JP4266414B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4266414B2
JP4266414B2 JP31692498A JP31692498A JP4266414B2 JP 4266414 B2 JP4266414 B2 JP 4266414B2 JP 31692498 A JP31692498 A JP 31692498A JP 31692498 A JP31692498 A JP 31692498A JP 4266414 B2 JP4266414 B2 JP 4266414B2
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
optical element
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31692498A
Other languages
Japanese (ja)
Other versions
JP2000121940A5 (en
JP2000121940A (en
Inventor
博樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31692498A priority Critical patent/JP4266414B2/en
Publication of JP2000121940A publication Critical patent/JP2000121940A/en
Publication of JP2000121940A5 publication Critical patent/JP2000121940A5/ja
Application granted granted Critical
Publication of JP4266414B2 publication Critical patent/JP4266414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はズームレンズに関し、特にレンズ系の一部に回折光学素子を用いることによって諸収差、特に色収差を良好に補正し、かつ、多板用プリズムやリフレクター等をレンズ系後方に配置できる程度の長いバックフォーカスを有した写真用カメラやビデオカメラ、そして放送用カメラ等に用いられる大口径比で高変倍比のレンズ系全体の小型化を図ったズームレンズに関するものである。
【0002】
【従来の技術】
最近、ホームビデオカメラ等の小型軽量化に伴い、撮像用のズームレンズも小型化されている。特にレンズ全長の短縮化や前玉径の小型化、レンズ構成の簡略化が図られている。
【0003】
レンズ系全体の小型化を達成する一つの手段として、物体側の第1群以外のレンズ群を移動させてフォーカスを行う、所謂リヤーフォーカス式のズームレンズが知られている。
【0004】
一般にリヤーフォーカス式のズームレンズは第1群を移動させてフォーカスを行うズームレンズに比べて第1群の有効径が小さくなり、レンズ系全体の小型化が容易になり、又近接撮影、特に極近接撮影が容易となり、更に比較的小型軽量のレンズ群を移動させて行っているので、レンズ群の駆動力が小さくてすみ迅速な焦点合わせができる等の特長がある。
【0005】
このようなリヤーフォーカス式のズームレンズとして、例えば特開昭62−215225号公報や、特開昭62−206516号公報,特開昭62−24213号公報,特開昭63−247316号公報、そして特開平4−43311号公報では、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群を有し、第2群を移動させて変倍を行い、第4群を移動させて変倍に伴う像面変動とフォーカスを行った4群タイプのリヤーフォーカス式のズームレンズが提案されている。
【0006】
一方、多くのズームレンズにおいては、レンズ系中に非球面を設けることによって諸収差を良好に補正しつつ、レンズ系全体の小型化を図りつつ、高い光学性能を得ている。
【0007】
又、諸収差のうち色収差については分散の異なる硝材を組み合わせて補正する方法の他にレンズ面又は光学系の一部に回折作用を有する回折光学素子を設けて補正した光学系が、例えば特開平4−213421号公報や特開平6−324262号公報、米国特許第5,268,790号等で提案されている。このうち、米国特許第5,268,790号では第2群と第3群に回折光学素子を用いたズームレンズを提案している。
【0008】
【発明が解決しようとする課題】
一般にズームレンズにおいてリヤーフォーカス方式を採用するとレンズ系全体が小型化され又迅速なるフォーカスが可能となり、更に近接撮影が容易となる等の特長が得られる。
【0009】
しかしながら反面、フォーカスの際の収差変動が大きくなり、無限遠物体から近距離物体に至る物体距離全般にわたり高い光学性能を得るのが大変難しくなってくるという問題点が生じてくる。
【0010】
例えば、大口径比で高変倍のズームレンズでは変倍による色収差の変動が大きくなってきて全変倍範囲にわたり、又物体距離全般にわたり高い光学性能を得るのが大変難しくなってくるという問題点が生じてくる。
【0011】
特にズーム比が10倍以上の高変倍比の4群より成るズームレンズでは第1群や第4群内で発生する色収差を補正するため、張り合わせレンズを用いることが多い。そしてレンズ群に対し、非球面を用いることによりレンズ群のレンズ枚数を削減し、レンズ全長を短くする方法がとられている。
【0012】
しかしながら、レンズ枚数を減らすと色収差の補正をする要素が不十分になってきて、変倍に伴う色収差の変動を良好に補正することが困難になってくる。
【0013】
一般に正レンズに低分散ガラスを用いれば、色収差を軽減することもできる。しかしながら一般に低分散のガラスは屈折率が低く加工が難しいレンズ形状になりやすい。この為、前述の4群ズームレンズにおいて第1群又は第4群の屈折力を弱くすると、これに応じて他のレンズ群の屈折力も弱くしなければならず、第1群又は第4群の径が大きくなり結果として第1群や第4群のレンズ肉厚を増す必要が生じてレンズ全長が長大化してくる。又、第1群の屈折力を弱くすると広角端におけるバックフォーカスが短くなり、レンズ系の後方に光学フィルター、色分解プリズム等を配置するのが難しくなってくる。
【0014】
本発明は、4群タイプのズームレンズにおいて、各レンズ群のレンズ構成を適切に設定することにより、広角端から望遠端に至る全変倍範囲にわたり、又無限遠物体から超至近物体に至る物体距離全般にわたり、良好なる光学性能を有した大口径比で高変倍比のバックフォーカスの長いズームレンズの提供を目的とする。
【0015】
特に、4群タイプのリヤーフォーカス式のズームレンズにおいて第1群に回折光学素子を導入し、回折光学的な作用を利用することで第1群で発生する色収差を低減しつつ第1群のレンズ枚数を削減し、レンズ全長の小型化を達成し、かつ第1群を軽量化すると共に、広角端から望遠端に至る全変倍範囲にわたり良好なる光学性能を有するバックフォーカスの長いリヤーフォーカス式のズームレンズの提供を目的とする。
【0016】
【課題を解決するための手段】
本発明のズームレンズは、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群より構成され、該第2群と第4群を移動させて変倍を行い、該第4群を移動させてフォーカスを行うズームレンズにおいて、該第1群は光軸に対して回転対称な正の屈折力の回折光学素子を有しており、広角端における最終レンズ面から像面までの空気演算距離をbfw、広角端と望遠端における全系の焦点距離を各々fw、fT、
該第i群の焦点距離をfi(i=1,3,4)とするとき、
4.46≦bfw/fw<5.20 ‥‥‥(1)
0.366≦f4/f3<0.45 ‥‥‥(2)
【数1】
なる条件を満足することを特徴としている。
【0017】
【発明の実施の形態】
図1は本発明の数値実施例1の広角端のレンズ断面図、図2〜図4は本発明の数値実施例1の広角端、中間、望遠端の収差図である。図5は本発明の数値実施例2の広角端のレンズ断面図、図6〜図8は本発明の数値実施例2の広角端、中間、望遠端の収差図である。
【0018】
次に、図1,図5の数値実施例1,2のレンズ構成の特徴について説明する。図1,図5において、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は正の屈折力の第4群である。SPは開口絞りであり、第3群L3の前方に配置している。Gは色分解光学系やフェースプレート、そしてフィルター等のガラスブロックである。IPは像面である。
【0019】
本実施形態では広角端から望遠端への変倍に際して矢印のように第2群を像面側へ移動させると共に、変倍に伴う像面変動を第4群を物体側に凸状の軌跡を有しつつ移動させて補正している。
【0020】
又、第4群を光軸上移動させてフォーカスを行うリヤーフォーカス式を採用している。同図に示す第4群の実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正する為の移動軌跡を示している。尚、第1群と第3群は変倍及びフォーカスの際固定である。尚、第2群の変倍分担を少なくする為に第1群を変倍の際に移動させても良い。
【0021】
本実施形態においては第4群を移動させて変倍に伴う像面変動の補正を行うと共に第4群を移動させてフォーカスを行うようにしている。特に同図の曲線4a,4bに示すように広角端から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3群と第4群との空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。
【0022】
本実施形態において、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合は同図の直線4cに示すように第4群を前方へ繰り出すことにより行っている。
【0023】
本実施形態では第1群に少なくとも1つの回折光学素子を設け、その位相を適切に設定し、これにより第1群で発生する色収差を低減し、全変倍範囲にわたり色収差を良好に補正している。
【0024】
第1群を回折光学素子なしで屈折面(レンズ)のみで色収差を軽減しようとすると、レンズの枚数を増やすか、さもなくば異常分散ガラスの使う必要が生じるが、このようなガラス材は、例えばFK01(商品名)に代表されるように一般に柔らかく加工が難しい。
【0025】
特に、画質を重視する高倍のズームレンズの場合、異常分散ガラスを用いても十分な補正ができないことも大いにあり得る。又、第1群は他のレンズ群と比較し、レンズの径が大きくなることが多いため、レンズの枚数を増やすとレンズ全体の重量が増え、使い勝手が悪くなる。
【0026】
そこで本発明では、第1群に回折光学素子を用いて第1群のレンズ枚数を少なくしつつ、色収差を良好に補正している。又、広角端におけるレンズ最終面から像面までの空気演算距離(フィルター等の平行平面板を除去したときの距離)bfwが条件式(1)を満たすようにしている。
【0027】
画質を重視するビデオレンズの場合、複数の撮像素子を用いることがあるが、このとき各撮像素子に割り当てる色を分散するためのプリズムが必要になる。ところが条件式(1)の下限を下回るとバックフォーカスが短くなりすぎ、プリズムを入れる空間が不十分になってしまう。逆に、条件式(1)の上限を上回るとレンズ全体の全長が延び、結果として使い勝手の悪いレンズとなってしまう。
【0028】
本実施形態における回折光学素子は、ホログラフィック光学素子(HOE)の製作手法であるリソグラフィック手法で2値的に製作している。回折光学素子はバイナリーオプティックス(BINARY OPTICS)で製作しても良い。この場合、更に回折効率を上げるためにキノフォームと呼ばれる鋸状の形状にしても良い。またこれらの方法で製作した方によって成型により製造しても良い。
【0029】
また本実施形態における回折光学素子の形状は、基準波長(d線)をλ、光軸からの距離をh、位相をφ(h)としたとき
φ(h)=2π/λ(C2 ・h2 +C4 ・h4 +‥‥C(2i) ・i・h2i
の式で表されるものである。
【0030】
本発明では更に条件式(2)、(3)を満たすようにしている。
【0032】
条件式(2)の上限を上回るほど第3群の屈折力が強くなりすぎるとレンズ最終面と像面までの距離が短くなり、プリズム等の光学部材を挿入できなくなる。逆に、条件式(2)の下限を下回るほど第3群の屈折力が弱くなりすぎるとレンズ最終面と像面までの距離が長くなり、結果としてレンズ全体の全長が延び、結果として使い勝手の悪いレンズとなってしまう。
【0033】
記回折光学素子は正の屈折力を有していることである。
【0034】
第1群は正の屈折力を有しており、屈折によって発生する色収差を回折光学素子で打ち消す為に回折光学素子の屈折力に正の屈折力を持たせている。仮に、回折光学素子の屈折力を負にすると通常の屈折光学系と発生する色収差が同じになってしまい、回折光学素子による色消し効果が出ず、光学系全域で十分な色収差の補正が行えなくなる。
【0037】
条件式(3)の下限を下回るほど第1群の屈折力を強くすると屈折光学系によって発生する色収差を回折光学素子で十分打ち消すことができなくなり、全変倍領域で十分な色収差の補正が行えなくなる。又、回折光学素子の作成が困難になる。逆に、条件式(3)の上限を上回るほど第1群の屈折力を弱くすると広角端におけるバックフォーカスが短くなりすぎ、プリズム等の光学部材を挿入するための空間が不十分になる。
【0038】
2群は物体側より順に少なくとも2枚の負レンズと1枚の正レンズ、そして負レンズを有していることである。
【0039】
3群は物体側より順にメニスカス状の負レンズと両レンズ面が凸面の正レンズを有していることである。
【0040】
4群は物体側より順に正レンズ、負レンズと正レンズとの全体として正の接合レンズとを有していることである。
【0041】
本発明において第1群で十分な色収差補正が行われるためには第1群のすべてのレンズの、焦点距離及びアッベ数をそれぞれf1i、ν1i(i=1,2‥‥)、第1群の回折
光学素子の2次項の係数をC21とするとき
【数1】
なる条件を満足するのが望ましい。
【0042】
条件式(4)では第1群に関して屈折光学面と回折光学面での色消し効果が合成されて十分に色収差が補正するための条件である。
【0043】
一般に屈折光学系のアッベ数(分散値)はd,C,F線の各波長における屈折をNd,NC,NFとしたとき
νd=(Nd−1)/(NF−NC)
で表される。
【0044】
一方回折光学面での分散値νdはd線,C線,F線の各波長をλd,λC,λFとしたとき
νd=λd/(λF−λC)
で表され、νd=−3.45となる。
【0045】
また回折光学面の主波長における近軸的な1次回折光の屈折力ψは回折光学面の位相を表す前式より2次項の係数をC2 としたとき
ψ=−2・C2
と表される。
【0046】
ある群で発生する色収差はψ/νに比例するのでこれに相当する量は回折光学面では
−2・C2 /(−3.45)=0.5797・C2
となる。
【0047】
また屈折光学系ではこの量は
Σ1/(f・ν)
となる。従ってこの和が0に近いほどその群の色収差補正が十分に行われていることが判る。
【0048】
条件式(4)の範囲内を越えてしまうと第1レンズ群で発生する色収差の補正が不十分になってしまうので良くない。
【0049】
本実施形態で用いている回折光学素子の構成としては図9に示す1層のキノフォーム形状の1層構成のものや、図12に示すような格子厚の異なる(又は同一の)2つの層を積層した2層構成のもの等が適用可能である。
【0050】
図10は図9に示す回折光学素子101の1次回折光の回折効率の波長依存特性である。実際の回折光学素子101の構成は、基材102の表面に紫外線硬化樹脂を塗布し、樹脂部に波長530nmで1次回折光の回折効率が100%となるような格子厚dの層103を形成している。
【0051】
図10で明らかなように設計次数の回折効率は最適化した波長530nmから離れるに従って低下し、一方設計次数近傍の次数の0次回折光と2次回折光の回折効率が増大している。その設計次数以外の回折光の増加はフレアとなり、光学系の解像度の低下につながる。
【0052】
図11に図9の格子形状で数値実施例2を作成した場合の空間周波数に対する各画角ωでのMTF特性を示す。
【0053】
図12に示す2つの層104,105を積層した積層型の回折光学素子の1次回折光の回折効率の波長依存特性を図13に示す。
【0054】
図12では基材102上に紫外線硬化樹脂(nd=1.499,νd=54)からなる第1層104を形成し、その上に別の紫外線硬化樹脂(nd=1.598,νd=28)からなる第2層105を形成している。この材質の組み合わせでは、第1層104の格子厚d1はd1=13.8μm、第2の層105の格子厚d2はd2=10.5μmとしている。
【0055】
図13から分かるように積層構造の回折光学素子にすることで、設計次数の回折効率は、使用波長全域で95%以上の高い回折効率を有している。
【0056】
図14に図12の格子形状で数値実施例2を作成した場合の空間周波数に対する各画角ωでのMTF特性を示す。積層構造の回折光学素子を用いると、低周波数のMTFは改善され、所望のMTF特性が得られる。このように、本発明に係る回折光学素子として積層構造を用いれば、光学性能を更に改善することができる。
【0057】
なお、前述の積層構造の回折光学素子として、材質を紫外線硬化樹脂に限定するものではなく、他のプラスチック材等も使用できるし、基材によっては第1の層104を直接基材に形成しても良い。また各格子厚が必ずしも異なる必要はなく、材料の組み合わせによっては図15に示すように2つの層104と105の格子厚を等しくしても良い。
【0058】
この場合は、回折光学素子の表面に格子形状が形成されないので、防塵性に優れ、回折光学素子の組立作業性を向上させることができる。
【0059】
次に本発明の数値実施例を示す。数値実施例においてriは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より順に第i番目のレンズ厚及び空気間隔、niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。又、前述の各条件式と数値実施例の関係を表−1に示す。
【0060】
非球面形状は光軸方向にX軸、光軸と垂直方向にY軸、光の進行方向を正としRを近軸曲率半径、Kを円錐定数、B,C,Dを各々非球面係数としたとき、
【0061】
【数3】
なる式で表している。又「D−0X」は「10-X」を意味している。
【0062】
【外1】
【0063】
【外2】
【0064】
【表1】
【0065】
【発明の効果】
本発明によれば以上のように、
(イ-1) 4群タイプのズームレンズにおいて、各レンズ群のレンズ構成を適切に設定することにより、広角端から望遠端に至る全変倍範囲にわたり、又無限遠物体から超至近物体に至る物体距離全般にわたり、良好なる光学性能を有した大口径比で高変倍比のバックフォーカスの長いズームレンズを達成することができる。
【0066】
(イ-2) 4群タイプのリヤーフォーカス式のズームレンズにおいて第1群に回折光学素子を導入し、回折光学的な作用を利用することで第1群で発生する色収差を低減しつつ第1群のレンズ枚数を削減し、レンズ全長の小型化を達成し、かつ第1群を軽量化すると共に、広角端から望遠端に至る全変倍範囲にわたり良好なる光学性能を有するバックフォーカスの長いリヤーフォーカス式のズームレンズを達成することができる。
【図面の簡単な説明】
【図1】本発明の数値実施例1のレンズ断面図
【図2】本発明の数値実施例1の広角端の収差図
【図3】本発明の数値実施例1の中間の収差図
【図4】本発明の数値実施例1の望遠端の収差図
【図5】本発明の数値実施例2のレンズ断面図
【図6】本発明の数値実施例2の広角端の収差図
【図7】本発明の数値実施例2の中間の収差図
【図8】本発明の数値実施例2の望遠端の収差図
【図9】本発明に係る回折光学素子の説明図
【図10】本発明に係る回折光学素子の波長依存特性の説明図
【図11】本発明に係る回折光学素子のMTF特性図
【図12】本発明に係る回折光学素子の説明図
【図13】本発明に係る回折光学素子の波長依存特性の説明図
【図14】本発明に係る回折光学素子のMTF特性図
【図15】本発明に係る回折光学素子の説明図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
SP 絞り
IP 像面
ΔM メリディオナル像面
ΔS サジタル像面
d d線
g g線
101 回折光学素子
102 基盤
103,104,105 層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens, and in particular, corrects various aberrations, particularly chromatic aberration, by using a diffractive optical element as a part of the lens system, and can arrange a multi-plate prism, a reflector, and the like behind the lens system. The present invention relates to a zoom lens for reducing the size of a lens system having a large aperture ratio and a high zoom ratio, which is used for a photographic camera, a video camera, a broadcasting camera, and the like having a long back focus.
[0002]
[Prior art]
Recently, as a home video camera or the like is reduced in size and weight, a zoom lens for imaging is also reduced in size. In particular, the total lens length is shortened, the front lens diameter is reduced, and the lens configuration is simplified.
[0003]
As one means for achieving downsizing of the entire lens system, a so-called rear focus type zoom lens that performs focusing by moving a lens group other than the first group on the object side is known.
[0004]
In general, a rear focus type zoom lens has a smaller effective diameter of the first lens unit than a zoom lens that focuses by moving the first lens unit, which makes it easy to reduce the size of the entire lens system. Close-up photography is facilitated, and the relatively small and light lens group is moved, so that the lens group has a small driving force and can be focused quickly.
[0005]
As such a rear focus type zoom lens, for example, JP-A-62-215225, JP-A-62-206516, JP-A-62-24213, JP-A-63-247316, and In Japanese Patent Laid-Open No. 4-43311, the first group of positive refractive power, the second group of negative refractive power, the third group of positive refractive power, and the fourth group of positive refractive power are arranged in order from the object side. A four-group type rear focus type zoom lens having four lens groups, moving the second group to perform zooming, and moving the fourth group to perform image plane fluctuation and focusing accompanying zooming is provided. Proposed.
[0006]
On the other hand, in many zoom lenses, by providing an aspheric surface in the lens system, various aberrations are corrected favorably, and the entire lens system is reduced in size and high optical performance is obtained.
[0007]
In addition to a method of correcting chromatic aberration by combining glass materials having different dispersions among various aberrations, an optical system corrected by providing a diffractive optical element having a diffractive action on a lens surface or a part of the optical system is disclosed in, for example, No. 4-213421, JP-A-6-324262, US Pat. No. 5,268,790, and the like. Among these, US Pat. No. 5,268,790 proposes a zoom lens using diffractive optical elements in the second group and the third group.
[0008]
[Problems to be solved by the invention]
In general, when a rear focus method is used in a zoom lens, the entire lens system can be miniaturized, quick focusing can be performed, and close-up photography can be facilitated.
[0009]
On the other hand, however, the variation in aberration during focusing becomes large, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to a near object.
[0010]
For example, in a zoom lens with a large aperture ratio and high zoom ratio, the variation in chromatic aberration due to zooming becomes large, and it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance. Will arise.
[0011]
In particular, in a zoom lens composed of four groups with a high zoom ratio of 10 times or more, a bonded lens is often used in order to correct chromatic aberration occurring in the first group and the fourth group. A method of reducing the total length of the lens by reducing the number of lenses in the lens group by using an aspherical surface for the lens group is employed.
[0012]
However, if the number of lenses is reduced, the elements for correcting chromatic aberration become insufficient, and it becomes difficult to satisfactorily correct variations in chromatic aberration due to zooming.
[0013]
In general, if low dispersion glass is used for the positive lens, chromatic aberration can be reduced. However, in general, low-dispersion glass tends to have a lens shape that has a low refractive index and is difficult to process. For this reason, if the refractive power of the first group or the fourth group is weakened in the above-described four-group zoom lens, the refractive power of the other lens groups must be weakened accordingly. As the diameter increases, it becomes necessary to increase the lens thickness of the first group and the fourth group, and the total lens length becomes longer. Further, when the refractive power of the first group is weakened, the back focus at the wide angle end is shortened, and it becomes difficult to dispose an optical filter, a color separation prism, and the like behind the lens system.
[0014]
The present invention is a four-group type zoom lens in which an object ranging from an infinitely distant object to an extremely close object is obtained over the entire zooming range from the wide-angle end to the telephoto end by appropriately setting the lens configuration of each lens unit. An object of the present invention is to provide a zoom lens with a long back focus having a large aperture ratio and a high zoom ratio that has good optical performance over a wide range.
[0015]
In particular, a diffractive optical element is introduced into the first group in a four-group type rear focus type zoom lens, and the chromatic aberration generated in the first group is reduced by utilizing the diffractive optical action. Reducing the number of lenses, achieving a reduction in the overall length of the lens, reducing the weight of the first lens group, and having a long back focus with a long back focus that has good optical performance over the entire zoom range from the wide-angle end to the telephoto end. The purpose is to provide a zoom lens.
[0016]
[Means for Solving the Problems]
The zoom lens according to the present invention includes four groups, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power in order from the object side. In a zoom lens configured by a lens group, performing zooming by moving the second group and the fourth group, and focusing by moving the fourth group, the first group is rotationally symmetric with respect to the optical axis Diffractive optical element having a positive refractive power, bfw is the air calculation distance from the final lens surface to the image plane at the wide-angle end, and fo , fT are the focal lengths of the entire system at the wide-angle end and the telephoto end , respectively .
When the focal length of the i-th group is fi (i = 1, 3, 4),
4.46 ≦ bfw / fw <5.20 (1)
0.366 ≦ f4 / f3 <0.45 (2)
[Expression 1]
It is characterized by satisfying the following conditions.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a lens cross-sectional view at the wide angle end according to Numerical Example 1 of the present invention, and FIGS. 2 to 4 are aberration diagrams at the wide angle end, intermediate, and telephoto end of Numerical Example 1 according to the present invention. FIG. 5 is a lens cross-sectional view at the wide angle end according to Numerical Example 2 of the present invention, and FIGS. 6 to 8 are aberration diagrams at the wide angle end, intermediate, and telephoto end according to Numerical Example 2 of the present invention.
[0018]
Next, features of the lens configurations of Numerical Examples 1 and 2 in FIGS. 1 and 5 will be described. 1 and 5, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. It is. SP is an aperture stop, which is disposed in front of the third lens unit L3. G is a glass block such as a color separation optical system, a face plate, and a filter. IP is the image plane.
[0019]
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second lens unit is moved to the image plane side as indicated by an arrow, and the image plane variation caused by zooming is changed to a convex locus from the fourth lens unit to the object side. It is corrected by moving it while holding it.
[0020]
In addition, a rear focus type is employed in which focusing is performed by moving the fourth group on the optical axis. The solid curve 4a and the dotted curve 4b of the fourth group shown in the figure show the image plane fluctuations accompanying the zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory for correction is shown. The first group and the third group are fixed during zooming and focusing. The first group may be moved during zooming in order to reduce the sharing of zooming of the second group.
[0021]
In the present embodiment, the fourth group is moved to correct the image plane variation accompanying zooming, and the fourth group is moved to perform focusing. In particular, as shown by the curves 4a and 4b in the figure, the zoom lens is moved so as to have a convex locus toward the object side upon zooming from the wide-angle end to the telephoto end. As a result, the space between the third group and the fourth group is effectively used, and the overall length of the lens is effectively shortened.
[0022]
In the present embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth group is moved forward as indicated by a straight line 4c in FIG.
[0023]
In this embodiment, at least one diffractive optical element is provided in the first group, and its phase is set appropriately, thereby reducing chromatic aberration generated in the first group and correcting chromatic aberration well over the entire zoom range. Yes.
[0024]
When trying to reduce chromatic aberration with only the refractive surface (lens) of the first group without a diffractive optical element, it is necessary to increase the number of lenses or otherwise use anomalous dispersion glass. For example, as represented by FK01 (trade name), it is generally soft and difficult to process.
[0025]
In particular, in the case of high magnification zoom lens to focus the image quality, even with anomalous dispersion glass may greatly also can not sufficiently corrected. In addition, since the lens diameter of the first group is often larger than that of other lens groups, increasing the number of lenses increases the weight of the entire lens, resulting in poor usability.
[0026]
Therefore, in the present invention, diffractive optical elements are used in the first group, and the number of lenses in the first group is reduced, and chromatic aberration is corrected well. In addition, the air calculation distance (distance when a plane parallel plate such as a filter is removed) bfw from the final lens surface to the image plane at the wide angle end satisfies the conditional expression (1).
[0027]
In the case of a video lens that places importance on image quality, a plurality of image sensors may be used. At this time, a prism for dispersing the colors assigned to each image sensor is required. However, if the lower limit of conditional expression (1) is not reached, the back focus becomes too short, and the space for inserting the prism becomes insufficient. On the contrary, if the upper limit of conditional expression (1) is exceeded, the entire length of the entire lens is extended, resulting in a lens that is not easy to use.
[0028]
The diffractive optical element in the present embodiment is binary-manufactured by a lithographic technique that is a holographic optical element (HOE) manufacturing technique. The diffractive optical element may be made of binary optics (BINARY OPTICS). In this case, in order to further increase the diffraction efficiency, a saw-like shape called a kinoform may be used. Moreover, you may manufacture by shaping | molding by the direction manufactured by these methods.
[0029]
Further, the shape of the diffractive optical element in the present embodiment is such that φ (h) = 2π / λ (C 2 .multidot.C) when the reference wavelength (d-line) is λ, the distance from the optical axis is h, and the phase is φ (h). h 2 + C 4 · h 4 + · · · C (2i) · i · h 2i )
It is represented by the formula of
[0030]
In the present invention, conditional expressions (2) and (3) are further satisfied.
[0032]
If the refractive power of the third group becomes too strong as the upper limit of conditional expression (2) is exceeded, the distance from the final lens surface to the image plane is shortened, and an optical member such as a prism cannot be inserted. Conversely, if the refractive power of the third lens group becomes too weak as the lower limit of conditional expression (2) is exceeded, the distance from the final lens surface to the image surface becomes longer, resulting in an increase in the overall length of the entire lens, resulting in ease of use. It becomes a bad lens.
[0033]
Before SL diffractive optical element is to have a positive refractive power.
[0034]
The first group has a positive refractive power, and the refractive power of the diffractive optical element has a positive refractive power in order to cancel the chromatic aberration caused by refraction by the diffractive optical element. If the refractive power of the diffractive optical element is negative, the generated chromatic aberration will be the same as that of a normal refracting optical system, and the achromatic effect of the diffractive optical element will not be produced, so that sufficient correction of chromatic aberration can be made throughout the optical system. Disappear.
[0037]
If the refractive power of the first lens unit is increased so as to fall below the lower limit of conditional expression (3), the chromatic aberration generated by the refractive optical system cannot be sufficiently canceled out by the diffractive optical element, and the chromatic aberration can be sufficiently corrected in the entire zooming region. Disappear. In addition, it becomes difficult to create a diffractive optical element. On the contrary, if the refractive power of the first group is weakened so as to exceed the upper limit of conditional expression (3), the back focus at the wide angle end becomes too short, and the space for inserting an optical member such as a prism becomes insufficient.
[0038]
The second group has at least two negative lenses, one positive lens, and a negative lens in order from the object side.
[0039]
The third lens group has a meniscus negative lens and a positive lens whose convex surfaces are convex in order from the object side.
[0040]
The fourth group includes a positive lens and a positive cemented lens as a whole of the negative lens and the positive lens in order from the object side.
[0041]
In the present invention, in order to perform sufficient chromatic aberration correction in the first group, the focal length and Abbe number of all the lenses in the first group are set to f1i, ν1i (i = 1, 2,..., N ), respectively. When the coefficient of the second-order term of the diffractive optical element is C21,
It is desirable to satisfy the following conditions.
[0042]
Conditional expression (4) is a condition for sufficiently correcting the chromatic aberration by combining the achromatic effects on the refractive optical surface and the diffractive optical surface with respect to the first group.
[0043]
In general, the Abbe number (dispersion value) of a refractive optical system is νd = (Nd−1) / (NF−NC), where Nd, NC, and NF are the refractive indexes at wavelengths of d, C, and F lines.
It is represented by
[0044]
On the other hand, the dispersion value νd on the diffractive optical surface is νd = λd / (λF−λC) where the wavelengths of the d-line, C-line, and F-line are λd, λC, and λF.
And νd = −3.45.
[0045]
Further, the refractive power ψ of the paraxial first-order diffracted light at the principal wavelength of the diffractive optical surface is ψ = −2 · C 2 when the coefficient of the second-order term is C 2 from the previous expression representing the phase of the diffractive optical surface.
It is expressed.
[0046]
Chromatic aberration generated in the certain group [psi / amount corresponding thereto is proportional to ν is a diffractive optical surface -2 · C 2 /(-3.45)=0.5797 · C 2
It becomes.
[0047]
In a refractive optical system, this amount is Σ1 / (f · ν)
It becomes. Therefore, it can be understood that the closer this sum is to 0, the more chromatic aberration correction of the group is performed.
[0048]
Exceeding the range of the conditional expression (4) is not good because correction of chromatic aberration occurring in the first lens group becomes insufficient.
[0049]
As the configuration of the diffractive optical element used in the present embodiment, one layer having a single kinoform shape shown in FIG. 9 or two layers having different (or the same) grating thicknesses as shown in FIG. A two-layer structure in which layers are stacked can be applied.
[0050]
FIG. 10 shows the wavelength dependence characteristics of the diffraction efficiency of the first-order diffracted light of the diffractive optical element 101 shown in FIG. The actual configuration of the diffractive optical element 101 is that an ultraviolet curable resin is applied to the surface of the substrate 102, and a layer 103 having a grating thickness d is formed on the resin portion so that the diffraction efficiency of the first-order diffracted light is 100% at a wavelength of 530 nm. is doing.
[0051]
As is apparent from FIG. 10, the diffraction efficiency of the designed order decreases with increasing distance from the optimized wavelength of 530 nm, while the diffraction efficiency of the 0th order diffracted light and the second order diffracted light near the designed order increases. An increase in the diffracted light other than the design order becomes a flare, which leads to a decrease in the resolution of the optical system.
[0052]
FIG. 11 shows the MTF characteristics at each angle of view ω with respect to the spatial frequency when Numerical Example 2 is created with the lattice shape of FIG.
[0053]
FIG. 13 shows the wavelength dependence characteristics of the diffraction efficiency of the first-order diffracted light of the laminated diffractive optical element in which the two layers 104 and 105 shown in FIG. 12 are laminated.
[0054]
In FIG. 12, a first layer 104 made of an ultraviolet curable resin (nd = 1.499, νd = 54) is formed on a substrate 102, and another ultraviolet curable resin (nd = 1.598, νd = 28) is formed thereon. ) Is formed. In this combination of materials, the lattice thickness d1 of the first layer 104 is d1 = 13.8 μm, and the lattice thickness d2 of the second layer 105 is d2 = 10.5 μm.
[0055]
As can be seen from FIG. 13, by using a diffractive optical element having a laminated structure, the diffraction efficiency of the designed order has a high diffraction efficiency of 95% or more over the entire operating wavelength range.
[0056]
FIG. 14 shows the MTF characteristics at each angle of view ω with respect to the spatial frequency when the numerical value example 2 is created with the lattice shape of FIG. When a diffractive optical element having a laminated structure is used, the low-frequency MTF is improved and desired MTF characteristics are obtained. Thus, the optical performance can be further improved by using a laminated structure as the diffractive optical element according to the present invention.
[0057]
Note that the diffractive optical element having the above-described laminated structure is not limited to the ultraviolet curable resin, and other plastic materials can be used. Depending on the base material, the first layer 104 is directly formed on the base material. May be. Further, the lattice thicknesses are not necessarily different, and depending on the combination of materials, the lattice thicknesses of the two layers 104 and 105 may be equal as shown in FIG.
[0058]
In this case, since the grating shape is not formed on the surface of the diffractive optical element, it is excellent in dust resistance and can improve the assembling workability of the diffractive optical element.
[0059]
Next, numerical examples of the present invention will be shown. In numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing in order from the object side, and ni and νi are the i-th lens in order from the object side. The refractive index and Abbe number of the glass. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.
[0060]
The aspheric shape is the X axis in the optical axis direction, the Y axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant , and B, C, and D are the aspheric coefficients. When
[0061]
[Equation 3]
It is expressed by the following formula. “D-0X” means “10 −X ”.
[0062]
[Outside 1]
[0063]
[Outside 2]
[0064]
[Table 1]
[0065]
【The invention's effect】
According to the present invention, as described above,
(B-1) In a 4-group type zoom lens, by appropriately setting the lens configuration of each lens group, it covers the entire zoom range from the wide-angle end to the telephoto end, and from an infinitely distant object to an extremely close object. It is possible to achieve a zoom lens having a long back focus with a large aperture ratio and a high zoom ratio with good optical performance over the entire object distance.
[0066]
(A-2) In a four-group type rear focus type zoom lens, a diffractive optical element is introduced into the first group, and the chromatic aberration generated in the first group is reduced by utilizing the diffractive optical action. The rear lens with a long back focus that reduces the number of lenses in the group, achieves a reduction in the overall length of the lens, reduces the weight of the first group, and has excellent optical performance over the entire zoom range from the wide-angle end to the telephoto end. A focus-type zoom lens can be achieved.
[Brief description of the drawings]
1 is a lens cross-sectional view of Numerical Example 1 of the present invention. FIG. 2 is an aberration diagram at the wide angle end of Numerical Example 1 of the present invention. FIG. 3 is an intermediate aberration diagram of Numerical Example 1 of the present invention. FIG. 5 is a lens cross-sectional view of Numerical Example 2 of the present invention. FIG. 6 is an aberration diagram of Wide Angle End of Numerical Example 2 of the present invention. FIG. 8 is an aberration diagram at the telephoto end of Numerical Example 2 according to the present invention. FIG. 9 is an explanatory diagram of a diffractive optical element according to the present invention. FIG. 11 is a diagram illustrating the MTF characteristics of the diffractive optical element according to the present invention. FIG. 12 is a diagram illustrating the diffractive optical element according to the present invention. FIG. 14 is an explanatory diagram of wavelength dependent characteristics of an optical element. FIG. 14 is an MTF characteristic diagram of a diffractive optical element according to the invention. FIG. 15 is a diffractive optical element according to the invention. Illustration DESCRIPTION OF SYMBOLS
L1 1st group L2 2nd group L3 3rd group L4 4th group SP Aperture IP Image plane ΔM Meridional image plane ΔS Sagittal image plane d d line g g line 101 Diffractive optical element 102 Base 103, 104, 105 layers

Claims (2)

物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群より構成され、該第2群と第4群を移動させて変倍を行い、該第4群を移動させてフォーカスを行うズームレンズにおいて、該第1群は光軸に対して回転対称な正の屈折力の回折光学素子を有しており、広角端における最終レンズ面から像面までの空気演算距離をbfw、広角端と望遠端における全系の焦点距離を各々fw、fT、
該第i群の焦点距離をfi(i=1,3,4)とするとき、
4.46≦bfw/fw<5.20
0.366≦f4/f3<0.450
なる条件を満足することを特徴とするズームレンズ。
In order from the object side, the lens unit includes four lens groups including a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power , In a zoom lens in which zooming is performed by moving the second group and the fourth group, and focusing is performed by moving the fourth group, the first group has a positive refractive power diffraction that is rotationally symmetric with respect to the optical axis. has an optical element, each of the focal length of the entire system of air calculated distance from the last lens surface at the wide angle end to the image plane BFW, at the wide-angle end and the telephoto end fw, fT,
When the focal length of the i-th group is fi (i = 1, 3, 4),
4.46 ≦ bfw / fw <5.20
0.366 ≦ f4 / f3 <0.450
A zoom lens characterized by satisfying the following conditions:
前記回折光学素子は1層構成又は互いに分散の異なる材質より成る2層構成より成っていることを特徴とする請求項1のズームレンズ。2. The zoom lens according to claim 1, wherein the diffractive optical element has a one-layer structure or a two-layer structure made of materials having different dispersions.
JP31692498A 1998-10-20 1998-10-20 Zoom lens Expired - Fee Related JP4266414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31692498A JP4266414B2 (en) 1998-10-20 1998-10-20 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31692498A JP4266414B2 (en) 1998-10-20 1998-10-20 Zoom lens

Publications (3)

Publication Number Publication Date
JP2000121940A JP2000121940A (en) 2000-04-28
JP2000121940A5 JP2000121940A5 (en) 2005-12-02
JP4266414B2 true JP4266414B2 (en) 2009-05-20

Family

ID=18082445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31692498A Expired - Fee Related JP4266414B2 (en) 1998-10-20 1998-10-20 Zoom lens

Country Status (1)

Country Link
JP (1) JP4266414B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642209B2 (en) * 2000-10-19 2011-03-02 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP3619178B2 (en) 2001-09-28 2005-02-09 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4240950B2 (en) * 2002-08-19 2009-03-18 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4359061B2 (en) * 2003-03-14 2009-11-04 パナソニック株式会社 Small zoom lens, and digital camera and video camera using the same
JP4650676B2 (en) 2005-03-03 2011-03-16 ソニー株式会社 Zoom lens and imaging device
JP4764051B2 (en) * 2005-04-01 2011-08-31 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP2000121940A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
JP5587225B2 (en) Imaging optical system and imaging apparatus having the same
US7133221B2 (en) Lens system and optical device having the same
US9535240B2 (en) Zoom optical system
JP5028110B2 (en) Zoom lens and imaging apparatus having the same
JP2006301416A (en) Optical system
JP2000258685A (en) Photographing optical system
JPH10148757A (en) Zoom lens and optical instrument using it
JP3342400B2 (en) Optical system having diffractive optical element
JP5202025B2 (en) Imaging optical system and imaging apparatus having the same
JP3832935B2 (en) Zoom lens
JP5436091B2 (en) Zoom lens and imaging apparatus having the same
JP3792846B2 (en) Zoom lens
JP3359277B2 (en) Diffractive refraction rear attachment lens
JP6938841B2 (en) Zoom lens and optical equipment
US6865027B2 (en) Zoom lens and camera having the same
JP3505980B2 (en) Imaging device
JP5845887B2 (en) Zoom lens and imaging device
JP2003021783A (en) Zoom lens and optical equipment using the same
JP2002182110A (en) Zoom lens, and image projecting device and image pickup device using the zoom lens
JP2000147379A (en) Zoom lens
JP4266414B2 (en) Zoom lens
JPH1152236A (en) Rear focus type zoom lens
JP3792847B2 (en) Zoom lens
JP2004012504A (en) Zoom lens and optical equipment having it
JP2000121821A (en) Rear focusing zoom lens having diffraction optical elements

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees