JP2000147379A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2000147379A
JP2000147379A JP10328882A JP32888298A JP2000147379A JP 2000147379 A JP2000147379 A JP 2000147379A JP 10328882 A JP10328882 A JP 10328882A JP 32888298 A JP32888298 A JP 32888298A JP 2000147379 A JP2000147379 A JP 2000147379A
Authority
JP
Japan
Prior art keywords
lens
group
unit
optical element
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10328882A
Other languages
Japanese (ja)
Inventor
Hiroki Nakayama
博喜 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10328882A priority Critical patent/JP2000147379A/en
Publication of JP2000147379A publication Critical patent/JP2000147379A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145129Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rear focusing system zoom lens which has good optical performance over an entire varying power range from a wide angle end to a telephone end, or an entire object distance from an infinity object to a super close object and which utilizes a diffraction optical device. SOLUTION: In this zoom lens having the four lens groups of a first group L1 having positive refracting power, a second group L2 having negative refracting power, a third group L3 having the positive refracting power, and a fourth group L4 in order from an object side, and performing variable power by moving the groups L2 and L4; the groups L1 and L2 have at least one diffraction optical device which is rotation symmetry to each optical axis, and when the number of a lens provided in the group L1 is defined as N1C, the power variation ratio of an entire system is defined as Z, and the Abbe number of the material of the optical lens among the lenses possessed by the groups L1 and L2 is defined as ν, the expressions of N1C<√Z/2, and ν <72 are satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はズームレンズに関
し、特にレンズ系の一部に回折光学素子を用いることに
よって諸収差、特に色収差を良好に補正した写真用カメ
ラやビデオカメラ、そして放送用カメラ等に用いられる
大口径比で高変倍比のレンズ系全体の小型化を図ったズ
ームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a photographic camera, a video camera, a broadcast camera, etc., in which various aberrations, especially chromatic aberrations, are corrected well by using a diffractive optical element in a part of the lens system. The present invention relates to a zoom lens which has a large aperture ratio and a high zoom ratio and is used to reduce the size of the entire lens system.

【0002】[0002]

【従来の技術】最近、ホームビデオカメラ等の小型軽量
化に伴い、撮像用のズームレンズは小型化されている。
特にズームレンズにおいては、レンズ全長の短縮化や前
玉径の小型化、構成の簡略化に力が注がれている。
2. Description of the Related Art Recently, as home video cameras and the like have been reduced in size and weight, zoom lenses for imaging have been reduced in size.
In particular, in the case of zoom lenses, efforts are being made to reduce the overall length of the lens, reduce the diameter of the front lens, and simplify the configuration.

【0003】又、最近のビデオカメラ用のズームレンズ
に対しては10倍以上の高変倍比を有し、しかもレンズ
系全体が小型のズームレンズが強く要望されている。
Further, there is a strong demand for a recent zoom lens for a video camera which has a high zoom ratio of 10 times or more and has a small lens system as a whole.

【0004】これらの目的を達成する一つの手段とし
て、物体側の第1群以外のレンズ群を移動させてフォー
カスを行う、所謂リヤーフォーカス式のズームレンズが
知られている。
As one means for achieving these objects, there is known a so-called rear focus type zoom lens which performs focusing by moving a lens group other than the first group on the object side.

【0005】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせができる等の特長がある。
In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens which moves and focuses the first lens group, so that the entire lens system can be easily miniaturized, and close-up photography can be performed. In particular, since extremely close-up photography is facilitated and the relatively small and lightweight lens group is moved, the driving force of the lens group is small and quick focusing can be performed.

【0006】このようなリヤーフォーカス式のズームレ
ンズとして、例えば特開昭62−215225号公報
や、特開昭62−206516号公報,特開昭62−2
4213号公報,特開昭63−247316号公報、そ
して特開平4−43311号公報では、物体側より順に
正の屈折力の第1群、負の屈折力の第2群、正の屈折力
の第3群、そして正の屈折力の第4群の4つのレンズ群
を有し、第2群を移動させて変倍を行い、第4群を移動
させて変倍に伴う像面変動とフォーカスを行った4群タ
イプのリヤーフォーカス式のズームレンズが提案されて
いる。
As such a rear focus type zoom lens, for example, JP-A-62-215225, JP-A-62-220616, and JP-A-62-262.
No. 4213, JP-A-63-247316 and JP-A-4-43311 disclose, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a positive lens having a positive refractive power. The zoom lens has four lens groups, a third lens group and a fourth lens group having a positive refractive power. The second lens group is moved to perform zooming, and the fourth lens group is moved to change the image plane due to zooming and focus. There has been proposed a four-group type rear focus type zoom lens which performs the above.

【0007】又、特開平4−301612号公報では物
体側より順に正の屈折力の第1群、負の屈折力の第2
群、正の屈折力の第3群、正の屈折力の第4群、そして
負の屈折力の第5群の5つのレンズ群を有し、第2群を
移動させて変倍を行い、第4群を移動させて変倍に伴う
像面変動の補正とフォーカスを行い、レンズ系全体をテ
レフォトタイプに近づけてレンズ全長の短縮化を図った
5群タイプのズームレンズが提案されている。
In Japanese Patent Application Laid-Open No. Hei 4-301612, a first group of positive refractive power and a second group of negative refractive power are sequentially arranged from the object side.
Group, a third group having a positive refractive power, a fourth group having a positive refractive power, and a fifth lens group having a negative refractive power. A five-group type zoom lens has been proposed in which the fourth group is moved to correct and focus the image plane fluctuation caused by zooming, and the entire lens system is made closer to a telephoto type to shorten the overall length of the lens. .

【0008】一方、多くのズームレンズにおいては、レ
ンズ系中に非球面を設けることによって諸収差を良好に
補正しつつ、レンズ系全体の小型化を図りつつ、高い光
学性能を得ている。
On the other hand, in many zoom lenses, high optical performance is obtained while satisfactorily correcting various aberrations by providing an aspherical surface in the lens system and reducing the size of the entire lens system.

【0009】又、諸収差のうち色収差については分散の
異なる硝材を組み合わせて補正する方法の他にレンズ面
又は光学系の一部に回折作用を有する回折光学素子を設
けて補正した光学系が、例えば特開平4−213421
号公報や特開平6−324262号公報、米国特許第
5,268,790号等で提案されている。このうち、
米国特許第5,268,790号では第2群と第3群に
回折光学素子を用いたズームレンズを提案している。
In addition to the method of correcting chromatic aberration among various aberrations by combining glass materials having different dispersions, an optical system corrected by providing a diffractive optical element having a diffractive action on a lens surface or a part of the optical system is used. For example, JP-A-4-213421
And Japanese Patent Application Laid-Open No. 6-324262, and US Pat. No. 5,268,790. this house,
U.S. Pat. No. 5,268,790 proposes a zoom lens using diffractive optical elements in the second and third units.

【0010】[0010]

【発明が解決しようとする課題】一般に、高変倍比のズ
ームレンズにおいて色収差を補正する為には、第1群に
高分散の負レンズと低分散の正レンズを多用し、又、変
倍用の第2群にも低分散の負レンズと高分散の正レンズ
を用いる必要がある。
Generally, in order to correct chromatic aberration in a zoom lens having a high zoom ratio, a high dispersion negative lens and a low dispersion positive lens are frequently used in the first lens unit. It is necessary to use a low dispersion negative lens and a high dispersion positive lens also in the second lens unit.

【0011】特に、変倍比10倍以上の50倍程度のズ
ームレンズでは、色収差の補正が重要となり、第1群内
に低分散の正レンズを2枚又は3枚以上用いる必要があ
り、この結果、第1群のレンズ枚数が増加して、レンズ
系全体が大型化してくる傾向があった。
In particular, in a zoom lens having a zoom ratio of about 10 times or more and about 50 times, it is important to correct chromatic aberration, and it is necessary to use two or three or more low-dispersion positive lenses in the first lens unit. As a result, the number of lenses in the first group tends to increase, and the entire lens system tends to increase in size.

【0012】一方、ズームレンズにおいてリヤーフォー
カス方式を採用するとレンズ系全体が小型化され又迅速
なるフォーカスが可能となり、更に近接撮影が容易とな
る等の特長が得られる。
On the other hand, when the rear focus system is adopted in the zoom lens, the whole lens system can be reduced in size, quick focus can be achieved, and further advantages such as easy close-up photographing can be obtained.

【0013】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたり高い光学性能を得るのが大変難しく
なってくるという問題点が生じてくる。
[0013] On the other hand, however, there is a problem that aberration variation at the time of focusing increases, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to an object at a short distance.

【0014】例えば、大口径比で高変倍のズームレンズ
では変倍による色収差の変動が大きくなってきて全変倍
範囲にわたり、又物体距離全般にわたり高い光学性能を
得るのが大変難しくなってくるという問題点が生じてく
る。
For example, in a zoom lens having a large aperture ratio and a high zoom ratio, the fluctuation of chromatic aberration due to zooming becomes large, and it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance. The problem arises.

【0015】特にズーム比が10倍以上、例えば50倍
程度の高変倍比の4群又は5群より成るズームレンズで
は各レンズ群内で発生する色収差を補正するため、低分
散ガラスより成るレンズや張り合わせレンズを用いるこ
とが多い。そしてレンズ群に対し、非球面を用いること
によりレンズ群のレンズ枚数を削減し、レンズ全長を短
くする方法がとられている。
In particular, in a zoom lens composed of four or five groups having a high zoom ratio of 10 times or more, for example, about 50 times, a lens made of low dispersion glass to correct chromatic aberration generated in each lens group. And a laminated lens are often used. Then, a method has been adopted in which the number of lenses in the lens group is reduced by using an aspherical surface for the lens group, and the overall length of the lens is shortened.

【0016】しかしながら、レンズ枚数を減らすと色収
差の補正をする要素が不十分になってきて、変倍に伴う
色収差の変動を良好に補正することが困難になってく
る。
However, when the number of lenses is reduced, elements for correcting chromatic aberration become insufficient, and it becomes difficult to satisfactorily correct fluctuations in chromatic aberration due to zooming.

【0017】一般に正レンズに低分散ガラスを用いれ
ば、色収差を軽減することもできる。しかしながら一般
に低分散のガラスは屈折率が低く加工が難しいレンズ形
状になりやすい。この為、例えば第1群又は第2群の屈
折力を弱くすると、これに応じて他のレンズ群の屈折力
も弱くしなければならず、この結果、第1群の径が大き
くなり結果として第1群のレンズ肉厚を増す必要が生じ
てレンズ全長が長大化してくる。
Generally, if low dispersion glass is used for the positive lens, chromatic aberration can be reduced. However, low-dispersion glass generally has a low refractive index and tends to have a lens shape that is difficult to process. Therefore, for example, if the refractive power of the first group or the second group is weakened, the refractive power of the other lens group must also be weakened accordingly. As a result, the diameter of the first group becomes larger, and as a result, the first lens group becomes larger. It is necessary to increase the lens thickness of one group, and the overall length of the lens increases.

【0018】本発明は、4群タイプ又は5群タイプのリ
ヤーフォーカス式のズームレンズにおいて、各レンズ群
のレンズ構成を適切に設定することにより、広角端から
望遠端に至る全変倍範囲にわたり、又無限遠物体から超
至近物体に至る物体距離全般にわたり、良好なる光学性
能を有した大口径比で高変倍比のズームレンズの提供を
目的とする。
According to the present invention, in a four-group or five-group rear-focus type zoom lens, by appropriately setting the lens configuration of each lens group, over the entire zoom range from the wide-angle end to the telephoto end, It is another object of the present invention to provide a large aperture ratio and high zoom ratio zoom lens having excellent optical performance over the entire object distance from an object at infinity to a very close object.

【0019】特に、4群タイプ又は5群タイプのリヤー
フォーカス式のズームレンズにおいて第1群と第2群に
各々回折光学素子を導入し、回折光学的な作用を利用す
ることで第1群と第2群で発生する色収差を低減しつつ
第1群と第2群のレンズ枚数を削減し、レンズ全長の小
型化を達成し、かつ第1群を軽量化すると共に、広角端
から望遠端に至る全変倍範囲にわたり良好なる光学性能
を有するズームレンズの提供を目的とする。
In particular, in a four-group or five-group type rear focus zoom lens, diffractive optical elements are introduced into the first and second groups, respectively, and the first and second groups are formed by utilizing the diffractive optical action. While reducing the chromatic aberration generated in the second group, the number of lenses in the first and second groups is reduced, the overall length of the lens is reduced, and the first group is reduced in weight. It is an object of the present invention to provide a zoom lens having good optical performance over the entire zoom range.

【0020】[0020]

【課題を解決するための手段】本発明のズームレンズ
は、 (1-1) 物体側より順に正の屈折力の第1群、負の屈折力
の第2群、正の屈折力の第3群、そして第4群の4つの
レンズ群を有し、該第2群と第4群を移動させて変倍を
行うズームレンズにおいて、該第1群と第2群はそれぞ
れ光軸に対して回転対称な回折光学素子を少なくとも1
つ有しており、該第1群が有するレンズ枚数をN1C、
全系の変倍比をZ、該第1群と第2群が有するレンズの
任意のレンズの材質のアッベ数をνとしたとき、
According to the present invention, there is provided a zoom lens system comprising: (1-1) a first unit having a positive refractive power, a second unit having a negative refractive power, and a third unit having a positive refractive power in order from the object side. In a zoom lens having four lens groups, a first lens group and a fourth lens group, wherein the second lens group and the fourth lens group are moved to perform zooming, the first lens group and the second lens group are each relative to the optical axis. At least one rotationally symmetric diffractive optical element
N1C, the number of lenses of the first group
When the zoom ratio of the entire system is Z and the Abbe number of an arbitrary lens material of the lenses of the first and second groups is ν,

【0021】[0021]

【数3】 を満足することを特徴としている。(Equation 3) Is satisfied.

【0022】(1-2) 物体側より順に正の屈折力の第1
群、負の屈折力の第2群、正の屈折力の第3群、第4
群、そして正の屈折力の第5群の5つのレンズ群を有
し、該第2群と第4群を移動させて変倍を行うズームレ
ンズにおいて、該第1群と第2群はそれぞれ光軸に対し
て回転対称な回折光学素子を少なくとも1つ有してお
り、該第1群が有するレンズ枚数をN1C、全系の変倍
比をZ、該第1群と第2群が有するレンズの任意のレン
ズの材質のアッベ数をνとしたとき、
(1-2) First positive refractive power from the object side
Group, second group of negative refractive power, third group of positive refractive power, fourth group
A first lens unit and a fifth lens unit having a positive refractive power and a fifth lens unit having a positive refractive power. The first group has at least one diffractive optical element rotationally symmetric with respect to the optical axis, the number of lenses of the first group is N1C, the zoom ratio of the entire system is Z, and the first and second groups are When the Abbe number of an arbitrary lens material is ν,

【0023】[0023]

【数4】 を満足することを特徴としている。(Equation 4) Is satisfied.

【0024】[0024]

【発明の実施の形態】図1〜図3は、本発明の数値実施
例1の広角端のレンズ断面図、広角端の収差図、望遠端
の収差図である。図4〜図6は、本発明の数値実施例2
の広角端のレンズ断面図、広角端の収差図、望遠端の収
差図である。図7〜図9は、本発明の数値実施例3の広
角端のレンズ断面図、広角端の収差図、望遠端の収差図
である。
1 to 3 are a sectional view of a lens at a wide angle end, an aberration diagram at a wide angle end, and an aberration diagram at a telephoto end according to Numerical Embodiment 1 of the present invention. 4 to 6 show Numerical Embodiment 2 of the present invention.
3A to 3C are a lens cross-sectional view at the wide-angle end, an aberration diagram at the wide-angle end, and an aberration diagram at the telephoto end. 7 to 9 are a lens cross-sectional view at the wide-angle end, an aberration diagram at the wide-angle end, and an aberration diagram at the telephoto end according to Numerical Example 3 of the present invention.

【0025】まず、図1,図4の数値実施例1,2のレ
ンズ構成の特徴について説明する。図1,図4におい
て、L1は正の屈折力の第1群、L2は負の屈折力の第
2群、L3は正の屈折力の第3群、L4は正の屈折力の
第4群である。SPは開口絞りであり、第3群L3の前
方に配置している。Gは色分解光学系やフェースプレー
ト、そしてフィルター等のガラスブロックである。IP
は像面である。
First, the features of the lens configuration of Numerical Examples 1 and 2 shown in FIGS. 1 and 4 will be described. 1 and 4, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. It is. SP denotes an aperture stop, which is arranged in front of the third lens unit L3. G is a glass block such as a color separation optical system, a face plate, and a filter. IP
Is the image plane.

【0026】本実施形態では広角端から望遠端への変倍
に際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を物体側に凸状の軌跡
を有しつつ移動させて補正している。
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second lens unit is moved to the image plane side as indicated by the arrow, and the image plane fluctuation due to the zooming is changed by projecting the fourth lens unit to the object side. The movement is corrected while having the trajectory.

【0027】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。尚、第2群の変倍分担を少な
くする為に第1群を変倍の際に移動させても良い。
Also, a rear focus system is adopted in which the fourth unit is moved on the optical axis to perform focusing. A solid line curve 4a and a dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown. The first and third units are fixed during zooming and focusing. Note that the first unit may be moved at the time of zooming in order to reduce the sharing of zooming of the second unit.

【0028】本実施形態においては第4群を移動させて
変倍に伴う像面変動の補正を行うと共に第4群を移動さ
せてフォーカスを行うようにしている。特に同図の曲線
4a,4bに示すように広角端から望遠端への変倍に際
して物体側へ凸状の軌跡を有するように移動させてい
る。これにより第3群と第4群との空間の有効利用を図
りレンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth unit is moved to correct the image plane fluctuation caused by zooming, and the fourth unit is moved for focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex locus toward the object side when zooming from the wide-angle end to the telephoto end. Thereby, the space between the third and fourth units is effectively used, and the overall length of the lens is effectively reduced.

【0029】本実施形態において、例えば望遠端におい
て無限遠物体から近距離物体へフォーカスを行う場合は
同図の直線4cに示すように第4群を前方へ繰り出すこ
とにより行っている。
In this embodiment, for example, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth unit is moved forward as indicated by a straight line 4c in FIG.

【0030】本実施形態では第1群と第2群に各々少な
くとも1つの光軸に対して回転対称の回折光学素子を設
け、その位相を適切に設定し、これにより第1群と第2
群で発生する色収差を低減し、全変倍範囲にわたり色収
差を良好に補正している。
In the present embodiment, each of the first and second units is provided with a diffraction optical element rotationally symmetric with respect to at least one optical axis, and the phases thereof are appropriately set.
Chromatic aberration generated in the group is reduced, and chromatic aberration is favorably corrected over the entire zoom range.

【0031】本実施形態における回折光学素子は、ホロ
グラフィック光学素子(HOE)の製作手法であるリソ
グラフィック手法で2値的に製作している。回折光学素
子はバイナリーオプティックス(BINARY OPT
ICS)で製作しても良い。この場合、更に回折効率を
上げるためにキノフォームと呼ばれる鋸状の形状にして
も良い。またこれらの方法で製作した方によって成型に
より製造しても良い。
The diffractive optical element according to the present embodiment is binary-manufactured by a lithographic technique which is a technique for producing a holographic optical element (HOE). The diffractive optical element is a binary optics (BINARY OPT)
ICS). In this case, in order to further increase the diffraction efficiency, a saw-like shape called a kinoform may be used. Further, it may be manufactured by molding by those manufactured by these methods.

【0032】また本実施形態における回折光学素子の形
状は、基準波長(d線)をλ、光軸からの距離をh、位
相をφ(h)としたとき φ(h)=2π/λ(C1・h2+C2・h4+C3・h6+…C(i)・h2i )・・・(1) の式で表されるものである。
The shape of the diffractive optical element in the present embodiment is as follows: when the reference wavelength (d-line) is λ, the distance from the optical axis is h, and the phase is φ (h), φ (h) = 2π / λ ( C 1 · h 2 + C 2 · h 4 + C 3 · h 6 +... C (i) · h 2i ) (1)

【0033】次に数値実施例1,2のこの他の構成の特
徴について説明する。
Next, features of other configurations of the first and second numerical embodiments will be described.

【0034】(ア-1) 該第1群と第2群はそれぞれ光軸に
対して回転対称な回折光学素子を少なくとも1つ有して
おり、該第1群が有するレンズ枚数をN1C、全系の変
倍比をZ、該第1群と第2群が有するレンズの任意のレ
ンズの材質のアッベ数をνとしたとき、
(A-1) Each of the first and second units has at least one diffractive optical element rotationally symmetric with respect to the optical axis, and the first unit has N1C lenses. When the zoom ratio of the system is Z and the Abbe number of an arbitrary lens material of the lenses of the first and second groups is ν,

【0035】[0035]

【数5】 を満足している。(Equation 5) Are satisfied.

【0036】これによって、第1群と第2群のレンズ枚
数を少なくしつつ、全変倍範囲に渡り色収差を良好に補
正している。尚、条件式(a2)は更に光学性能上好ま
しくは、 23<ν<72・・・(a2’) を満足させるのが良い。
As a result, chromatic aberration can be satisfactorily corrected over the entire zoom range while reducing the number of lenses in the first and second groups. It is more preferable that the conditional expression (a2) satisfies the following condition: 23 <ν <72 (a2 ′).

【0037】(ア-2) 数値実施例1においては、第1群L
1は2枚の正レンズG1,G2で構成し、その物体側の
正レンズG1の像面側のレンズ面に回折光学素子を設け
ている。又、第2群L2は2枚の負レンズG3,G4で
構成し、その像面側の負レンズのG4の物体側のレンズ
面に回折光学素子を設けている。第3群L3と第4群L
4の最も物体側のレンズ面はそれぞれ非球面より構成し
ている。
(A-2) In the first embodiment, the first lens unit L
Numeral 1 is composed of two positive lenses G1 and G2, and a diffractive optical element is provided on a lens surface on the image plane side of the positive lens G1 on the object side. The second unit L2 includes two negative lenses G3 and G4, and a diffractive optical element is provided on the object-side lens surface of the negative lens G4 on the image plane side. Third group L3 and fourth group L
The most object-side lens surface of No. 4 is composed of an aspherical surface.

【0038】(ア-3) 数値実施例2においては、第1群L
1は負レンズG1と正レンズG2で構成し、像面側の正
レンズG2の像面側のレンズ面に回折光学素子を設けて
いる。又、第2群L2は2枚の負レンズG3,G4で構
成し、像面側の負レンズG4の物体側のレンズ面に回折
光学素子を設けている。第3群L3と第4群L4の最も
物体側のレンズ面は各々非球面より構成している。
(A-3) In the numerical example 2, the first lens unit L
Numeral 1 comprises a negative lens G1 and a positive lens G2, and a diffractive optical element is provided on a lens surface on the image plane side of the positive lens G2 on the image plane side. The second unit L2 includes two negative lenses G3 and G4, and a diffractive optical element is provided on the object-side lens surface of the image-side negative lens G4. The lens surfaces closest to the object in the third unit L3 and the fourth unit L4 are each formed of an aspheric surface.

【0039】(ア-4) これらの数値実施例1,2では、第
3群L3は絞りSPを前方に有しズーミング中に固定の
正レンズ群であり、正の第4群L4は変倍による像面変
動を補正すると共に、距離合わせも第4群L4により行
っている。
(A-4) In the first and second numerical embodiments, the third unit L3 is a positive lens unit having a stop SP in front and fixed during zooming, and the fourth positive unit L4 is a variable power. And the distance adjustment is also performed by the fourth lens unit L4.

【0040】(ア-5) 第1群L1の別なレンズ構成として
は、数値実施例1では第1群L1を2枚の正レンズで構
成し、その前後或いは中間に少なくとも1枚の回折光学
面を有するプレートを有するようにしている。
(A-5) As another lens configuration of the first lens unit L1, in Numerical Embodiment 1, the first lens unit L1 is composed of two positive lenses, and at least one diffractive optical element is provided before, after, or between them. It has a plate having a surface.

【0041】更に別な第1群L1の構成としては、正レ
ンズ、負レンズ、又は負レンズ、正レンズの2枚で構成
し、いずれかの面に回折光学素子を有するようにしてい
る。このとき、正レンズと負レンズは貼合わせでも良
い。その際に色収差はこの貼合わせ面と共働で補正し、
回折光学素子は正の屈折力を強める必要がある。
Still another configuration of the first lens unit L1 includes a positive lens, a negative lens, or a negative lens and a positive lens, and has a diffractive optical element on either surface. At this time, the positive lens and the negative lens may be bonded. At that time, the chromatic aberration is corrected in cooperation with this bonding surface,
The diffractive optical element needs to increase the positive refractive power.

【0042】(ア-6) 第2群L2の別の構成としては、数
値実施例1,2のように2枚の負レンズで構成し、その
前後或いは中間に少なくとも1枚の回折光学素子を有す
るプレートを有するようにしている。
(A-6) As another configuration of the second unit L2, as in Numerical Examples 1 and 2, it is composed of two negative lenses, and at least one diffractive optical element is provided before, after, or between them. To have a plate.

【0043】更に別の第2群L2の構成としては、正レ
ンズ、負レンズの2枚、又は負レンズ、正レンズの2枚
で構成し、いずれかの面に回折光学素子を有するように
しても良い。
Still another second lens unit L2 has a positive lens and a negative lens, or a negative lens and a positive lens, and has a diffractive optical element on either surface. Is also good.

【0044】次に図7の数値実施例3のレンズ構成の特
徴について説明する。数値実施例3は変倍比50倍程度
の高変倍比の5群ズームレンズである。
Next, the features of the lens configuration of the numerical example 3 in FIG. 7 will be described. Numerical example 3 is a five-unit zoom lens having a high zoom ratio of about 50 times.

【0045】図7において図中、L1は正の屈折力の第
1群(第1レンズ群)、L2は負の屈折力の第2群(第
2レンズ群)、L3は正の屈折力の第3群(第3レンズ
群)、L4は負の屈折力の第4群(第4レンズ群)、L
5は正の屈折力の第5群(第5レンズ群)である。SP
は開口絞りであり、第3群L3の前方に配置している。
IPは像面である。
In FIG. 7, L1 is a first group (first lens group) having a positive refractive power, L2 is a second group (second lens group) having a negative refractive power, and L3 is a positive lens having a positive refractive power. The third unit (third lens unit), L4 is a fourth unit (fourth lens unit) having a negative refractive power, L4
Reference numeral 5 denotes a fifth group (fifth lens group) having a positive refractive power. SP
Denotes an aperture stop, which is arranged in front of the third lens unit L3.
IP is an image plane.

【0046】Gは色分解光学系やフェースプレート、そ
してフィルター等のガラスブロックである。広角端から
望遠端への変倍に際して矢印のように第2群L2を像面
側へ移動させると共に、変倍に伴う像面変動を第4群を
物体側に凸状の軌跡を有するように移動させて補正しい
てる。又、第4群を光軸上移動させてフォーカスを行う
リヤーフォーカス式を採用している。
G is a glass block such as a color separation optical system, a face plate, and a filter. At the time of zooming from the wide-angle end to the telephoto end, the second lens unit L2 is moved to the image plane side as indicated by an arrow, and the image plane fluctuation due to zooming is adjusted so that the fourth lens unit has a locus convex toward the object side. I am moving it and correcting it. In addition, a rear focus type in which the fourth unit is moved on the optical axis to perform focusing is adopted.

【0047】図7に示す第4群の実線の曲線4aと点線
の曲線4bは各々無限遠物体と近距離物体にフォーカス
しているときの広角端から望遠端への変倍に伴う際の像
面変動を補正する為の移動軌跡を示している。第1群,
第3群,第5群は変倍及びフォーカスの際、固定であ
る。
A solid curve 4a and a dotted curve 4b of the fourth group shown in FIG. 7 are images when zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correcting the surface fluctuation is shown. First group,
The third and fifth units are fixed during zooming and focusing.

【0048】本実施形態においては第4群を移動させて
変倍に伴う像面変動の補正を行うと共に第4群を移動さ
せてフォーカスを行うようにしている。特に同図の曲線
4a,4bに示すように広角端から望遠端への変倍に際
して物体側へ凸状の軌跡を有するように移動させてい
る。これにより第3群と第4群との空気の有効利用を図
り、レンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth unit is moved to correct the image plane fluctuation caused by zooming, and the fourth unit is moved for focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex locus toward the object side when zooming from the wide-angle end to the telephoto end. As a result, the third group and the fourth group can effectively use air, and the total length of the lens can be effectively reduced.

【0049】本実施形態において、例えば望遠端におい
て無限遠物体から近距離物体へフォーカスを行う場合は
同図の直線4cに示すように第4群を前方へ繰り出すこ
とにより行っている。
In this embodiment, for example, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth unit is moved forward as shown by a straight line 4c in FIG.

【0050】本実施形態における5群ズームレンズにお
いて第1群を1枚の負レンズと3枚の正レンズで構成
し、負レンズと正レンズの貼合わせレンズの像面側のレ
ンズ面に光軸に対して回転対称の回折光学素子を設けて
いる。回折光学素子の形状は式(1) で示す数値実施例
1,2と同様である。
In the five-unit zoom lens according to the present embodiment, the first unit is composed of one negative lens and three positive lenses, and the optical axis is located on the image surface side of the cemented lens of the negative lens and the positive lens. Is provided with a rotationally symmetric diffractive optical element. The shape of the diffractive optical element is the same as that of Numerical Examples 1 and 2 represented by Expression (1).

【0051】又、第2群L2は2枚の負レンズと、負レ
ンズと正レンズの貼合わせレンズの4枚のレンズで構成
し、2枚目の負レンズの像面側のレンズ面に回折光学素
子を設けている。
The second lens unit L2 is composed of two negative lenses and a cemented lens composed of a negative lens and a positive lens. The second lens unit L2 diffracts the image on the image side of the second negative lens. An optical element is provided.

【0052】次に数値実施例3のこの他の構成の特徴に
ついて説明する。
Next, the features of the other configuration of the third embodiment will be described.

【0053】(イ-1) 該第1群と第2群はそれぞれ光軸に
対して回転対称な回折光学素子を少なくとも1つ有して
おり、該第1群が有するレンズ枚数をN1C、全系の変
倍比をZ、該第1群と第2群が有するレンズの任意のレ
ンズの材質のアッベ数をνとしたとき、
(A-1) Each of the first and second units has at least one diffractive optical element rotationally symmetric with respect to the optical axis, and the first unit has N1C lenses. When the zoom ratio of the system is Z and the Abbe number of an arbitrary lens material of the lenses of the first and second groups is ν,

【0054】[0054]

【数6】 を満足している。(Equation 6) Are satisfied.

【0055】これによって、第1群と第2群のレンズ枚
数を少なくしつつ、全変倍範囲に渡り色収差を良好に補
正している。尚、条件式(a2)は更に光学性能上好ま
しくは、 23<ν<72・・・(a2’) を満足させるのが良い。
As a result, chromatic aberration can be satisfactorily corrected over the entire zoom range while reducing the number of lenses in the first and second groups. It is more preferable that the conditional expression (a2) satisfies the following condition: 23 <ν <72 (a2 ′).

【0056】(イ-2) 第3群L3は正レンズ、正レンズと
負レンズの貼合わせレンズ、そして正レンズの4つのレ
ンズより構成している。
(A-2) The third lens unit L3 comprises four lenses: a positive lens, a cemented lens of a positive lens and a negative lens, and a positive lens.

【0057】(イ-3) 第4群L4は正レンズと負レンズの
貼合わせレンズより構成している。
(A-3) The fourth unit L4 comprises a cemented lens of a positive lens and a negative lens.

【0058】(イ-4) 第5群L5は正レンズ、負レンズと
正レンズの貼合わせレンズの3つのレンズより構成して
いる。
(A-4) The fifth unit L5 includes three lenses: a positive lens, and a cemented lens of a negative lens and a positive lens.

【0059】次に、本発明の各数値実施例の特徴につい
て説明する。
Next, the features of each numerical example of the present invention will be described.

【0060】いずれの実施例の場合も最も物体側のレン
ズ面には、収差補正上やむを得ない等の特別な場合を除
いて、回折光学素子は配置しない方が良い。これは回折
光学素子はかなり狭い幅、例えば数μm或いはサブμm
のオーダの溝で構成されており、塵埃等からレンズ表面
を保護する為である。
In any of the embodiments, it is better not to dispose a diffractive optical element on the lens surface closest to the object, except in special cases such as unavoidable aberration correction. This means that the diffractive optical element has a rather narrow width, for example a few μm or sub-μm.
In order to protect the lens surface from dust and the like.

【0061】第1群L1内に回折光学素子を配置して、
適当に回折光学素子の位相を選択することにより、第1
群L1で発生する色収差、例えばd線とg線といった2
波長の色収差は小さく抑えられ、全体としての色収差の
ズーミングによる変動を小さく抑えている。尚、このと
き望遠端に色収差(2次スペクトル)が残存してくる。
By disposing a diffractive optical element in the first lens unit L1,
By appropriately selecting the phase of the diffractive optical element, the first
Chromatic aberration generated in the group L1, for example, 2 such as d line and g line
The chromatic aberration of the wavelength is kept small, and the variation due to zooming of the chromatic aberration as a whole is kept small. At this time, chromatic aberration (secondary spectrum) remains at the telephoto end.

【0062】一方、第2群L2内に回折光学素子を配置
して、適当に回折光学素子の位相を選択することによ
り、第2群L2で発生する色収差、例えばd線とg線と
いった2波長の色収差は小さく抑えられ、全体としての
色収差のズーミングによる変動を小さく抑えている。こ
のとき望遠端に残存する色収差(2次スペクトル)は、
第1群L1とは反対の方向になる。
On the other hand, by arranging the diffractive optical element in the second lens unit L2 and appropriately selecting the phase of the diffractive optical element, the chromatic aberration generated in the second lens unit L2, for example, two wavelengths such as d-line and g-line Is suppressed small, and the variation due to zooming of the chromatic aberration as a whole is suppressed small. At this time, the chromatic aberration (secondary spectrum) remaining at the telephoto end is
The direction is opposite to that of the first lens unit L1.

【0063】本発明では、このように絞りSよりも物体
側のレンズ群と変倍群、つまり第1群L1及び第2群L
2に回折光学素子を用いて、変倍により2次スペクトル
を少なくしている。
In the present invention, the lens unit on the object side of the stop S and the zooming unit, that is, the first unit L1 and the second unit L
A secondary spectrum is reduced by changing the magnification by using a diffractive optical element for No. 2.

【0064】即ち、上述したように第1群L1と変倍用
の第2群L2は、それぞれ光軸に対して回転対称な少な
くとも1枚の回折光学面を配置することにより、第1群
L1、第2群L2内で基準波長(d線とg線)の色収差
を小さく抑え、変倍群でそれぞれで発生する2次スペク
トルを逆方向に発生させて、第1群L1と第2群L2に
より共働して全体として良好な色収差を達成している。
That is, as described above, the first lens unit L1 and the second lens unit L2 for zooming are each provided with at least one diffractive optical surface that is rotationally symmetric with respect to the optical axis. In the second lens unit L2, the chromatic aberration at the reference wavelength (d-line and g-line) is suppressed to a small value, and the secondary spectra respectively generated in the variable power unit are generated in the opposite directions, so that the first lens unit L1 and the second lens unit L2 To achieve good chromatic aberration as a whole.

【0065】このように構成することにより、第1群L
1を構成するレンズは低分散の2つの正レンズ、又は高
分散の負レンズと低分散の正レンズをそれぞれ1枚或い
は2枚以上を有し、更に負レンズと正レンズを貼合わせ
たり複数のレンズで分担して色消しを行っている。そし
て回折光学素子によって色収差の補正に使うレンズ枚数
を減少させ、全体として構成レンズ枚数を削減してい
る。又、第2群L2を構成するレンズも低分散の負レン
ズと高分散の正レンズをそれぞれ2枚以上、或いは1枚
を有し、更に負レンズと正レンズを貼合わせたり、複数
のレンズで分担して色消しを行っている。そして回折光
学素子によって色収差の補正に使うレンズ枚数が減少
し、全体として構成レンズ枚数を削減している。
With this configuration, the first lens unit L
The lens constituting 1 has one or two or more low-dispersion two positive lenses or a high-dispersion negative lens and a low-dispersion positive lens, respectively. Achromatism is performed by sharing lenses. The number of lenses used for correcting chromatic aberration is reduced by the diffractive optical element, and the number of constituent lenses is reduced as a whole. Further, the lens constituting the second unit L2 also has two or more low-dispersion negative lenses and high-dispersion positive lenses, respectively, or one lens. Further, the negative lens and the positive lens are bonded together, or a plurality of lenses are used. I'm sharing colors. The number of lenses used for correcting chromatic aberration is reduced by the diffractive optical element, and the number of constituent lenses is reduced as a whole.

【0066】このような構成とすることにより、高変倍
化や小型化を行っても、高分散や低分散の高価な硝材を
用いることなく安価な構成でズームレンズが達成でき
る。10倍を超えるズームレンズにおいても、良好な性
能を維持しながら更なる小型化が達成できるようにな
る。具体的には第1レンズ群と第2レンズ群を構成する
レンズのアッベ数は23<ν<72の範囲で可能である
が10倍程度の変倍では23<ν<65の範囲程度でも
可能である。
By adopting such a configuration, a zoom lens can be achieved with an inexpensive configuration without using an expensive glass material having a high dispersion or a low dispersion even if a high zoom ratio or a miniaturization is performed. Even with a zoom lens exceeding 10 times, further miniaturization can be achieved while maintaining good performance. Specifically, the Abbe number of the lenses constituting the first lens group and the second lens group can be in the range of 23 <ν <72, but can be in the range of 23 <ν <65 at a magnification of about 10 times. It is.

【0067】具体的なズームレンズの色収差を軽減する
方法としては、回折光学素子を有する第i群の屈折力を
Fiとするときには、次の式を満たす面を少なくとも1
面有することが好ましい。
As a specific method for reducing the chromatic aberration of the zoom lens, when the refractive power of the i-th lens unit having a diffractive optical element is Fi, at least one surface satisfying the following expression is required.
It is preferable to have a surface.

【0068】 Fi・Ci <0 (i=1,2)・・・(2) ここで、Ci は第i群Li内にある回折光学面による近
軸的屈折力を表し、この近軸的屈折力Ci が正の値を持
つときは第i群の屈折力は負、屈折力Ci が負の値を持
つときは第i群の屈折力は正を有する。正レンズ群のと
きも負レンズ群のときも、そのレンズ群の曲率を緩くで
きる構成になり、収差補正上有効である。
Fi · C i <0 (i = 1, 2) (2) where C i represents a paraxial refractive power of the diffractive optical surface in the i-th lens unit Li. When the objective refractive power C i has a positive value, the refractive power of the i-th group has a negative value, and when the refractive power C i has a negative value, the refractive power of the i-th group has a positive value. In both the positive lens unit and the negative lens unit, the curvature of the lens unit can be reduced, which is effective for aberration correction.

【0069】(1) 式において分かることは、光軸からの
距離hによって位相を調節できることである。レンズ径
が大きければ大きい程、高次の係数の影響が大きくな
る。本実施例で述べている民生用のズームレンズ、特に
ビデオ用のズームレンズにおいては小型化が進められて
おり、余り大きなレンズ、つまり距離hが大きいレンズ
は少ない。その上で、小さなレンズにおいても効率的に
係数を生かして、有効な収差補正を達成するには次の条
件式を満足することが好ましい。但し、C2i,C3iはそ
れぞれ第i群内にある回折光学素子の(1) 式における4
次項、6次項の係数である。
What can be seen from equation (1) is that the phase can be adjusted by the distance h from the optical axis. The greater the lens diameter, the greater the effect of higher order coefficients. In the consumer zoom lens described in the present embodiment, particularly the zoom lens for video, miniaturization is being promoted, and there are few lenses that are too large, that is, lenses with a large distance h. In addition, it is preferable that the following conditional expression is satisfied in order to achieve effective aberration correction by efficiently using the coefficient even with a small lens. Here, C 2i and C 3i are 4 in the expression (1) of the diffractive optical element in the i-th group, respectively.
These are the coefficients of the next and sixth order terms.

【0070】 1・10-4<|C2i/Ci |<1・10-1・・・(3) 1・10-7<|C3i/Ci |<1・10-2・・・(4) これらの式は前述したように、小さい径において有効に
収差補正をする為のものである。これらの条件式を外れ
ると、収差補正が難しくなるだけでなく、回折光学面を
製作し難くなり、適当でない。
1 · 10 −4 <| C 2i / C i | <1 · 10 −1 (3) 1 · 10 −7 <| C 3i / C i | <1 · 10 -2. (4) As described above, these expressions are for effectively correcting aberrations at a small diameter. If these conditional expressions are not satisfied, not only is it difficult to correct aberrations, but also it becomes difficult to manufacture a diffractive optical surface, which is not appropriate.

【0071】上述したように、第1群L1内と第2群L
2内に配置された回折光学素子により、それぞれのレン
ズ群で発生する色収差(2次スペクトル)を共働して小
さく抑え、第2群L2の移動による色収差のズーミング
による変動も小さく抑えられる。このとき、第4群L4
の像面側に更に固定の第5の負レンズ群を配することも
できる。このとき、第5群は全体が望遠タイプとなるよ
うに構成して、更なる小型化を図っても良い。
As described above, the first lens unit L1 and the second lens unit L1
By the diffractive optical elements arranged in the lens unit 2, the chromatic aberration (secondary spectrum) generated in each lens group is suppressed to be small in cooperation, and the fluctuation due to the zooming of the chromatic aberration due to the movement of the second unit L2 is also suppressed to be small. At this time, the fourth unit L4
Further, a fixed fifth negative lens group can be arranged on the image plane side of the zoom lens. At this time, the fifth group may be configured so as to be of a telephoto type as a whole to further reduce the size.

【0072】実施例のように、第1群L1及び第2群L
2の貼合わせ等の色消しの代わりの色収差補正を、回折
光学素子で行う場合の屈折力は余り必要ではない。
As in the embodiment, the first unit L1 and the second unit L
In the case where the chromatic aberration correction in place of the achromatism such as the bonding of 2 is performed by the diffractive optical element, the refractive power is not so necessary.

【0073】ここで、若干の軸外収差、特に像面湾曲、
ディストーション補正の為に屈折力を持たせても良い。
その場合の第1,第2群L1,L2の回折光学素子の焦
点距離をFbo1,Fbo2、第1,第2群L1,L2の焦点距
離をF1,F2とするとき以下の条件を満たしていれば、製
作についても難しくなく、色収差を含めた収差補正にも
良好である。
Here, some off-axis aberrations, in particular, curvature of field,
Refractive power may be provided for distortion correction.
In this case, when the focal lengths of the diffractive optical elements of the first and second units L1 and L2 are Fbo1 and Fbo2, and the focal lengths of the first and second units L1 and L2 are F1 and F2, the following conditions must be satisfied. If it is not difficult to manufacture, it is good for aberration correction including chromatic aberration.

【0074】 0.05<F1/Fbo1<0.7・・・(5) 0.05<F2/Fbo2<0.7・・・(6) 特に、回折光学素子を有するレンズ群は、次の数値範囲
内にあることが好ましい。特に10倍以上の高変倍比の
ときは、 1.0<F1/(Fw・Ft)1/2 <3.0・・・(7) 特に、10倍程度の変倍の場合は、 1.0<F1/(Fw・Ft)1/2 <2.5・・・(7') ただし、Fw,Ftはそれぞれ広角端、望遠端の全系の
焦点距離である。この範囲内にあれば、回折光学素子の
働きを有効に引き出すことができる。この(7)式の下限
値を逸脱すると、第1群L1の屈折力が強過ぎて色収差
を回折光学系で補正しきれなくなり、製作についても難
しくなる。又、上限値を超えると回折光学素子を使用し
なくとも、色収差の除去は容易になる。又、所望の焦点
距離のレンズを得る為に特に第2群L2の屈折力が強く
なり、第2群L2で発生する収差量が大きくなり適用で
ない。即ち、ペッツバール和が負に大きくなり、像面湾
曲が補正過剰になる。
0.05 <F1 / Fbo1 <0.7 (5) 0.05 <F2 / Fbo2 <0.7 (6) In particular, the lens group having the diffractive optical element is as follows. It is preferably within the numerical range. 1.0 <F1 / (Fw · Ft) 1/2 <3.0 (7) In the case of a high zoom ratio of 10 times or more, in particular, when the zoom ratio is about 10 times, 1 0.0 <F1 / (Fw · Ft) 1/2 <2.5 (7 ′) where Fw and Ft are the focal lengths of the entire system at the wide-angle end and the telephoto end, respectively. Within this range, the function of the diffractive optical element can be effectively brought out. If the lower limit of the expression (7) is deviated, the refractive power of the first lens unit L1 is too strong, so that the chromatic aberration cannot be corrected by the diffractive optical system, and the production becomes difficult. If the value exceeds the upper limit, the chromatic aberration can be easily removed without using a diffractive optical element. In addition, in order to obtain a lens having a desired focal length, the refractive power of the second lens unit L2 becomes particularly strong, and the amount of aberration generated in the second lens unit L2 increases, which is not applicable. That is, the Petzval sum becomes negatively large, and the field curvature becomes overcorrected.

【0075】又、回折光学素子が1面しかない場合に
は、次の式を満足していることが好ましい。
When the diffractive optical element has only one surface, it is preferable that the following expression is satisfied.

【0076】 |Fi/Rboi|<1.8・・・(8) ここで、Rboiは回折光学素子を形成しているi群内の面
の曲率半径である。Rbo1=∞のときはベース面が平面で
ある。この(8) 式を逸脱するとベースの曲面で発生する
収差を回折光学系で補正しきれずに、回折光学系の効果
を十分に引き出せず適当ではない。
| Fi / Rboi | <1.8 (8) where Rboi is the radius of curvature of the surface in the i-th group forming the diffractive optical element. When Rbo1 = ∞, the base surface is flat. If the value deviates from the expression (8), the aberration generated on the curved surface of the base cannot be completely corrected by the diffractive optical system, and the effect of the diffractive optical system cannot be sufficiently brought out.

【0077】一般に、回折光学素子は通常の屈折により
発生する色収差と反対の色収差が発生する。例えば、従
来の貼合わせ面等により色消しを行っていたレンズを除
去し、レンズ枚数を削減する場合は、その貼合わせ面で
発生していた色収差分担と反対の色収差分担を有する面
を回折光学素子とすることが良い。そのようにすれば、
通常の屈折により発生する色収差と反対の色収差が回折
光学素子上で発生し、その方向は元々有する貼合わせ面
での色収差発生方向と同じものとなり、貼合わせ等の色
消しが単レンズ上で可能となる。
Generally, a diffractive optical element produces chromatic aberration opposite to chromatic aberration caused by ordinary refraction. For example, when removing a lens that has been achromatized by a conventional bonding surface or the like and reducing the number of lenses, a surface having chromatic aberration sharing opposite to the chromatic aberration sharing that occurred on the bonding surface is diffractive optically. It is preferable to use an element. If you do that,
Chromatic aberration opposite to the chromatic aberration caused by normal refraction occurs on the diffractive optical element, and the direction is the same as the direction of chromatic aberration occurring on the original bonding surface, and achromatization such as bonding is possible on a single lens Becomes

【0078】色収差係数(共立出版株発行、松井吉哉著
「レンズ設計法」第89頁)といった視点から見ると、
絞りSよりも物体側の面では、軸上色収差係数Lと倍率
色収差係数Tが同一符号の面に回折光学素子を配置し、
絞りSよりも像面側の面では双方が逆符号の面に回折光
学素子を配置することが好ましい。
From the viewpoint of the chromatic aberration coefficient (published by Kyoritsu Shuppan Co., Ltd., Yoshiya Matsui, “Lens Design Method”, page 89),
On a surface on the object side of the stop S, the diffractive optical element is arranged on a surface having the same sign on the axial chromatic aberration coefficient L and the magnification chromatic aberration coefficient T,
It is preferable to dispose the diffractive optical element on the surface on the image side of the stop S on the opposite side.

【0079】これにより、第1群L1を構成するレンズ
は回折光学素子によって色収差が低減され、構成レンズ
枚数を削減でき、良好な性能を維持しながら更なる小型
化を達成できるようになる。
As a result, the lenses constituting the first lens unit L1 are reduced in chromatic aberration by the diffractive optical element, the number of constituent lenses can be reduced, and further downsizing can be achieved while maintaining good performance.

【0080】特に、第1群L1を構成するレンズの光軸
上の厚みをt1とするとき、次の条件式を満たすことが
好ましい。
In particular, when the thickness of the lens constituting the first unit L1 on the optical axis is t1, it is preferable that the following conditional expression is satisfied.

【0081】 0.1<t1/F1<0.33・・・(9) 特に、第2群L2を構成するレンズの光軸上の厚みをt
2とするとき、次の条件式を満たすのが好ましい。特に
10倍以上の高倍のときは、 0.05<t2/F1<1.5・・・(10) 更に10倍程度のときは、 0.55<t2/F1<0.4・・・(10') この(9) 式,(10)式は、回折光学素子を有効に用いられ
た範囲を示し、回折光学素子を用いると(2) 式の個所で
述べたように、曲率が緩くても所望の屈折力が得られ
る。又、色収差補正の為の凹レンズ(第1レンズ群L
1)、凸レンズ(第2レンズ群L2)との組み合わせを
回折光学素子によって廃止できれば、更にレンズの厚み
が薄くなり有効に使われたことになる。
0.1 <t1 / F1 <0.33 (9) In particular, the thickness of the lens forming the second unit L2 on the optical axis is t
When 2, it is preferable to satisfy the following conditional expression. In particular, when the magnification is 10 times or more, 0.05 <t2 / F1 <1.5 (10) When the magnification is about 10 times, 0.55 <t2 / F1 <0.4 (0.4) 10 ') Equations (9) and (10) show the range in which the diffractive optical element is used effectively. When the diffractive optical element is used, the curvature is loose as described in the section of equation (2). Also obtains a desired refractive power. A concave lens (first lens unit L) for correcting chromatic aberration
1) If the combination with the convex lens (the second lens unit L2) can be eliminated by the diffractive optical element, the lens thickness is further reduced and the lens is effectively used.

【0082】10倍以上の高倍のときは、収差の変動を
抑える為厚くなりがちであるが、回折光学素子により薄
くすることが可能である。
When the magnification is 10 times or more, the thickness tends to be large in order to suppress the fluctuation of aberration. However, the thickness can be reduced by the diffractive optical element.

【0083】(9) ,(10)式の上限を逸脱すれば、通常の
ガラスレンズにおいても可能な厚みであり、回折光学素
子を有効に使用していない。又、下限値を逸脱すると回
折による屈折力が多大に必要となり、収差の発生が大き
くなり適当でない。
If the values deviate from the upper limits of the expressions (9) and (10), the thickness is possible even with a normal glass lens, and the diffractive optical element is not effectively used. On the other hand, if the value falls below the lower limit, refracting power due to diffraction is greatly required, and the occurrence of aberrations increases, which is not appropriate.

【0084】尚、本実施例には記載していないが、第1
群レンズ群L1、或いは第2レンズ群L2を回折光学素
子を用いて1枚で達成することも可能である。
Although not described in this embodiment, the first
It is also possible to achieve the group lens group L1 or the second lens group L2 with a single lens using a diffractive optical element.

【0085】本実施形態で用いている回折光学素子の構
成としては図10に示す1層のキノフォーム形状の1層
構成のものや、図13に示すような格子厚の異なる(又
は同一の)2つの層を積層した2層構成のもの等が適用
可能である。
As a configuration of the diffractive optical element used in the present embodiment, a single-layer kinoform-shaped single-layer configuration shown in FIG. 10 or a different (or the same) grating thickness as shown in FIG. A two-layer structure in which two layers are stacked is applicable.

【0086】図11は図10に示す回折光学素子101
の1次回折光の回折効率の波長依存特性である。実際の
回折光学素子101の構成は、基材102の表面に紫外
線硬化樹脂を塗布し、樹脂部に波長530nmで1次回
折光の回折効率が100%となるような格子厚dの層1
03を形成している。
FIG. 11 shows the diffractive optical element 101 shown in FIG.
3 shows the wavelength dependence of the diffraction efficiency of the first-order diffracted light. The actual configuration of the diffractive optical element 101 is such that an ultraviolet curable resin is applied to the surface of the base material 102, and the resin portion has a grating thickness d such that the diffraction efficiency of the first-order diffracted light at a wavelength of 530 nm is 100%.
03 is formed.

【0087】図11で明らかなように設計次数の回折効
率は最適化した波長530nmから離れるに従って低下
し、一方設計次数近傍の次数の0次回折光と2次回折光
の回折効率が増大している。その設計次数以外の回折光
の増加はフレアとなり、光学系の解像度の低下につなが
る。
As is apparent from FIG. 11, the diffraction efficiency of the design order decreases as the distance from the optimized wavelength of 530 nm increases, while the diffraction efficiencies of the zero-order diffraction light and the second-order diffraction light of orders near the design order increase. An increase in diffracted light other than the design order causes a flare, leading to a decrease in the resolution of the optical system.

【0088】図12(A),(B)に図10の格子形状
で数値実施例1を作成した場合の空間周波数に対するM
TF特性を示す。その図で低周波数領域のMTFがやや
低下している。
FIGS. 12 (A) and 12 (B) show the relationship between the spatial frequency and the M in the case where Numerical Embodiment 1 is created with the lattice shape shown in FIG.
4 shows TF characteristics. In the figure, the MTF in the low frequency region is slightly lowered.

【0089】図13に示す2つの層104,105を積
層した積層型の回折光学素子の1次回折光の回折効率の
波長依存特性を図14に示す。
FIG. 14 shows the wavelength dependence of the diffraction efficiency of the first-order diffracted light of the laminated diffractive optical element in which the two layers 104 and 105 shown in FIG. 13 are laminated.

【0090】図13では基材102上に紫外線硬化樹脂
(nd=1.499,νd=54)からなる第1層10
4を形成し、その上に別の紫外線硬化樹脂(nd=1.
598,νd=28)からなる第2層105を形成して
いる。この材質の組み合わせでは、第1層104の格子
厚d1はd1=18.8μm、第2の層105の格子厚
d2はd2=10.5μmとしている。
In FIG. 13, the first layer 10 made of an ultraviolet curable resin (nd = 1.499, νd = 54) is formed on the substrate 102.
4 is formed thereon, and another ultraviolet curable resin (nd = 1.
598, νd = 28). In this combination of materials, the lattice thickness d1 of the first layer 104 is d1 = 18.8 μm, and the lattice thickness d2 of the second layer 105 is d2 = 10.5 μm.

【0091】図14から分かるように積層構造の回折光
学素子にすることで、設計次数の回折効率は、使用波長
全域で95%以上の高い回折効率を有している。
As can be seen from FIG. 14, the diffraction efficiency of the design order has a high diffraction efficiency of 95% or more over the entire use wavelength range by using the diffractive optical element having the laminated structure.

【0092】図15(A),(B)に図14の格子形状
で数値実施例1を作成した場合の空間周波数に対するM
TF特性を示す。積層構造の回折光学素子を用いると、
低周波数のMTFは改善され、所望のMTF特性が得ら
れる。このように、本発明に係る回折光学素子として積
層構造を用いれば、光学性能を更に改善することができ
る。
FIGS. 15A and 15B show the relationship between the spatial frequency and the M in the case where Numerical Embodiment 1 is created with the lattice shape shown in FIG.
4 shows TF characteristics. Using a diffractive optical element with a laminated structure,
The low-frequency MTF is improved, and a desired MTF characteristic is obtained. As described above, when the laminated structure is used as the diffractive optical element according to the present invention, the optical performance can be further improved.

【0093】なお、前述の積層構造の回折光学素子とし
て、材質を紫外線硬化樹脂に限定するものではなく、他
のプラスチック材等も使用できるし、基材によっては第
1の層104を直接基材に形成しても良い。また各格子
厚が必ずしも異なる必要はなく、材料の組み合わせによ
っては図16に示すように2つの層104と105の格
子厚を等しくしても良い。
The material of the diffractive optical element having the above-mentioned laminated structure is not limited to an ultraviolet-curable resin, but other plastic materials or the like may be used. May be formed. Further, the lattice thicknesses do not necessarily have to be different, and depending on the combination of materials, the lattice thicknesses of the two layers 104 and 105 may be equal as shown in FIG.

【0094】この場合は、回折光学素子の表面に格子形
状が形成されないので、防塵性に優れ、回折光学素子の
組立作業性を向上させることができる。
In this case, since the lattice shape is not formed on the surface of the diffractive optical element, it is excellent in dustproofness and the workability of assembling the diffractive optical element can be improved.

【0095】次に本発明の数値実施例を示す。数値実施
例においてriは物体側より順に第i番目のレンズ面の
曲率半径、diは物体側より順に第i番目のレンズ厚及
び空気間隔、niとνiは各々物体側より順に第i番目
のレンズのガラスの屈折率とアッベ数である。又、前述
の各条件式と数値実施例の関係を表−1に示す。
Next, numerical examples of the present invention will be described. In the numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing in order from the object side, and ni and νi are the i-th lens in order from the object side. Are the refractive index and Abbe number of the glass. Table 1 shows the relationship between the above-described conditional expressions and the numerical examples.

【0096】非球面形状は光軸方向にX軸、光軸と垂直
方向にY軸、光の進行方向を正としRを近軸曲率半径、
K,B,C,D,E,Fを各々非球面係数としたとき、
なる式で表している。又「D−0X」は「10-X」を意
味している。
The aspheric surface has an X-axis in the optical axis direction, a Y-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature,
When K, B, C, D, E, and F are each an aspheric coefficient,
It is represented by the following expression. “D-0X” means “10 −X ”.

【0097】[0097]

【数7】 なる式で表している。又「D−0X」は「10-X」を意
味している。
(Equation 7) It is represented by the following expression. “D-0X” means “10 −X ”.

【0098】[0098]

【外1】 [Outside 1]

【0099】[0099]

【外2】 [Outside 2]

【0100】[0100]

【外3】 [Outside 3]

【0101】[0101]

【表1】 [Table 1]

【0102】[0102]

【発明の効果】本発明によれば、 (ウ-1) 4群タイプ又は5群タイプのリヤーフォーカス式
のズームレンズにおいて、各レンズ群のレンズ構成を適
切に設定することにより、広角端から望遠端に至る全変
倍範囲にわたり、又無限遠物体から超至近物体に至る物
体距離全般にわたり、良好なる光学性能を有した大口径
比で高変倍比のズームレンズを達成することができる。
According to the present invention, (c-1) in a four-group type or a five-group type rear focus zoom lens, by appropriately setting the lens configuration of each lens group, telephoto from the wide-angle end A zoom lens having a large aperture ratio and a high zoom ratio having good optical performance can be achieved over the entire zoom range to the end and over the entire object distance from an object at infinity to an object at a very close distance.

【0103】(ウ-2) 4群タイプ又は5群タイプのリヤー
フォーカス式のズームレンズにおいて第1群と第2群に
各々回折光学素子を導入し、回折光学的な作用を利用す
ることで第1群と第2群で発生する色収差を低減しつつ
第1群と第2群のレンズ枚数を削減し、レンズ全長の小
型化を達成し、かつ第1群を軽量化すると共に、広角端
から望遠端に至る全変倍範囲にわたり良好なる光学性能
を有するズームレンズを達成することができる。
(C-2) In a four-group type or a five-group type rear focus zoom lens, diffractive optical elements are introduced into the first and second groups, respectively. The number of lenses in the first and second groups is reduced while reducing the chromatic aberration generated in the first and second groups, and the overall length of the lens is reduced, and the weight of the first group is reduced. A zoom lens having good optical performance over the entire zoom range up to the telephoto end can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】 本発明の数値実施例1の広角端の収差図FIG. 2 is an aberration diagram at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図3】 本発明の数値実施例1の望遠端の収差図FIG. 3 is an aberration diagram at a telephoto end in Numerical Example 1 of the present invention;

【図4】 本発明の数値実施例2のレンズ断面図FIG. 4 is a sectional view of a lens according to a numerical example 2 of the present invention.

【図5】 本発明の数値実施例2の広角端の収差図FIG. 5 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.

【図6】 本発明の数値実施例2の望遠端の収差図FIG. 6 is an aberration diagram at a telephoto end in Numerical Example 2 of the present invention.

【図7】 本発明の数値実施例3のレンズ断面図FIG. 7 is a sectional view of a lens according to a numerical example 3 of the present invention.

【図8】 本発明の数値実施例3の広角端の収差図FIG. 8 is an aberration diagram at a wide angle end according to Numerical Example 3 of the present invention.

【図9】 本発明の数値実施例3の望遠端の収差図FIG. 9 is an aberration diagram at a telephoto end in Numerical Example 3 of the present invention.

【図10】 本発明に係る回折光学素子の説明図FIG. 10 is an explanatory view of a diffractive optical element according to the present invention.

【図11】 本発明に係る回折光学素子の波長依存特性
の説明図
FIG. 11 is an explanatory diagram of a wavelength dependence characteristic of the diffractive optical element according to the present invention.

【図12】 本発明に係る回折光学素子のMTF特性図FIG. 12 is an MTF characteristic diagram of the diffractive optical element according to the present invention.

【図13】 本発明に係る回折光学素子の説明図FIG. 13 is an explanatory view of a diffractive optical element according to the present invention.

【図14】 本発明に係る回折光学素子の波長依存特性
の説明図
FIG. 14 is an explanatory diagram of a wavelength dependence characteristic of the diffractive optical element according to the present invention.

【図15】 本発明に係る回折光学素子のMTF特性図FIG. 15 is an MTF characteristic diagram of the diffractive optical element according to the present invention.

【図16】 本発明に係る回折光学素子の説明図FIG. 16 is an explanatory diagram of a diffractive optical element according to the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 L5 第5群 SP 絞り IP 像面 ΔM メリディオナル像面 ΔS サジタル像面 d d線 g g線 101 回折光学素子 102 基盤 103,104,105 層 L1 First lens unit L2 Second lens unit L3 Third lens unit L4 Fourth lens unit L5 Fifth lens unit SP stop IP image plane ΔM meridional image plane ΔS sagittal image plane dd line g g line 101 diffractive optical element 102 substrate 103, 104, 105 layer

フロントページの続き Fターム(参考) 2H087 KA02 KA03 MA15 NA14 PA07 PA12 PA16 PA18 PB08 PB17 QA02 QA07 QA14 QA17 QA21 QA25 QA26 QA34 QA37 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA32 RA41 RA42 RA43 RA46 SA23 SA27 SA29 SA31 SA32 SA33 SA43 SA47 SA49 SA53 SA55 SA63 SA65 SA72 SA74 SA76 SB03 SB05 SB13 SB15 SB23 SB25 SB33 SB44 UA01 Continued on the front page F term (reference) 2H087 KA02 KA03 MA15 NA14 PA07 PA12 PA16 PA18 PB08 PB17 QA02 QA07 QA14 QA17 QA21 QA25 QA26 QA34 QA37 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA32 RA41 RA42 SA43 SA49SA27 SA53 SA55 SA63 SA65 SA72 SA74 SA76 SB03 SB05 SB13 SB15 SB23 SB25 SB33 SB44 UA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして第4群
の4つのレンズ群を有し、該第2群と第4群を移動させ
て変倍を行うズームレンズにおいて、該第1群と第2群
はそれぞれ光軸に対して回転対称な回折光学素子を少な
くとも1つ有しており、該第1群が有するレンズ枚数を
N1C、全系の変倍比をZ、該第1群と第2群が有する
レンズの任意のレンズの材質のアッベ数をνとしたと
き、 【数1】 を満足することを特徴とするズームレンズ。
1. A lens system comprising: a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens unit in order from the object side. In a zoom lens that performs zooming by moving a second group and a fourth group, each of the first group and the second group has at least one diffraction optical element that is rotationally symmetric with respect to the optical axis. When the number of lenses of the first group is N1C, the zoom ratio of the entire system is Z, and the Abbe number of an arbitrary lens material of the lenses of the first and second groups is ν, A zoom lens characterized by satisfying the following.
【請求項2】 前記第4群は正の屈折力を有しているこ
とを特徴とする請求項1のズームレンズ。
2. The zoom lens according to claim 1, wherein said fourth group has a positive refractive power.
【請求項3】 前記第4群は負の屈折力を有しているこ
とを特徴とする請求項1のズームレンズ。
3. The zoom lens according to claim 1, wherein said fourth group has a negative refractive power.
【請求項4】 前記回折光学素子は積層した回折格子よ
り成っていることを特徴とする請求項1,2又は3のズ
ームレンズ。
4. A zoom lens according to claim 1, wherein said diffractive optical element comprises a laminated diffraction grating.
【請求項5】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、第4群、そし
て正の屈折力の第5群の5つのレンズ群を有し、該第2
群と第4群を移動させて変倍を行うズームレンズにおい
て、該第1群と第2群はそれぞれ光軸に対して回転対称
な回折光学素子を少なくとも1つ有しており、該第1群
が有するレンズ枚数をN1C、全系の変倍比をZ、該第
1群と第2群が有するレンズの任意のレンズの材質のア
ッベ数をνとしたとき、 【数2】 を満足することを特徴とするズームレンズ。
5. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit and a fourth lens unit having a positive refractive power, and a fifth lens unit having a positive refractive power. 5 lens groups, the second
In a zoom lens that performs zooming by moving a group and a fourth group, each of the first group and the second group has at least one diffractive optical element that is rotationally symmetric with respect to the optical axis. When the number of lenses in the group is N1C, the zoom ratio of the entire system is Z, and the Abbe number of an arbitrary lens material of the lenses in the first and second groups is ν, A zoom lens characterized by satisfying the following.
【請求項6】 前記第4群を光軸上移動させてフォーカ
スを行っていることを特徴とする請求項1から5のいず
れか1項のズームレンズ。
6. The zoom lens according to claim 1, wherein the focusing is performed by moving the fourth unit on an optical axis.
【請求項7】 前記回折光学素子は1層構成又は互いに
分散の異なる材質より成る2層構成より成っていること
を特徴とする請求項1から6のいずれか1項のズームレ
ンズ。
7. The zoom lens according to claim 1, wherein the diffractive optical element has a single-layer structure or a two-layer structure made of materials having different dispersions.
JP10328882A 1998-11-04 1998-11-04 Zoom lens Pending JP2000147379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10328882A JP2000147379A (en) 1998-11-04 1998-11-04 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10328882A JP2000147379A (en) 1998-11-04 1998-11-04 Zoom lens

Publications (1)

Publication Number Publication Date
JP2000147379A true JP2000147379A (en) 2000-05-26

Family

ID=18215158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10328882A Pending JP2000147379A (en) 1998-11-04 1998-11-04 Zoom lens

Country Status (1)

Country Link
JP (1) JP2000147379A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865351A1 (en) * 2006-06-06 2007-12-12 Fujinon Corporation Telephoto-type zoom lens comprising four lens groups with rear-focusing
US7505210B2 (en) 2004-01-28 2009-03-17 Sony Corporation Zoom lens and imaging device
JP2010032701A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying magnification
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010197860A (en) * 2009-02-26 2010-09-09 Tamron Co Ltd Zoom lens
JP2013134303A (en) * 2011-12-26 2013-07-08 Nikon Corp Zoom lens and imaging device
US8736968B2 (en) 2008-07-28 2014-05-27 Nikon Corporation Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JP2017191126A (en) * 2016-04-11 2017-10-19 キヤノン株式会社 Zoom lens and imaging device using the same
JP2018101156A (en) * 2013-11-22 2018-06-28 株式会社ニコン Zoom lens and optical apparatus
CN108732733A (en) * 2017-04-17 2018-11-02 佳能株式会社 Zoom lens includes the photographic device and camera system of zoom lens
CN108732730A (en) * 2017-04-17 2018-11-02 佳能株式会社 Zoom lens includes the photographic device and camera system of zoom lens

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505210B2 (en) 2004-01-28 2009-03-17 Sony Corporation Zoom lens and imaging device
EP1865351A1 (en) * 2006-06-06 2007-12-12 Fujinon Corporation Telephoto-type zoom lens comprising four lens groups with rear-focusing
US7450315B2 (en) 2006-06-06 2008-11-11 Fujinon Corporation Zoom lens
JP2010032701A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying magnification
US8736968B2 (en) 2008-07-28 2014-05-27 Nikon Corporation Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010197860A (en) * 2009-02-26 2010-09-09 Tamron Co Ltd Zoom lens
JP2013134303A (en) * 2011-12-26 2013-07-08 Nikon Corp Zoom lens and imaging device
JP2018101156A (en) * 2013-11-22 2018-06-28 株式会社ニコン Zoom lens and optical apparatus
JP2017191126A (en) * 2016-04-11 2017-10-19 キヤノン株式会社 Zoom lens and imaging device using the same
CN108732733A (en) * 2017-04-17 2018-11-02 佳能株式会社 Zoom lens includes the photographic device and camera system of zoom lens
CN108732730A (en) * 2017-04-17 2018-11-02 佳能株式会社 Zoom lens includes the photographic device and camera system of zoom lens

Similar Documents

Publication Publication Date Title
US7133221B2 (en) Lens system and optical device having the same
JP3542552B2 (en) Zoom lens and optical device using the same
US9535240B2 (en) Zoom optical system
JP2002244044A (en) Zoom lens and optical instrument using it
JPH10148757A (en) Zoom lens and optical instrument using it
US8792168B2 (en) Optical system including diffractive grating and optical apparatus
JP3832935B2 (en) Zoom lens
JP3342400B2 (en) Optical system having diffractive optical element
JP3792846B2 (en) Zoom lens
JP3505980B2 (en) Imaging device
JPH11133305A (en) Zoom lens
JP2003021783A (en) Zoom lens and optical equipment using the same
JP2000147379A (en) Zoom lens
US20020131184A1 (en) Zoom lens system, image projecting and image pick-up devices using the same
JP2001124990A (en) Zoom lens
JPH1152236A (en) Rear focus type zoom lens
JP3792847B2 (en) Zoom lens
JP2000121821A (en) Rear focusing zoom lens having diffraction optical elements
JP4266414B2 (en) Zoom lens
JP4208293B2 (en) Zoom lens
JP2004012504A (en) Zoom lens and optical equipment having it
JP2001318316A (en) Zoom lens and optical apparatus using the same
JP3581541B2 (en) Zoom lens and camera having the same
JP2001305429A (en) Zoom lens and optical equipment using the same
JP2002196239A (en) Zoom lens and optical equipment using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129