JP2000121940A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2000121940A
JP2000121940A JP10316924A JP31692498A JP2000121940A JP 2000121940 A JP2000121940 A JP 2000121940A JP 10316924 A JP10316924 A JP 10316924A JP 31692498 A JP31692498 A JP 31692498A JP 2000121940 A JP2000121940 A JP 2000121940A
Authority
JP
Japan
Prior art keywords
group
lens
zoom lens
optical element
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10316924A
Other languages
Japanese (ja)
Other versions
JP4266414B2 (en
JP2000121940A5 (en
Inventor
Hiroki Yoshida
博樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31692498A priority Critical patent/JP4266414B2/en
Publication of JP2000121940A publication Critical patent/JP2000121940A/en
Publication of JP2000121940A5 publication Critical patent/JP2000121940A5/ja
Application granted granted Critical
Publication of JP4266414B2 publication Critical patent/JP4266414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Abstract

PROBLEM TO BE SOLVED: To obtain a zoom lens of a rear focus system of a 4-group type having good optical performance over the entire variable magnification range from a wide angle end to a telephoto lens and the entire part of an object distance from an infinite object to an ultra-close object. SOLUTION: This zoom lens has four lens groups; successively from an object side, a first group L1 of positive refracting power, a second group L2 of negative refracting power, a third group L3 of positive refracting power and a fourth group L4 of positive refracting power and executes variable magnification by moving the second group and the third group and executes focusing by moving the fourth group. In such a case, the first group has a diffraction optical element rotationally symmetrical with the optical axis. The zoom lens satisfies the conditions 3.8<bfw/fw<5.2 when the air computation distance from the final lens face to the image plane at the wide angle end is defined as bfw and the focal length of the entire system at the wide angle end as fw.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はズームレンズに関
し、特にレンズ系の一部に回折光学素子を用いることに
よって諸収差、特に色収差を良好に補正し、かつ、多板
用プリズムやリフレクター等をレンズ系後方に配置でき
る程度の長いバックフォーカスを有した写真用カメラや
ビデオカメラ、そして放送用カメラ等に用いられる大口
径比で高変倍比のレンズ系全体の小型化を図ったズーム
レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a zoom lens which uses a diffractive optical element as a part of a lens system to satisfactorily correct various aberrations, particularly chromatic aberration, and to use a multi-plate prism, a reflector and the like as a lens. A zoom lens with a large aperture ratio and a high zoom ratio used for photographic cameras, video cameras, and broadcast cameras that have a long back focus that can be placed behind the system. It is.

【0002】[0002]

【従来の技術】最近、ホームビデオカメラ等の小型軽量
化に伴い、撮像用のズームレンズも小型化されている。
特にレンズ全長の短縮化や前玉径の小型化、レンズ構成
の簡略化が図られている。
2. Description of the Related Art Recently, as home video cameras and the like have been reduced in size and weight, zoom lenses for imaging have also been reduced in size.
In particular, the overall length of the lens is reduced, the diameter of the front lens is reduced, and the lens configuration is simplified.

【0003】レンズ系全体の小型化を達成する一つの手
段として、物体側の第1群以外のレンズ群を移動させて
フォーカスを行う、所謂リヤーフォーカス式のズームレ
ンズが知られている。
As one means for achieving miniaturization of the entire lens system, a so-called rear focus type zoom lens which performs focusing by moving a lens unit other than the first unit on the object side is known.

【0004】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせができる等の特長がある。
In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens which performs focusing by moving the first lens group, so that the entire lens system can be easily miniaturized, and close-up photographing can be performed. In particular, since extremely close-up photography is facilitated and the relatively small and lightweight lens group is moved, the driving force of the lens group is small and quick focusing can be performed.

【0005】このようなリヤーフォーカス式のズームレ
ンズとして、例えば特開昭62−215225号公報
や、特開昭62−206516号公報,特開昭62−2
4213号公報,特開昭63−247316号公報、そ
して特開平4−43311号公報では、物体側より順に
正の屈折力の第1群、負の屈折力の第2群、正の屈折力
の第3群、そして正の屈折力の第4群の4つのレンズ群
を有し、第2群を移動させて変倍を行い、第4群を移動
させて変倍に伴う像面変動とフォーカスを行った4群タ
イプのリヤーフォーカス式のズームレンズが提案されて
いる。
[0005] Such a rear focus type zoom lens is disclosed in, for example, JP-A-62-215225, JP-A-62-220616, and JP-A-62-262.
No. 4213, JP-A-63-247316 and JP-A-4-43311 disclose, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a positive lens having a positive refractive power. The zoom lens has four lens groups, a third lens group and a fourth lens group having a positive refractive power. The second lens group is moved to perform zooming, and the fourth lens group is moved to change the image plane due to zooming and focus. There has been proposed a four-group type rear focus type zoom lens which performs the above.

【0006】一方、多くのズームレンズにおいては、レ
ンズ系中に非球面を設けることによって諸収差を良好に
補正しつつ、レンズ系全体の小型化を図りつつ、高い光
学性能を得ている。
On the other hand, in many zoom lenses, high optical performance is obtained while satisfactorily correcting various aberrations by providing an aspherical surface in the lens system and reducing the size of the entire lens system.

【0007】又、諸収差のうち色収差については分散の
異なる硝材を組み合わせて補正する方法の他にレンズ面
又は光学系の一部に回折作用を有する回折光学素子を設
けて補正した光学系が、例えば特開平4−213421
号公報や特開平6−324262号公報、米国特許第
5,268,790号等で提案されている。このうち、
米国特許第5,268,790号では第2群と第3群に
回折光学素子を用いたズームレンズを提案している。
In addition to the method of correcting chromatic aberration among various aberrations by combining glass materials having different dispersions, an optical system corrected by providing a diffractive optical element having a diffractive action on a lens surface or a part of the optical system is used. For example, JP-A-4-213421
And Japanese Patent Application Laid-Open No. 6-324262, and US Pat. No. 5,268,790. this house,
U.S. Pat. No. 5,268,790 proposes a zoom lens using diffractive optical elements in the second and third units.

【0008】[0008]

【発明が解決しようとする課題】一般にズームレンズに
おいてリヤーフォーカス方式を採用するとレンズ系全体
が小型化され又迅速なるフォーカスが可能となり、更に
近接撮影が容易となる等の特長が得られる。
Generally, when a rear focus system is adopted in a zoom lens, the whole lens system can be reduced in size, quick focus can be achieved, and further, advantages such as easy close-up photographing can be obtained.

【0009】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたり高い光学性能を得るのが大変難しく
なってくるという問題点が生じてくる。
[0009] On the other hand, however, there is a problem that aberration fluctuations during focusing become large, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to an object at a short distance.

【0010】例えば、大口径比で高変倍のズームレンズ
では変倍による色収差の変動が大きくなってきて全変倍
範囲にわたり、又物体距離全般にわたり高い光学性能を
得るのが大変難しくなってくるという問題点が生じてく
る。
For example, in a zoom lens having a large aperture ratio and a high zoom ratio, the fluctuation of chromatic aberration due to zooming becomes large, and it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance. The problem arises.

【0011】特にズーム比が10倍以上の高変倍比の4
群より成るズームレンズでは第1群や第4群内で発生す
る色収差を補正するため、張り合わせレンズを用いるこ
とが多い。そしてレンズ群に対し、非球面を用いること
によりレンズ群のレンズ枚数を削減し、レンズ全長を短
くする方法がとられている。
[0011] In particular, a high zoom ratio of 4 or more at a zoom ratio of 10 times or more.
In a zoom lens composed of groups, a cemented lens is often used in order to correct chromatic aberration generated in the first and fourth groups. Then, a method has been adopted in which the number of lenses in the lens group is reduced by using an aspherical surface for the lens group, and the overall length of the lens is shortened.

【0012】しかしながら、レンズ枚数を減らすと色収
差の補正をする要素が不十分になってきて、変倍に伴う
色収差の変動を良好に補正することが困難になってく
る。
However, when the number of lenses is reduced, elements for correcting chromatic aberration become insufficient, and it becomes difficult to satisfactorily correct the fluctuation of chromatic aberration due to zooming.

【0013】一般に正レンズに低分散ガラスを用いれ
ば、色収差を軽減することもできる。しかしながら一般
に低分散のガラスは屈折率が低く加工が難しいレンズ形
状になりやすい。この為、前述の4群ズームレンズにお
いて第1群又は第4群の屈折力を弱くすると、これに応
じて他のレンズ群の屈折力も弱くしなければならず、第
1群又は第4群の径が大きくなり結果として第1群や第
4群のレンズ肉厚を増す必要が生じてレンズ全長が長大
化してくる。又、第1群の屈折力を弱くすると広角端に
おけるバックフォーカスが短くなり、レンズ系の後方に
光学フィルター、色分解プリズム等を配置するのが難し
くなってくる。
Generally, if low dispersion glass is used for the positive lens, chromatic aberration can be reduced. However, low-dispersion glass generally has a low refractive index and tends to have a lens shape that is difficult to process. For this reason, if the refractive power of the first or fourth group is reduced in the above-described four-group zoom lens, the refractive power of the other lens group must also be reduced accordingly. As the diameter increases, it becomes necessary to increase the lens thickness of the first and fourth units, and the overall length of the lens increases. If the refractive power of the first lens unit is weakened, the back focus at the wide-angle end becomes short, and it becomes difficult to arrange an optical filter, a color separation prism, and the like behind the lens system.

【0014】本発明は、4群タイプのズームレンズにお
いて、各レンズ群のレンズ構成を適切に設定することに
より、広角端から望遠端に至る全変倍範囲にわたり、又
無限遠物体から超至近物体に至る物体距離全般にわた
り、良好なる光学性能を有した大口径比で高変倍比のバ
ックフォーカスの長いズームレンズの提供を目的とす
る。
According to the present invention, in a four-unit type zoom lens, by appropriately setting the lens configuration of each lens unit, the zooming lens extends over the entire zoom range from the wide-angle end to the telephoto end, and from an object at infinity to a very close object. It is an object of the present invention to provide a large-aperture-ratio, high-magnification-ratio, long-back-focus zoom lens having excellent optical performance over all object distances up to.

【0015】特に、4群タイプのリヤーフォーカス式の
ズームレンズにおいて第1群に回折光学素子を導入し、
回折光学的な作用を利用することで第1群で発生する色
収差を低減しつつ第1群のレンズ枚数を削減し、レンズ
全長の小型化を達成し、かつ第1群を軽量化すると共
に、広角端から望遠端に至る全変倍範囲にわたり良好な
る光学性能を有するバックフォーカスの長いリヤーフォ
ーカス式のズームレンズの提供を目的とする。
In particular, in a four-group type rear focus zoom lens, a diffractive optical element is introduced into the first group,
By utilizing the diffractive optical effect, the number of lenses in the first group is reduced while reducing the chromatic aberration generated in the first group, the overall length of the lens is reduced, and the weight of the first group is reduced. It is an object of the present invention to provide a rear focus zoom lens having a long back focus and good optical performance over the entire zoom range from the wide-angle end to the telephoto end.

【0016】[0016]

【課題を解決するための手段】本発明のズームレンズ
は、 (1-1) 物体側より順に正の屈折力の第1群、負の屈折力
の第2群、正の屈折力の第3群、そして正の屈折力の第
4群の4つのレンズ群を有し、該第2群と第4群を移動
させて変倍を行い、該第4群を移動させてフォーカスを
行うズームレンズにおいて、該第1群は光軸に対して回
転対称な回折光学素子を有しており、広角端における最
終レンズ面から像面までの空気演算距離をbfw、広角
端における全系の焦点距離をfwとするとき、 3.8<bfw/fw<5.2…(1) なる条件を満足することを特徴としている。
According to the present invention, there is provided a zoom lens system comprising: (1-1) a first unit having a positive refractive power, a second unit having a negative refractive power, and a third unit having a positive refractive power in order from the object side. A zoom lens having four lens groups, a group and a fourth group having a positive refractive power, performing zooming by moving the second and fourth groups, and performing focus by moving the fourth group In the first group, the first group has a diffraction optical element rotationally symmetric with respect to the optical axis, the air operation distance from the final lens surface to the image plane at the wide angle end is bfw, and the focal length of the entire system at the wide angle end is When fw is satisfied, the following condition is satisfied: 3.8 <bfw / fw <5.2 (1)

【0017】[0017]

【発明の実施の形態】図1は本発明の数値実施例1の広
角端のレンズ断面図、図2〜図4は本発明の数値実施例
1の広角端、中間、望遠端の収差図である。図5は本発
明の数値実施例2の広角端のレンズ断面図、図6〜図8
は本発明の数値実施例2の広角端、中間、望遠端の収差
図である。
FIG. 1 is a sectional view of a lens at a wide angle end according to a first numerical embodiment of the present invention, and FIGS. 2 to 4 are aberration diagrams at a wide angle end, a middle position, and a telephoto end of the first numerical embodiment of the present invention. is there. FIG. 5 is a sectional view of a lens at a wide angle end according to Numerical Example 2 of the present invention, and FIGS.
FIG. 9 is an aberration diagram at a wide-angle end, a middle position, and a telephoto end in Numerical Example 2 of the present invention.

【0018】次に、図1,図5の数値実施例1,2のレ
ンズ構成の特徴について説明する。図1,図5におい
て、L1は正の屈折力の第1群、L2は負の屈折力の第
2群、L3は正の屈折力の第3群、L4は正の屈折力の
第4群である。SPは開口絞りであり、第3群L3の前
方に配置している。Gは色分解光学系やフェースプレー
ト、そしてフィルター等のガラスブロックである。IP
は像面である。
Next, the features of the lens configuration of Numerical Examples 1 and 2 of FIGS. 1 and 5 will be described. 1 and 5, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. It is. SP denotes an aperture stop, which is arranged in front of the third lens unit L3. G is a glass block such as a color separation optical system, a face plate, and a filter. IP
Is the image plane.

【0019】本実施形態では広角端から望遠端への変倍
に際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を物体側に凸状の軌跡
を有しつつ移動させて補正している。
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second unit is moved to the image plane side as indicated by the arrow, and the image plane fluctuation due to zooming is changed by projecting the fourth unit to the object side. The movement is corrected while having the trajectory.

【0020】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。尚、第2群の変倍分担を少な
くする為に第1群を変倍の際に移動させても良い。
Also, a rear focus system is adopted in which the fourth unit is moved on the optical axis to perform focusing. A solid line curve 4a and a dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown. The first and third units are fixed during zooming and focusing. Note that the first unit may be moved at the time of zooming in order to reduce the sharing of zooming of the second unit.

【0021】本実施形態においては第4群を移動させて
変倍に伴う像面変動の補正を行うと共に第4群を移動さ
せてフォーカスを行うようにしている。特に同図の曲線
4a,4bに示すように広角端から望遠端への変倍に際
して物体側へ凸状の軌跡を有するように移動させてい
る。これにより第3群と第4群との空間の有効利用を図
りレンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth unit is moved to correct the image plane fluctuation accompanying zooming, and the fourth unit is moved to perform focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex locus toward the object side when zooming from the wide-angle end to the telephoto end. Thereby, the space between the third and fourth units is effectively used, and the overall length of the lens is effectively reduced.

【0022】本実施形態において、例えば望遠端におい
て無限遠物体から近距離物体へフォーカスを行う場合は
同図の直線4cに示すように第4群を前方へ繰り出すこ
とにより行っている。
In this embodiment, for example, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth unit is moved forward as indicated by a straight line 4c in FIG.

【0023】本実施形態では第1群に少なくとも1つの
回折光学素子を設け、その位相を適切に設定し、これに
より第1群で発生する色収差を低減し、全変倍範囲にわ
たり色収差を良好に補正している。
In the present embodiment, at least one diffractive optical element is provided in the first group, the phase thereof is appropriately set, whereby the chromatic aberration generated in the first group is reduced, and the chromatic aberration over the entire zoom range is favorably reduced. Has been corrected.

【0024】第1群を回折光学素子なしで屈折面(レン
ズ)のみで色収差を軽減しようとすると、レンズの枚数
を増やすか、さもなくば異常分散ガラスの使う必要が生
じるが、このようなガラス材は、例えばFK01(商品
名)に代表されるように一般に柔らかく加工が難しい。
In order to reduce the chromatic aberration of the first lens group by using only a refractive surface (lens) without a diffractive optical element, it is necessary to increase the number of lenses or use an extraordinary dispersion glass. The material is generally soft and difficult to process, as represented by, for example, FK01 (trade name).

【0025】特に、画質を重視する高倍のズームレンズ
の場合、異常分散ガラスを用いても十分な補正ができな
いことも大いにあり得る。又、第1群は他のレンズ群と
比較し、レンズの径が大きくなることが多いため、レン
ズの枚数を増やすとレンズ全体の重量が増え、使い勝手
が悪くなる。
In particular, in the case of a high-magnification zoom lens that emphasizes image quality, it is highly probable that sufficient correction cannot be performed even with the use of anomalous dispersion glass. In addition, the first group often has a larger lens diameter than the other lens groups. Therefore, if the number of lenses is increased, the weight of the entire lens increases, and the usability deteriorates.

【0026】そこで本発明では、第1群に回折光学素子
を用いて第1群のレンズ枚数を少なくしつつ、色収差を
良好に補正している。又、広角端におけるレンズ最終面
から像面までの空気演算距離(フィルター等の平行平面
板を除去したときの距離)bfwが条件式(1)を満た
すようにしている。
Therefore, in the present invention, chromatic aberration is satisfactorily corrected by using a diffractive optical element in the first group while reducing the number of lenses in the first group. At the wide-angle end, an air calculation distance (distance when a parallel plane plate such as a filter is removed) bfw from the last lens surface to the image surface satisfies the conditional expression (1).

【0027】画質を重視するビデオレンズの場合、複数
の撮像素子を用いることがあるが、このとき各撮像素子
に割り当てる色を分散するためのプリズムが必要にな
る。ところが条件式(1)の下限を下回るとバックフォ
ーカスが短くなりすぎ、プリズムを入れる空間が不十分
になってしまう。逆に、条件式(1)の上限を上回ると
レンズ全体の全長が延び、結果として使い勝手の悪いレ
ンズとなってしまう。
In the case of a video lens that emphasizes image quality, a plurality of image sensors may be used. At this time, a prism for dispersing colors assigned to each image sensor is required. However, when the value goes below the lower limit of the conditional expression (1), the back focus becomes too short, and the space for the prism becomes insufficient. Conversely, when the value exceeds the upper limit of the conditional expression (1), the overall length of the entire lens increases, and as a result, the lens becomes inconvenient.

【0028】本実施形態における回折光学素子は、ホロ
グラフィック光学素子(HOE)の製作手法であるリソ
グラフィック手法で2値的に製作している。回折光学素
子はバイナリーオプティックス(BINARY OPT
ICS)で製作しても良い。この場合、更に回折効率を
上げるためにキノフォームと呼ばれる鋸状の形状にして
も良い。またこれらの方法で製作した方によって成型に
より製造しても良い。
The diffractive optical element in the present embodiment is binary-manufactured by a lithographic method which is a method of manufacturing a holographic optical element (HOE). The diffractive optical element is a binary optics (BINARY OPT)
ICS). In this case, in order to further increase the diffraction efficiency, a saw-like shape called a kinoform may be used. Further, it may be manufactured by molding by those manufactured by these methods.

【0029】また本実施形態における回折光学素子の形
状は、基準波長(d線)をλ、光軸からの距離をh、位
相をφ(h)としたとき φ(h)=2π/λ(C2 ・h2 +C4 ・h4 +‥‥C
(2i) ・i・h2i) の式で表されるものである。
The shape of the diffractive optical element in the present embodiment is as follows: when the reference wavelength (d-line) is λ, the distance from the optical axis is h, and the phase is φ (h), φ (h) = 2π / λ ( C 2 · h 2 + C 4 · h 4 + ΔC
(2i) · i · h 2i ).

【0030】本発明の目的とするズームレンズは以上の
諸条件を満足することにより達成されるが、更に収差補
正上好ましくは、次の条件のうち少なくとも1つを満足
させるのが良い。
The zoom lens aimed at by the present invention can be attained by satisfying the above-mentioned conditions, but it is more preferable to further satisfy at least one of the following conditions for aberration correction.

【0031】(ア-1) 前記第i群の焦点距離をfi(i=
1,2,3,4)としたとき、 0.31<f4/f3<0.45…(2) なる条件を満足することである。
(A-1) The focal length of the i-th lens unit is defined as fi (i =
1,2,3,4), the condition 0.31 <f4 / f3 <0.45 (2) is satisfied.

【0032】条件式(2)の上限を上回るほど第3群の
屈折力が強くなりすぎるとレンズ最終面と像面までの距
離が短くなり、プリズム等の光学部材を挿入できなくな
る。逆に、条件式(2)の下限を下回るほど第3群の屈
折力が弱くなりすぎるとレンズ最終面と像面までの距離
が長くなり、結果としてレンズ全体の全長が延び、結果
として使い勝手の悪いレンズとなってしまう。
If the refractive power of the third lens unit becomes too strong as the upper limit of conditional expression (2) is exceeded, the distance between the final lens surface and the image surface becomes short, and it becomes impossible to insert an optical member such as a prism. Conversely, if the lower limit of conditional expression (2) is exceeded, if the refractive power of the third lens unit is too weak, the distance between the final lens surface and the image plane will be long, resulting in an increase in the overall length of the entire lens and consequently ease of use. It becomes a bad lens.

【0033】(ア-2) 前記回折光学素子は正の屈折力を有
していることである。
(A-2) The diffractive optical element has a positive refractive power.

【0034】第1群は正の屈折力を有しており、屈折に
よって発生する色収差を回折光学素子で打ち消す為に回
折光学素子の屈折力に正の屈折力を持たせている。仮
に、回折光学素子の屈折力を負にすると通常の屈折光学
系と発生する色収差が同じになってしまい、回折光学素
子による色消し効果が出ず、光学系全域で十分な色収差
の補正が行えなくなる。
The first lens unit has a positive refractive power, and the diffractive optical element has a positive refractive power in order to cancel chromatic aberration caused by refraction by the diffractive optical element. If the refractive power of the diffractive optical element is made negative, the chromatic aberration generated by the ordinary refractive optical system will be the same, the achromatic effect of the diffractive optical element will not be obtained, and sufficient chromatic aberration can be corrected throughout the optical system Disappears.

【0035】(ア-3) 前記第1群の焦点距離をf1、望遠
端における全系の焦点距離をfTとするとき、
(A-3) When the focal length of the first lens unit is f1 and the focal length of the entire system at the telephoto end is fT,

【0036】[0036]

【数2】 なる条件を満足することである。(Equation 2) Satisfying the following conditions.

【0037】条件式(3)の下限を下回るほど第1群の
屈折力を強くすると屈折光学系によって発生する色収差
を回折光学素子で十分打ち消すことができなくなり、光
学系全域で十分な色収差の補正が行えなくなる。又、回
折光学素子の作成が困難になる。逆に、条件式(3)の
上限を上回るほど第1群の屈折力を弱くすると広角端に
おけるバックフォーカスが短くなりすぎ、プリズム等の
光学部材を挿入するための空間が不十分になる。
If the refractive power of the first lens unit is increased as the value goes below the lower limit of conditional expression (3), the chromatic aberration generated by the refractive optical system cannot be sufficiently canceled by the diffractive optical element, and the chromatic aberration can be sufficiently corrected over the entire optical system. Cannot be performed. In addition, it becomes difficult to produce a diffractive optical element. Conversely, if the refractive power of the first lens unit is made weaker as the upper limit of conditional expression (3) is exceeded, the back focus at the wide-angle end becomes too short, and the space for inserting an optical member such as a prism becomes insufficient.

【0038】(ア-4) 第2群は物体側より順に少なくとも
2枚の負レンズと1枚の正レンズ、そして負レンズを有
していることである。
(A-4) The second unit has at least two negative lenses, one positive lens, and a negative lens in order from the object side.

【0039】(ア-5) 第3群は物体側より順にメニスカス
状の負レンズと両レンズ面が凸面の正レンズを有してい
ることである。
(A-5) The third unit includes, in order from the object side, a meniscus-shaped negative lens and a positive lens whose both lens surfaces are convex.

【0040】(ア-6) 第4群は物体側より順に正レンズ、
負レンズと正レンズとの全体として正の接合レンズとを
有していることである。
(A-6) The fourth unit is composed of a positive lens in order from the object side,
That is, the negative lens and the positive lens as a whole have a positive cemented lens.

【0041】本発明において第1群で十分な色収差補正
が行われるためには第1群のすべてのレンズの、焦点距
離及びアッベ数をそれぞれf1i、ν1i(i=1,2
‥‥)、第1群の回折光学素子の2次項の係数をC21
するとき |0.5797・C21+Σ{1/(f1i・ν1i)}|・f1 <9.8×10-3…(4) なる条件を満足するのが望ましい。
In the present invention, in order to perform sufficient chromatic aberration correction in the first lens unit, the focal lengths and Abbe numbers of all the lenses in the first lens unit must be f1i and v1i (i = 1, 2).
‥‥), when the coefficient of the second order term of the first group of diffractive optical elements is C 21 | 0.5797 · C 21 + {1 / (f1i · ν1i)} | · f1 <9.8 × 10 −3 (4) It is desirable to satisfy the following condition.

【0042】条件式(4)では第1群に関して屈折光学
面と回折光学面での色消し効果が合成されて十分に色収
差が補正するための条件である。
Conditional expression (4) is a condition for combining the achromatizing effect on the refractive optical surface and the diffractive optical surface with respect to the first lens unit and sufficiently correcting chromatic aberration.

【0043】一般に屈折光学系のアッベ数(分散値)は
d,C,F線の各波長における屈折力をNd,NC,N
Fとしたとき νd=(Nd−1)/(NF−NC) で表される。
In general, the Abbe number (dispersion value) of the refractive optical system is expressed by Nd, NC, and Nd at each wavelength of the d, C, and F lines.
When F is given, it is represented by νd = (Nd−1) / (NF−NC).

【0044】一方回折光学面での分散値νdはd線,C
線,F線の各波長をλd,λC,λFとしたとき νd=λd/(λF−λC) で表され、νd=−3.45となる。
On the other hand, the dispersion value νd on the diffractive optical surface is d-line, C
When the wavelengths of the line and the F line are λd, λC, and λF, νd = λd / (λF−λC), and νd = −3.45.

【0045】また回折光学面の主波長における近軸的な
1次回折光の屈折力ψは回折光学面の位相を表す前式よ
り2次項の係数をC2 としたとき ψ=−2・C2 と表される。
The refractive power ψ of the paraxial first-order diffracted light at the principal wavelength of the diffractive optical surface is given by the following equation representing the phase of the diffractive optical surface, where the coefficient of the second-order term is C 2 ψ = −2 · C 2 It is expressed as

【0046】ある群で発生する色収差はψ/νに比例す
るのでこれに相当する量は回折光学面では −2・C2 /(−3.45)=0.5797・C2 となる。
The amount corresponding to this because chromatic aberration generated in the one group is proportional to [psi / [nu becomes -2 · C 2 /(-3.45)=0.5797 · C 2 is a diffractive optical surface.

【0047】また屈折光学系ではこの量は Σ1/(f・ν) となる。従ってこの和が0に近いほどその群の色収差補
正が十分に行われていることが判る。
In a refractive optical system, this amount is Σ1 / (f · ν). Therefore, it can be understood that the closer this sum is to 0, the more sufficiently the chromatic aberration correction of the group is performed.

【0048】条件式(4)の範囲内を越えてしまうと第
1レンズ群で発生する色収差の補正が不十分になってし
まうので良くない。
When the value exceeds the range of the conditional expression (4), the correction of the chromatic aberration generated in the first lens unit becomes insufficient, which is not good.

【0049】本実施形態で用いている回折光学素子の構
成としては図9に示す1層のキノフォーム形状の1層構
成のものや、図12に示すような格子厚の異なる(又は
同一の)2つの層を積層した2層構成のもの等が適用可
能である。
The diffractive optical element used in this embodiment has a single-layer kinoform-shaped single-layer structure shown in FIG. 9 or a different (or the same) grating thickness as shown in FIG. A two-layer structure in which two layers are stacked is applicable.

【0050】図10は図9に示す回折光学素子101の
1次回折光の回折効率の波長依存特性である。実際の回
折光学素子101の構成は、基材102の表面に紫外線
硬化樹脂を塗布し、樹脂部に波長530nmで1次回折
光の回折効率が100%となるような格子厚dの層10
3を形成している。
FIG. 10 shows the wavelength dependence of the diffraction efficiency of the first-order diffracted light of the diffractive optical element 101 shown in FIG. The actual configuration of the diffractive optical element 101 is such that an ultraviolet-curing resin is applied to the surface of the base material 102, and a layer 10 having a grating thickness d such that the diffraction efficiency of the first-order diffracted light at a wavelength of 530 nm becomes 100% at the resin portion.
3 is formed.

【0051】図10で明らかなように設計次数の回折効
率は最適化した波長530nmから離れるに従って低下
し、一方設計次数近傍の次数の0次回折光と2次回折光
の回折効率が増大している。その設計次数以外の回折光
の増加はフレアとなり、光学系の解像度の低下につなが
る。
As is apparent from FIG. 10, the diffraction efficiency of the design order decreases as the distance from the optimized wavelength of 530 nm increases, while the diffraction efficiencies of the zero-order diffraction light and the second-order diffraction light of orders near the design order increase. An increase in diffracted light other than the design order causes a flare, leading to a decrease in the resolution of the optical system.

【0052】図11に図9の格子形状で数値実施例2を
作成した場合の空間周波数に対する各画角ωでのMTF
特性を示す。
FIG. 11 shows the MTF at each angle of view ω with respect to the spatial frequency when Numerical Example 2 is created with the lattice shape of FIG.
Show characteristics.

【0053】図12に示す2つの層104,105を積
層した積層型の回折光学素子の1次回折光の回折効率の
波長依存特性を図13に示す。
FIG. 13 shows the wavelength dependence of the diffraction efficiency of the first-order diffracted light of the laminated diffractive optical element in which the two layers 104 and 105 shown in FIG. 12 are laminated.

【0054】図12では基材102上に紫外線硬化樹脂
(nd=1.499,νd=54)からなる第1層10
4を形成し、その上に別の紫外線硬化樹脂(nd=1.
598,νd=28)からなる第2層105を形成して
いる。この材質の組み合わせでは、第1層104の格子
厚d1はd1=13.8μm、第2の層105の格子厚
d2はd2=10.5μmとしている。
In FIG. 12, the first layer 10 made of an ultraviolet curable resin (nd = 1.499, νd = 54) is formed on the substrate 102.
4 is formed thereon, and another ultraviolet curable resin (nd = 1.
598, νd = 28). In this combination of materials, the lattice thickness d1 of the first layer 104 is d1 = 13.8 μm, and the lattice thickness d2 of the second layer 105 is d2 = 10.5 μm.

【0055】図13から分かるように積層構造の回折光
学素子にすることで、設計次数の回折効率は、使用波長
全域で95%以上の高い回折効率を有している。
As can be seen from FIG. 13, the diffraction efficiency of the design order can be as high as 95% or more over the entire wavelength range by using a diffractive optical element having a laminated structure.

【0056】図14に図12の格子形状で数値実施例2
を作成した場合の空間周波数に対する各画角ωでのMT
F特性を示す。積層構造の回折光学素子を用いると、低
周波数のMTFは改善され、所望のMTF特性が得られ
る。このように、本発明に係る回折光学素子として積層
構造を用いれば、光学性能を更に改善することができ
る。
FIG. 14 shows a numerical example 2 with the lattice shape of FIG.
At each angle of view ω with respect to the spatial frequency when
The F characteristic is shown. When a diffractive optical element having a laminated structure is used, the low-frequency MTF is improved, and desired MTF characteristics can be obtained. As described above, when the laminated structure is used as the diffractive optical element according to the present invention, the optical performance can be further improved.

【0057】なお、前述の積層構造の回折光学素子とし
て、材質を紫外線硬化樹脂に限定するものではなく、他
のプラスチック材等も使用できるし、基材によっては第
1の層104を直接基材に形成しても良い。また各格子
厚が必ずしも異なる必要はなく、材料の組み合わせによ
っては図15に示すように2つの層104と105の格
子厚を等しくしても良い。
Incidentally, the material of the diffractive optical element having the above-mentioned laminated structure is not limited to an ultraviolet curable resin, but other plastic materials or the like may be used. May be formed. Further, the lattice thicknesses do not necessarily have to be different, and depending on the combination of materials, the lattice thicknesses of the two layers 104 and 105 may be equal as shown in FIG.

【0058】この場合は、回折光学素子の表面に格子形
状が形成されないので、防塵性に優れ、回折光学素子の
組立作業性を向上させることができる。
In this case, since the lattice shape is not formed on the surface of the diffractive optical element, the dust-proof property is excellent and the workability of assembling the diffractive optical element can be improved.

【0059】次に本発明の数値実施例を示す。数値実施
例においてriは物体側より順に第i番目のレンズ面の
曲率半径、diは物体側より順に第i番目のレンズ厚及
び空気間隔、niとνiは各々物体側より順に第i番目
のレンズのガラスの屈折率とアッベ数である。又、前述
の各条件式と数値実施例の関係を表−1に示す。
Next, numerical examples of the present invention will be described. In the numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing in order from the object side, and ni and νi are the i-th lens in order from the object side. Are the refractive index and Abbe number of the glass. Table 1 shows the relationship between the above-described conditional expressions and the numerical examples.

【0060】非球面形状は光軸方向にX軸、光軸と垂直
方向にY軸、光の進行方向を正としRを近軸曲率半径、
K,B,C,D,E,Fを各々非球面係数としたとき、
The aspherical surface has an X-axis in the optical axis direction, a Y-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature,
When K, B, C, D, E, and F are each an aspheric coefficient,

【0061】[0061]

【数3】 なる式で表している。又「D−0X」は「10-X」を意
味している。
(Equation 3) It is represented by the following expression. “D-0X” means “10 −X ”.

【0062】[0062]

【外1】 [Outside 1]

【0063】[0063]

【外2】 [Outside 2]

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】本発明によれば以上のように、 (イ-1) 4群タイプのズームレンズにおいて、各レンズ群
のレンズ構成を適切に設定することにより、広角端から
望遠端に至る全変倍範囲にわたり、又無限遠物体から超
至近物体に至る物体距離全般にわたり、良好なる光学性
能を有した大口径比で高変倍比のバックフォーカスの長
いズームレンズを達成することができる。
As described above, according to the present invention, (a-1) in a four-group type zoom lens, by appropriately setting the lens configuration of each lens group, the entire zoom range from the wide-angle end to the telephoto end is obtained. A zoom lens having a large aperture ratio and a high zoom ratio and a long back focus having excellent optical performance can be achieved over a variable power range and over an entire object distance from an object at infinity to a very close object.

【0066】(イ-2) 4群タイプのリヤーフォーカス式の
ズームレンズにおいて第1群に回折光学素子を導入し、
回折光学的な作用を利用することで第1群で発生する色
収差を低減しつつ第1群のレンズ枚数を削減し、レンズ
全長の小型化を達成し、かつ第1群を軽量化すると共
に、広角端から望遠端に至る全変倍範囲にわたり良好な
る光学性能を有するバックフォーカスの長いリヤーフォ
ーカス式のズームレンズを達成することができる。
(A-2) In a four-group type rear focus zoom lens, a diffractive optical element is introduced into the first group,
By utilizing the diffractive optical effect, the number of lenses in the first group is reduced while reducing the chromatic aberration generated in the first group, the overall length of the lens is reduced, and the weight of the first group is reduced. It is possible to achieve a rear-focus type zoom lens having a long back focus and good optical performance over the entire zoom range from the wide-angle end to the telephoto end.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】本発明の数値実施例1の広角端の収差図FIG. 2 is an aberration diagram at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図3】本発明の数値実施例1の中間の収差図FIG. 3 is an intermediate aberration diagram of the numerical example 1 of the present invention.

【図4】本発明の数値実施例1の望遠端の収差図FIG. 4 is an aberration diagram at a telephoto end in Numerical Example 1 of the present invention;

【図5】本発明の数値実施例2のレンズ断面図FIG. 5 is a sectional view of a lens according to a second numerical embodiment of the present invention;

【図6】本発明の数値実施例2の広角端の収差図FIG. 6 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.

【図7】本発明の数値実施例2の中間の収差図FIG. 7 is an intermediate aberration diagram of the numerical example 2 of the present invention.

【図8】本発明の数値実施例2の望遠端の収差図FIG. 8 is an aberration diagram at a telephoto end in Numerical Example 2 of the present invention.

【図9】本発明に係る回折光学素子の説明図FIG. 9 is an explanatory view of a diffractive optical element according to the present invention.

【図10】本発明に係る回折光学素子の波長依存特性の
説明図
FIG. 10 is an explanatory diagram of a wavelength dependence characteristic of the diffractive optical element according to the present invention.

【図11】本発明に係る回折光学素子のMTF特性図FIG. 11 is an MTF characteristic diagram of the diffractive optical element according to the present invention.

【図12】本発明に係る回折光学素子の説明図FIG. 12 is an explanatory view of a diffractive optical element according to the present invention.

【図13】本発明に係る回折光学素子の波長依存特性の
説明図
FIG. 13 is an explanatory diagram of a wavelength dependence characteristic of the diffractive optical element according to the present invention.

【図14】本発明に係る回折光学素子のMTF特性図FIG. 14 is an MTF characteristic diagram of the diffractive optical element according to the present invention.

【図15】本発明に係る回折光学素子の説明図FIG. 15 is an explanatory view of a diffractive optical element according to the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り IP 像面 ΔM メリディオナル像面 ΔS サジタル像面 d d線 g g線 101 回折光学素子 102 基盤 103,104,105 層 L1 First group L2 Second group L3 Third group L4 Fourth group SP Stop IP image plane ΔM Meridional image plane ΔS Sagittal image plane dd line gg line 101 Diffractive optical element 102 Base 103, 104, 105 layers

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA02 KA03 MA15 NA14 PA10 PA19 PB12 QA02 QA07 QA17 QA21 QA25 QA34 QA42 QA45 RA05 RA12 RA32 RA42 RA43 RA46 SA23 SA27 SA29 SA32 SA63 SA65 SA72 SA74 SB04 SB15 SB23 SB34 9A001 KK16 KK42  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 2H087 KA02 KA03 MA15 NA14 PA10 PA19 PB12 QA02 QA07 QA17 QA21 QA25 QA34 QA42 QA45 RA05 RA12 RA32 RA42 RA43 RA46 SA23 SA27 SA29 SA32 SA63 SA65 SA72 SA74 SB04 SB15 SB23 SB34 9A001

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、該第2群と第4
群を移動させて変倍を行い、該第4群を移動させてフォ
ーカスを行うズームレンズにおいて、該第1群は光軸に
対して回転対称な回折光学素子を有しており、広角端に
おける最終レンズ面から像面までの空気演算距離をbf
w、広角端における全系の焦点距離をfwとするとき、 3.8<bfw/fw<5.2 なる条件を満足することを特徴とするズームレンズ。
1. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens unit having a positive refractive power. And the second group and the fourth group
In a zoom lens that performs zooming by moving a group and focuses by moving a fourth group, the first group has a diffractive optical element that is rotationally symmetric with respect to the optical axis. The air calculation distance from the last lens surface to the image surface is bf
a zoom lens characterized by satisfying a condition of 3.8 <bfw / fw <5.2, where fw is the focal length of the entire system at the wide-angle end.
【請求項2】 前記第i群の焦点距離をfi(i=1,
2,3,4)としたとき、 0.31<f4/f3<0.45 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
2. The focal length of the i-th lens unit is fi (i = 1,
2. The zoom lens according to claim 1, wherein, when (2, 3, 4) is satisfied, the following condition is satisfied: 0.31 <f4 / f3 <0.45.
【請求項3】 前記回折光学素子は正の屈折力を有して
いることを特徴とする請求項1又は2のズームレンズ。
3. The zoom lens according to claim 1, wherein the diffractive optical element has a positive refractive power.
【請求項4】 前記第1群の焦点距離をf1、望遠端に
おける全系の焦点距離をfTとするとき、 【数1】 なる条件を満足することを特徴とする請求項1,2又は
3のズームレンズ。
4. When the focal length of the first lens unit is f1 and the focal length of the entire system at the telephoto end is fT, 4. The zoom lens according to claim 1, wherein the following condition is satisfied.
【請求項5】 前記回折光学素子は1層構成又は互いに
分散の異なる材質より成る2層構成より成っていること
を特徴とする請求項1から4のいずれか1項のズームレ
ンズ。
5. The zoom lens according to claim 1, wherein the diffractive optical element has a one-layer structure or a two-layer structure made of materials having different dispersions.
JP31692498A 1998-10-20 1998-10-20 Zoom lens Expired - Fee Related JP4266414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31692498A JP4266414B2 (en) 1998-10-20 1998-10-20 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31692498A JP4266414B2 (en) 1998-10-20 1998-10-20 Zoom lens

Publications (3)

Publication Number Publication Date
JP2000121940A true JP2000121940A (en) 2000-04-28
JP2000121940A5 JP2000121940A5 (en) 2005-12-02
JP4266414B2 JP4266414B2 (en) 2009-05-20

Family

ID=18082445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31692498A Expired - Fee Related JP4266414B2 (en) 1998-10-20 1998-10-20 Zoom lens

Country Status (1)

Country Link
JP (1) JP4266414B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131638A (en) * 2000-10-19 2002-05-09 Canon Inc Zoom lens and optical apparatus using the same
JP2004077801A (en) * 2002-08-19 2004-03-11 Canon Inc Zoom lens and optical equipment with same
WO2004081631A1 (en) * 2003-03-14 2004-09-23 Matsushita Electric Industrial Co. Ltd. Small zooming lens, and digital camera and video camera both having same
US7106521B2 (en) 2001-09-28 2006-09-12 Canon Kabushiki Kaisha Zoom lens and camera with the zoom lens
JP2006243355A (en) * 2005-03-03 2006-09-14 Sony Corp Zoom lens and imaging apparatus
JP2006285021A (en) * 2005-04-01 2006-10-19 Canon Inc Zoom lens and imaging apparatus with same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131638A (en) * 2000-10-19 2002-05-09 Canon Inc Zoom lens and optical apparatus using the same
JP4642209B2 (en) * 2000-10-19 2011-03-02 キヤノン株式会社 Zoom lens and optical apparatus using the same
US7106521B2 (en) 2001-09-28 2006-09-12 Canon Kabushiki Kaisha Zoom lens and camera with the zoom lens
JP2004077801A (en) * 2002-08-19 2004-03-11 Canon Inc Zoom lens and optical equipment with same
WO2004081631A1 (en) * 2003-03-14 2004-09-23 Matsushita Electric Industrial Co. Ltd. Small zooming lens, and digital camera and video camera both having same
EP1615059A1 (en) * 2003-03-14 2006-01-11 Matsushita Electric Industrial Co., Ltd. Small zooming lens, and digital camera and video camera both having same
US7161742B2 (en) 2003-03-14 2007-01-09 Matsushita Electric Industrial Co., Ltd. Small zoom lens, and digital camera and video camera both having same
EP1615059A4 (en) * 2003-03-14 2007-07-04 Matsushita Electric Ind Co Ltd Small zooming lens, and digital camera and video camera both having same
JP2006243355A (en) * 2005-03-03 2006-09-14 Sony Corp Zoom lens and imaging apparatus
US7738185B2 (en) 2005-03-03 2010-06-15 Sony Corporation Zoom lens and imaging apparatus
JP4650676B2 (en) * 2005-03-03 2011-03-16 ソニー株式会社 Zoom lens and imaging device
JP2006285021A (en) * 2005-04-01 2006-10-19 Canon Inc Zoom lens and imaging apparatus with same

Also Published As

Publication number Publication date
JP4266414B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US7133221B2 (en) Lens system and optical device having the same
JP4745707B2 (en) Optical system
JP2009139543A (en) Optical system, and optical equipment having same
JP2002244044A (en) Zoom lens and optical instrument using it
JP5202025B2 (en) Imaging optical system and imaging apparatus having the same
JP3342400B2 (en) Optical system having diffractive optical element
JP3832935B2 (en) Zoom lens
JP3314021B2 (en) Zoom lens
JP3792846B2 (en) Zoom lens
US6865027B2 (en) Zoom lens and camera having the same
JP3505980B2 (en) Imaging device
JP2004333768A (en) Zoom lens and imaging device having the same
JPH11183800A (en) Diffraction refractive type rear attachment lens
JP2003021783A (en) Zoom lens and optical equipment using the same
JP2000147379A (en) Zoom lens
JP2001124990A (en) Zoom lens
JP2002182110A (en) Zoom lens, and image projecting device and image pickup device using the zoom lens
JPH1152236A (en) Rear focus type zoom lens
JP2000121821A (en) Rear focusing zoom lens having diffraction optical elements
JP4266414B2 (en) Zoom lens
JP3792847B2 (en) Zoom lens
JP6172951B2 (en) Optical system and imaging apparatus having the same
JP2004012504A (en) Zoom lens and optical equipment having it
JP4208293B2 (en) Zoom lens
JP2001318316A (en) Zoom lens and optical apparatus using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees