 8 of the present invention. FIG. 24 shows a cross section of an observation optical system such as binoculars. In FIG. 24, 21 is an objective lens which is a diffractive optical element, 104 is a prism as an image inverting means for erecting an image, and 105 is An eyepiece 106 is an evaluation surface (pupil surface). The diffractive optical element 21 is used for the purpose of correcting chromatic aberration and the like on the imaging surface 41 of the objective lens.

本発明の回折光学素子を適用すれば、格子側面に光束が入射した場合でも、不要光の発生が大幅に改善されているので、フレアが少なく解像力も高い高性能な対物レンズが得られる。また本発明の回折光学素子は、簡単な製法で作成できるので、観察光学系としては量産性に優れた安価な光学系を提供できる。   When the diffractive optical element according to the present invention is applied, the generation of unnecessary light is greatly improved even when a light beam is incident on the side surface of the grating, so that a high-performance objective lens with little flare and high resolving power can be obtained. Further, since the diffractive optical element of the present invention can be produced by a simple manufacturing method, an inexpensive optical system excellent in mass productivity can be provided as an observation optical system.

本実施例では、対物レンズ21に回折光学素子を形成した場合を示したが、これに限定するものではなく、プリズム表面や接眼レンズ内の位置であっても同様の効果が得られる。結像面より物体側に設けると、対物レンズのみでの色収差低減効果があるため、肉眼の観察系の場合すくなくとも対物レンズ側に設けることが望ましい。   In the present embodiment, the case where the diffractive optical element is formed on the objective lens 21 is shown, but the present invention is not limited to this, and the same effect can be obtained even at the prism surface or the position in the eyepiece. If it is provided on the object side from the imaging surface, it has the effect of reducing chromatic aberration only by the objective lens. Therefore, in the case of the naked eye observation system, it is desirable to provide it at least on the objective lens side.

また本実施例では、双眼鏡の場合を示したが、これに限定するものではなく地上望遠鏡や天体観測用望遠鏡などであってもよく、またレンズシャッターカメラやビデオカメラなどの光学式のファインダーであっても同様の効果が得られる。   In the present embodiment, binoculars are shown, but the present invention is not limited to this, and may be a terrestrial telescope, an astronomical observation telescope, or the like, or an optical finder such as a lens shutter camera or a video camera. However, the same effect can be obtained.

実施例1の回折光学素子の要部概略図Schematic view of essential parts of the diffractive optical element of Example 1. 図1の一部分の断面拡大図1 is an enlarged cross-sectional view of a part of FIG. 図1の格子側面の模式図Schematic diagram of the lattice side of FIG. 図1の回折光学素子における格子高さの模式図Schematic diagram of grating height in the diffractive optical element of FIG. 図1における格子側面の傾き角のグラフGraph of inclination angle of lattice side in FIG. 図1における格子側面の傾き角の差分を示すグラフThe graph which shows the difference of the inclination angle of the lattice side surface in FIG. 図1における格子側面の不要光の模式図Schematic diagram of unnecessary light on the grating side surface in FIG. 媒質と空気の境界での入射角と屈折角の関係を示すグラフGraph showing the relationship between incident angle and refraction angle at the boundary between the medium and air 異なる媒質の境界での入射角と屈折角の関係を示すグラフGraph showing the relationship between incident angle and refraction angle at the boundary of different media 実施例1における他の構成の回折光学素子の要部概略図Schematic diagram of main parts of a diffractive optical element having another configuration according to the first embodiment. 実施例1における他の構成の回折光学素子の要部概略図Schematic diagram of main parts of a diffractive optical element having another configuration according to the first embodiment. 実施例1における他の構成の回折光学素子での不要光の模式図Schematic diagram of unnecessary light in a diffractive optical element of another configuration in Example 1. 光軸方向に測った入射角と不要光の関係を示すグラフGraph showing the relationship between the incident angle measured in the optical axis direction and unnecessary light 光軸方向に測った入射角と不要光の関係を示すグラフGraph showing the relationship between the incident angle measured in the optical axis direction and unnecessary light 実施例1の回折光学素子を有する光学系における不要光の光線の概念図Conceptual diagram of rays of unnecessary light in an optical system having the diffractive optical element of Example 1 実施例1の回折光学素子を有する光学系における不要光の低減の比較表Comparison table of reduction of unnecessary light in the optical system having the diffractive optical element of Example 1 実施例2の回折光学素子を有する光学系における不要光の低減の比較表Comparison table of reduction of unnecessary light in the optical system having the diffractive optical element of Example 2 実施例3の回折光学素子における格子側面の傾き角のグラフGraph of tilt angle of grating side surface in diffractive optical element of Example 3 実施例3の回折光学素子における格子側面の傾き角の差分を示すグラフThe graph which shows the difference of the inclination angle of the grating side surface in the diffractive optical element of Example 3 実施例4の回折光学素子の構成の要部断面図Sectional drawing of the principal part of the structure of the diffractive optical element of Example 4. FIG. 実施例5の回折光学素子における格子側面の傾き角のグラフGraph of tilt angle of grating side surface in diffractive optical element of Example 5 実施例5の回折光学素子における格子側面の傾き角のグラフGraph of tilt angle of grating side surface in diffractive optical element of Example 5 実施例7の撮影光学系Imaging optical system of Example 7 実施例8の観察光学系Observation optical system of Example 8 従来例の回折光学素子の概略図Schematic diagram of conventional diffractive optical element 従来例の回折光学素子の概略図Schematic diagram of conventional diffractive optical element 従来例の回折光学素子の概略図Schematic diagram of conventional diffractive optical element 図27の従来例における格子側面の傾き角のグラフ27 is a graph of the inclination angle of the lattice side surface in the conventional example of FIG. 図27の従来例における格子側面の傾き角の差分を示すグラフThe graph which shows the difference of the inclination angle of the lattice side surface in the prior art example of FIG. 型からの回折光学素子の離型を説明する図The figure explaining the mold release of the diffractive optical element from the mold 格子面の離型による変形の模式図Schematic diagram of deformation due to release of lattice plane 従来の回折光学素子の一部分の説明図Explanatory drawing of a part of a conventional diffractive optical element 曲面上に形成された従来の回折光学素子の説明図Illustration of a conventional diffractive optical element formed on a curved surface 曲面上に形成された従来の回折光学素子の離型概念図Release conceptual diagram of a conventional diffractive optical element formed on a curved surface 図33の従来例における格子側面の傾き角のグラフGraph of inclination angle of lattice side surface in conventional example of FIG. 図33の従来例における格子側面の傾き角の差分を示すグラフThe graph which shows the difference of the inclination angle of the lattice side surface in the prior art example of FIG. 他の従来の回折光学素子での不要光の模式図Schematic diagram of unnecessary light in other conventional diffractive optical elements 他の従来構成の回折光学素子を用いたの光学系における不要光の光線の概念図Conceptual diagram of unnecessary light rays in an optical system using a diffractive optical element of another conventional configuration 他の構成の回折光学素子を用いたの光学系における不要光の光線の概念図Conceptual diagram of unnecessary light rays in an optical system using diffractive optical elements of other configurations

符号の説明Explanation of symbols

1、21、回折光学素子 2、24、25、基板 3、回折格子部 4、格子面
5、34、35、格子側面 6、格子先端の包絡面 7、格子溝の包絡面
8、成形用型 22、第1の回折光学素子 23、第2の回折光学素子
26、第1の回折格子部 27、第2の回折格子部 28、空気層
29、30、回折格子 31、第1の回折格子面 32、第2の回折格子面
33、曲面 36、第1の格子溝の包絡面 37、第1の格子先端の包絡面
38、第2の格子先端の包絡面 39、第2の格子溝の包絡面
40、102、絞り 41、103、結像面 101、撮影レンズ
104、プリズム 105、接眼レンズ 106、評価面(瞳面)
1, 21, diffractive optical elements 2, 24, 25, substrate 3, diffraction grating portion 4, grating surfaces 5, 34, 35, grating side surface 6, grating tip envelope surface 7, grating groove envelope surface 8, molding die 22, first diffractive optical element 23, second diffractive optical element 26, first diffractive grating part 27, second diffractive grating part 28, air layers 29 and 30, diffractive grating 31, first diffractive grating surface 32, second diffraction grating surface 33, curved surface 36, first grating groove envelope 37, first grating tip envelope 38, second grating tip envelope 39, second grating groove envelope Surfaces 40 and 102, apertures 41 and 103, imaging surface 101, photographing lens 104, prism 105, eyepiece lens 106, evaluation surface (pupil surface)

Claims (14)

格子面と格子側面を含み、使用波長領域全域で特定次数に回折するブレーズ型の回折格子を同心円状の周期構造とした回折格子部を有する回折光学素子に於いて、
前記回折格子部は、2種類の異なる材料の境界に回折格子が形成されており、
該格子側面の回折格子の格子先端を連ねた包絡面の面法線に対する傾き角度θkは、該回折格子部の中心では実質的に0であり、該回折格子部の中心領域から周辺領域に向かって、該格子側面が該回折格子の格子先端を連ねた包絡面の各格子先端位置における面法線と格子面がなす角度に対してより鈍角となる方向に変化し、
且つ隣接する回折格子間の傾き角度が連続してほぼ0の第1の領域を前記回折格子部の中心を含む領域に有し、前記第1の領域よりも周辺に前記変化量Δθkが0.2より大きい第2の領域を有することを特徴とする回折光学素子。
In a diffractive optical element having a diffraction grating portion including a grating surface and a grating side surface, and having a blazed diffraction grating that diffracts to a specific order over the entire wavelength region to be used as a concentric periodic structure,
The diffraction grating portion has a diffraction grating formed at the boundary between two different materials,
The inclination angle θk with respect to the surface normal of the envelope surface connecting the grating tips on the side surface of the grating is substantially 0 at the center of the diffraction grating portion, and extends from the central region of the diffraction grating portion to the peripheral region . Then, the grating side surface changes in a direction that becomes more obtuse than the angle formed by the surface normal and the grating surface at each grating tip position of the envelope surface connecting the grating tips of the diffraction grating ,
In addition, a first region in which the tilt angles between adjacent diffraction gratings are continuously zero is provided in a region including the center of the diffraction grating portion, and the variation Δθk is about 0.1 mm in the periphery of the first region. A diffractive optical element having a second region greater than two .
分散の異なる材料からなる回折格子を2つ以上近接させて重ね合わされた積層格子構造の回折光学部を持ち、使用波長領域で、設計波長を2つ以上有する回折光学素子に於いて、
該回折格子部は、格子面と格子側面を含むブレーズ型の回折格子が同心円状の周期構造より成り、
前記回折格子部は、2種類の異なる材料の境界に回折格子が形成されており、
該格子側面の回折格子の格子先端を連ねた包絡面の面法線に対する傾き角度θkは、該回折格子部の中心では実質的に0であり、該回折格子部の中心領域から周辺領域に向かって、該格子側面が該回折格子の格子先端を連ねた包絡面の各格子先端位置における面法線と格子面がなす角度に対してより鈍角となる方向に変化し、
且つ隣接する回折格子間の傾き角度が連続してほぼ0の第1の領域を前記回折格子部の中心を含む領域に有し、前記第1の領域よりも周辺に前記変化量Δθkが0.2より大きい第2の領域を有する
ことを特徴とする回折光学素子。
In a diffractive optical element having a diffractive optical part having a laminated grating structure in which two or more diffraction gratings made of materials having different dispersions are stacked close to each other, and having two or more design wavelengths in a used wavelength region,
The diffraction grating portion has a periodic structure in which a blazed diffraction grating including a grating surface and a grating side surface is concentric,
The diffraction grating portion has a diffraction grating formed at the boundary between two different materials,
The inclination angle θk with respect to the surface normal of the envelope surface connecting the grating tips on the side surface of the grating is substantially 0 at the center of the diffraction grating portion, and extends from the central region of the diffraction grating portion to the peripheral region. Then, the grating side surface changes in a direction that becomes more obtuse than the angle formed by the surface normal and the grating surface at each grating tip position of the envelope surface connecting the grating tips of the diffraction grating,
In addition, a first region in which the tilt angles between adjacent diffraction gratings are continuously zero is provided in a region including the center of the diffraction grating portion, and the variation Δθk is about 0.1 mm in the periphery of the first region. A diffractive optical element having a second region greater than two .
前記格子側面は、円錐面の一部を含むことを特徴とする請求項1又は2の回折光学素子。   The diffractive optical element according to claim 1, wherein the grating side surface includes a part of a conical surface. 前記回折格子の格子先端を連ねた包絡面が曲面で且つ凹面の場合、前記格子側面の傾き角を変化させる回折格子部は、包絡面の曲面成分を除いた回折格子部成分だけで、負のパワーの作用をすることを特徴とする請求項1、2又は3の回折光学素子。   When the envelope surface connecting the grating tips of the diffraction grating is a curved surface and a concave surface, the diffraction grating part that changes the inclination angle of the grating side surface is a diffraction grating part component excluding the curved surface component of the envelope surface, and is negative. 4. The diffractive optical element according to claim 1, wherein the diffractive optical element acts as a power. 前記回折格子の格子先端を連ねた包絡面が曲面で且つ凸面の場合、前記格子側面の傾き角を変化させる回折格子部は、包絡面の曲面成分を除いた回折格子部成分だけで、正のパワーの作用をすることを特徴とする請求項1、2又は3の回折光学素子。   When the envelope surface connecting the grating tips of the diffraction grating is a curved surface and a convex surface, the diffraction grating portion that changes the inclination angle of the grating side surface is a positive diffraction grating component component excluding the curved surface component of the envelope surface, and is positive. 4. The diffractive optical element according to claim 1, wherein the diffractive optical element acts as a power. 前記2種類の異なる材料は、光出射側に比べ光入射側の材料の屈折率が高くなる材料であることを特徴とする請求項5項に記載の回折光学素子。 6. The diffractive optical element according to claim 5, wherein the two kinds of different materials are materials in which the refractive index of the light incident side material is higher than that of the light emitting side. 前記積層される回折格子の格子形状は回折格子のパワーの符号が異なる回折格子が一つ以上含まれることを特徴とする請求項2記載の回折光学素子。 3. The diffractive optical element according to claim 2, wherein the grating shapes of the laminated diffraction gratings include one or more diffraction gratings having different power signs of the diffraction gratings. 前記格子側面の前記包絡面の面法線に対する傾き角度θkの最大値は、5°以上であることを特徴とする請求項1乃至のいずれか1項に記載の回折光学素子。 The maximum value of the inclination angle θk with respect to the plane normal of the envelope surface, the diffraction optical element according to any one of claims 1 to 7, characterized in that at 5 ° or more of the grid side. 前記格子側面の格子ピッチ方向の射影長さをΔpL、各回折格子の格子ピッチをpLとするとき、
0≦ΔpL/pL≦0.05
を満たすことを特徴とする請求項1乃至のいずれか1項の回折光学素子。
When the projected length of the grating side surface in the grating pitch direction is ΔpL and the grating pitch of each diffraction grating is pL,
0 ≦ ΔpL / pL ≦ 0.05
The diffractive optical element of any one of claims 1 to 8, characterized in that meet.
前記第2の領域は、回折格子の10輪帯以上であることを特徴とする請求項1乃至のいずれか1項の回折光学素子。 The diffractive optical element according to any one of claims 1 to 9 , wherein the second region is at least 10 annular zones of a diffraction grating. 前記第2の領域は、全輪帯数の1/3以上であることを特徴とする請求項1乃至10のいずれか1項の回折光学素子。 The diffractive optical element according to any one of claims 1 to 10 , wherein the second region is 1/3 or more of the total number of ring zones. 前記回折光学部はレンズ作用を有する基板上に形成されていることを特徴とする請求項1乃至11のいずれか1項の回折光学素子。 The diffractive optical portion diffractive optical element according to any one of claims 1 to 11, characterized in that it is formed on a substrate having a lens action. 請求項1〜12のいずれか1項に記載の回折光学素子を用いたことを特徴とする光学系。 An optical system using the diffractive optical element according to any one of claims 1 to 12 . 前記回折光学素子の包絡面の曲率半径は、光学系の焦点距離の1/2以下であることを特徴とする請求項13に記載の光学系。 The optical system according to claim 13 , wherein a radius of curvature of an envelope surface of the diffractive optical element is ½ or less of a focal length of the optical system.
JP2004109092A 2004-04-01 2004-04-01 Diffractive optical element and optical system having the same Expired - Fee Related JP4393252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109092A JP4393252B2 (en) 2004-04-01 2004-04-01 Diffractive optical element and optical system having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109092A JP4393252B2 (en) 2004-04-01 2004-04-01 Diffractive optical element and optical system having the same

Publications (3)

Publication Number Publication Date
JP2005292571A JP2005292571A (en) 2005-10-20
JP2005292571A5 JP2005292571A5 (en) 2007-05-17
JP4393252B2 true JP4393252B2 (en) 2010-01-06

Family

ID=35325539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109092A Expired - Fee Related JP4393252B2 (en) 2004-04-01 2004-04-01 Diffractive optical element and optical system having the same

Country Status (1)

Country Link
JP (1) JP4393252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726310B2 (en) 2020-09-17 2023-08-15 Samsung Electronics Co., Ltd. Meta optical device and electronic apparatus including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170594A (en) * 2007-01-10 2008-07-24 Nikon Corp Projector optical system, projector, and projecting method
JP2009092765A (en) * 2007-10-04 2009-04-30 Canon Inc Image display device
JP4963668B2 (en) 2007-12-11 2012-06-27 キヤノン株式会社 Image observation device
JP2011022255A (en) 2009-07-14 2011-02-03 Canon Inc Diffraction optical element and optical system having the same
WO2012114408A1 (en) * 2011-02-22 2012-08-30 パナソニック株式会社 Diffraction optical element and imaging device provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726310B2 (en) 2020-09-17 2023-08-15 Samsung Electronics Co., Ltd. Meta optical device and electronic apparatus including the same

Also Published As

Publication number Publication date
JP2005292571A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4587418B2 (en) Diffractive optical element and optical system having the diffractive optical element
JP3530776B2 (en) Diffractive optical element and optical system using the same
US7554735B2 (en) Diffractive optical element and optical system including the same
JPH1184118A (en) Diffraction optical element and optical system using the same
US20110090565A1 (en) Objective lens
WO2008010560A1 (en) Optical system and eyepiece
US7710650B2 (en) Diffractive optical element and optical system having the same
US7511897B2 (en) Projector optical system
JP4227210B2 (en) Diffractive optical element and optical system using the same
US7545573B2 (en) Projector optical system, projector, and method for forming real image in use of projector optical system
JP4393252B2 (en) Diffractive optical element and optical system having the same
JP4743607B2 (en) Fresnel lens and liquid crystal projector using the Fresnel lens
JP3833754B2 (en) Electronic camera with diffractive optical element
JP3486606B2 (en) Diffractive optical element and optical system using the same
JP4345050B2 (en) Super wide angle lens
JP2005308958A (en) Diffraction optical element and optical system having the same
JP3467018B2 (en) Optical system and optical equipment
JP4590082B2 (en) Diffractive optical element and optical system using the same
JP2004212639A (en) Catadioptric lens equipped with diffraction optical element
GB2295691A (en) Compact zoom lens with reduced aspheric decenter sensitivity
JP5224187B2 (en) Eyeglass lens, diffractive optical element, diffractive optical system, and optical instrument
JP2000147380A (en) Zoom lens and camera
JP4650715B2 (en) Front teleconverter lens
JP2004258238A (en) Catadioptric afocal converter
JP2004205652A (en) Wide converter lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4393252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees