JPH1152244A - Small-sized zoom lens - Google Patents

Small-sized zoom lens

Info

Publication number
JPH1152244A
JPH1152244A JP22105797A JP22105797A JPH1152244A JP H1152244 A JPH1152244 A JP H1152244A JP 22105797 A JP22105797 A JP 22105797A JP 22105797 A JP22105797 A JP 22105797A JP H1152244 A JPH1152244 A JP H1152244A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
diffractive optical
lens unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22105797A
Other languages
Japanese (ja)
Other versions
JP3792846B2 (en
Inventor
Hiroyuki Hamano
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22105797A priority Critical patent/JP3792846B2/en
Publication of JPH1152244A publication Critical patent/JPH1152244A/en
Priority to US09/421,367 priority patent/US6606200B1/en
Application granted granted Critical
Publication of JP3792846B2 publication Critical patent/JP3792846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized zoom lens having excellent optical performance over a whole variable power range from a wide-angle end to a telescopic end. SOLUTION: In order from an object side, a first lens group L1 of a positive refractive power, a second lens group L2 of a negative refractive power, a third lens group L3 of a positive refractive power and a fourth lens group L4 of a positive refractive power are arranged. Then, the first lens group L1 is composed of two lenses of a negative meniscus lens and a bi-convex lens, by making it so as to have a diffraction optical surface to the lens surface on the side of the image plane of the negative meniscus lens and properly setting the phase, a chromatic aberration generated in the first lens group L1 is reduced and the chromatic aberration over a whole variable power region is excellently compensated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にビデオカメラ
や電子スチルカメラ、銀塩写真用カメラに好適な変倍比
10程度以上でFナンバ1.8程度以上の高変倍比、大
口径比を持ち、かつ良好な光学性能を維持しながら小型
化を図ったズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high zoom ratio and a large aperture ratio of about 10 or more and an F number of about 1.8 or more, which are particularly suitable for video cameras, electronic still cameras, and silver halide photography cameras. The present invention relates to a zoom lens having miniaturization while maintaining good optical performance.

【0002】[0002]

【従来の技術】最近、ホームビデオカメラ等の小型軽量
化に伴い、撮像用のズームレンズの小型化にも目覚しい
進歩が見られ、特にレンズ全長の短縮化や前玉径の小型
化、構成の簡略化に力が注がれている。
2. Description of the Related Art Recently, as home video cameras and the like have become smaller and lighter, remarkable progress has been made in miniaturization of zoom lenses for imaging. Emphasis is placed on simplification.

【0003】これらの目的を達成する1つの手段とし
て、物体側の第1レンズ群以外のレンズ群を移動させて
フォーカスを行う所謂リアフォーカス式のズームレンズ
が知られている。一般に、リアフォーカス式のズームレ
ンズは、第1レンズ群を移動させてフォーカスを行うズ
ームレンズに比べて第1レンズ群の有効径が小さくな
り、レンズ系全体の小型化が容易になり、また近接撮影
特に極至近撮影が容易となり、更に小型軽量のレンズ群
を移動させているので、レンズ群の駆動力が小さくて済
み、迅速な焦点合わせができる等の利点がある。
As one means for achieving these objects, there is known a so-called rear focus type zoom lens which performs focusing by moving a lens group other than the first lens group on the object side. In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens that performs focusing by moving the first lens group, so that the entire lens system can be easily reduced in size, and Since it is easy to take a picture, particularly a very close-up picture, and because the small and light lens group is moved, there is an advantage that the driving force of the lens group is small and quick focusing can be performed.

【0004】このようなリアフォーカス式のズームレン
ズとして、例えば特開昭62−24213号公報や特開
昭63−247316号公報では、物体側から順に正の
屈折力の第1レンズ群、負の屈折力の第2レンズ群、正
の屈折力の第3レンズ群、正の屈折力の第4レンズ群の
4つのレンズ群を有し、第2レンズ群を移動させて変倍
を行い、第4レンズ群を移動させて変倍に伴う像面変動
とフォーカスを行っている。
[0004] As such a rear focus type zoom lens, for example, Japanese Patent Application Laid-Open Nos. 62-24213 and 63-247316 disclose a first lens group having a positive refractive power and a negative lens in order from the object side. The zoom lens has four lens groups, a second lens group having a refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. The four lens groups are moved to perform image plane fluctuation and focusing due to zooming.

【0005】また、特開平2−39011号公報や特開
平6−18782号公報では、6〜8倍の変倍比を持つ
ズームレンズの第1レンズ群を、正負2枚のレンズ構成
とすることで、レンズ枚数の削減を図っている。
In Japanese Patent Application Laid-Open Nos. Hei 2-39011 and Hei 6-18782, the first lens group of a zoom lens having a zoom ratio of 6 to 8 is made up of two positive and negative lenses. Thus, the number of lenses is reduced.

【0006】一方、色収差の発生を抑制する方法とし
て、近年では回折光学素子を撮像光学系に応用する提案
がなされている。例えば、特開平4−218421号公
報、特開平6−324262号公報では、単レンズに回
折光学素子を応用することで色収差の低減を図ってい
る。
On the other hand, as a method for suppressing the occurrence of chromatic aberration, in recent years, proposals have been made to apply a diffractive optical element to an imaging optical system. For example, in JP-A-4-218421 and JP-A-6-324262, chromatic aberration is reduced by applying a diffractive optical element to a single lens.

【0007】また、米国特許第5268790号公報で
はズームレンズの第2レンズ群又は第8レンズ群に回折
光学素子を用いることが提案され、従来例に対してレン
ズ枚数の削減や小型化に寄与しているが、レンズ枚数の
削減や小型化は十分には達成されていない。
Also, US Pat. No. 5,268,790 proposes to use a diffractive optical element for the second lens group or the eighth lens group of the zoom lens, which contributes to a reduction in the number of lenses and a reduction in size compared to the conventional example. However, reduction of the number of lenses and miniaturization have not been sufficiently achieved.

【0008】[0008]

【発明が解決しようとする課題】一般に、光学系を小型
化するために屈折力を強めながら、レンズ枚数を削減し
ようとすると、レンズ肉厚が増してしまい効果が不十分
になってしまう。
Generally, if the number of lenses is reduced while increasing the refracting power in order to reduce the size of the optical system, the lens thickness increases and the effect becomes insufficient.

【0009】特に、ズーム比が10倍以上の高変倍比の
ズームレンズでは、第1レンズ群内で発生する色収差を
或る程度補正しないと、変倍に伴う色収差の変動を補正
することは困難である。従って、単に非球面を用いてレ
ンズ枚数を削減しようとすると、正レンズの屈折力が強
くなり過ぎて実現不可能な形状になり、結局は変倍部の
屈折力を弱くする必要が生じて、レンズ全長の小型化は
達成されない。
In particular, in a zoom lens having a high zoom ratio with a zoom ratio of 10 times or more, if the chromatic aberration generated in the first lens unit is not corrected to some extent, it is impossible to correct the fluctuation of the chromatic aberration due to the zooming. Have difficulty. Therefore, if the number of lenses is simply reduced by using an aspherical surface, the refractive power of the positive lens becomes too strong, resulting in a shape that cannot be realized, and eventually it becomes necessary to reduce the refractive power of the variable power unit. No reduction in the overall length of the lens is achieved.

【0010】本発明の目的は、第1レンズ群に回折光学
面を導入し、回折光学的な作用と屈折系の色消し効果を
合成することで第1レンズ群で発生する色収差を低減
し、変倍部の屈折力を維持しながらレンズ枚数を削減す
ることで、レンズ全長の小型化を達成すると共に、広角
端から望遠端に至る全変倍範囲に渡り良好な光学性能を
有する小型のズームレンズを提供することにある。
An object of the present invention is to introduce a diffractive optical surface into the first lens group, reduce the chromatic aberration generated in the first lens group by combining the diffractive optical function and the achromatic effect of the refraction system, By reducing the number of lenses while maintaining the refractive power of the zoom section, the overall length of the lens can be reduced, and a compact zoom with good optical performance over the entire zoom range from the wide-angle end to the telephoto end. It is to provide a lens.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る小型のズームレンズは、物体側から順に
正の屈折力を有する第1レンズ群、負の屈折力を有する
第2レンズ群、正の屈折力を有する第3レンズ群、正の
屈折力を有する第4レンズ群を有し、少なくとも前記第
2レンズ群と第4レンズ群を移動させて変倍を行うと共
に、フォーカシングを前記第4レンズ群を移動させて行
い、前記第1レンズ群は正、負それぞれ1枚ずつの2枚
のレンズで構成し、光軸に対して回転対称な少なくとも
1つの回折光学面を有することを特徴とする。
According to the present invention, there is provided a small-sized zoom lens comprising: a first lens unit having a positive refractive power and a second lens having a negative refractive power in order from the object side. A lens group, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. At least the second lens group and the fourth lens group are moved to perform zooming and perform focusing. The fourth lens group is moved, and the first lens group is composed of two lenses, one each for positive and negative, and has at least one diffractive optical surface rotationally symmetric with respect to the optical axis. It is characterized by.

【0012】[0012]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は本発明の実施例1のレンズ断面
図であり、物体側から順に正の屈折力の第1レンズ群L
1、負の屈折力の第2レンズ群L2、正の屈折力の第3
レンズ群L3、正の屈折力の第4レンズ群L4が配列さ
れている。広角端から望遠端への変倍に際しては、少な
くとも第2レンズ群L2を像面側に移動させると共に、
変倍に伴う像面変動を第4レンズ群L4を矢印のように
移動させて補正している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a sectional view of a lens according to a first embodiment of the present invention. The first lens unit L having a positive refractive power is arranged in order from the object side.
1, the second lens unit L2 having a negative refractive power, and the third lens unit L2 having a positive refractive power
A lens unit L3 and a fourth lens unit L4 having a positive refractive power are arranged. Upon zooming from the wide-angle end to the telephoto end, at least the second lens unit L2 is moved to the image plane side,
The image plane fluctuation due to zooming is corrected by moving the fourth lens unit L4 as shown by the arrow.

【0013】また、第4レンズ群L4を光軸上移動させ
てフォーカシングを行うリアフォーカス式を採用してお
り、第4レンズ群L4の実線の軌跡4aと点線の軌跡4
bはそれぞれ無限遠物体と近距離物体にフォーカスして
いるときの広角端から望遠端への変倍に伴う像面変動を
補正するための移動軌跡を示している。
Also, a rear-focusing type for performing focusing by moving the fourth lens unit L4 on the optical axis is adopted, and the solid line locus 4a and the dotted line locus 4a of the fourth lens unit L4 are adopted.
b indicates a movement locus for correcting an image plane variation accompanying zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance.

【0014】なお、本実施例では第1レンズ群L1、第
3レンズ群L3は変倍及びフォーカスの際には固定とし
ているが、第2レンズ群L2の変倍分担を少なくするた
めに、少なくとも第1レンズ群L1を移動させることも
可能である。
In this embodiment, the first lens unit L1 and the third lens unit L3 are fixed at the time of zooming and focusing, but at least the second lens unit L2 has at least a variable zoom ratio. It is also possible to move the first lens unit L1.

【0015】本実施例においては、第4レンズ群L4を
移動させて変倍に伴う像面変動の補正を行うと共に、第
4レンズ群L4を移動させてフォーカスを行うようにし
ている。特に、曲線4a、4bに示すように広角端から
望遠端への変倍に際しては、物体側へ凸状の軌跡を有す
るように移動させている。これにより、第3レンズ群L
3と第4レンズ群L4の間の空間の有効利用を図り、レ
ンズ全長の短縮化を効果的に達成している。
In this embodiment, the fourth lens unit L4 is moved to correct the image plane fluctuation caused by zooming, and the fourth lens unit L4 is moved for focusing. In particular, at the time of zooming from the wide-angle end to the telephoto end as shown by the curves 4a and 4b, the lens is moved so as to have a convex locus toward the object side. Thereby, the third lens unit L
By effectively utilizing the space between the third and fourth lens units L4, the overall length of the lens is effectively reduced.

【0016】そして実施例1では、第1レンズ群L1を
負メニスカスレンズと両凸レンズの2枚のレンズで構成
し、少なくとも1面の具体的には最も像面側に回折光学
面を有するようにして、その位相を適切に設定すること
で、第1レンズ群L1で発生する色収差を低減し、変倍
全域に渡って色収差を良好に補正するようにしている。
In the first embodiment, the first lens unit L1 is composed of two lenses, a negative meniscus lens and a biconvex lens, and has at least one surface, specifically, a diffractive optical surface closest to the image plane. By properly setting the phase, chromatic aberration generated in the first lens unit L1 is reduced, and chromatic aberration is favorably corrected over the entire zoom range.

【0017】第1レンズ群L1を正レンズのみで構成し
回折光学面を設けても、例えばd線とg線といった2波
長のみの色収差を考えたときは色収差を抑えることがで
きる。しかし、回折光学面は異常分散性を有しているた
め、特に望遠端ではそれ以外の波長に対する色収差、所
謂2次スペクトルが大きくなってしまい、全可視波長範
囲内で色収差を補正することができない。
Even if the first lens unit L1 comprises only a positive lens and is provided with a diffractive optical surface, chromatic aberration can be suppressed when chromatic aberration of only two wavelengths, such as d-line and g-line, is considered. However, since the diffractive optical surface has anomalous dispersion, the chromatic aberration for other wavelengths, that is, the so-called secondary spectrum becomes large, especially at the telephoto end, and the chromatic aberration cannot be corrected within the entire visible wavelength range. .

【0018】回折光学面を用いることなく屈折面のみで
色収差を補正しようとすると、色消しのために正レンズ
と負レンズの屈折力が強くなってしまうために、その屈
折力を維持したまま、第1レンズ群L1を正負の単レン
ズの2枚構成といった少ない枚数で構成することは困難
になる。
If it is attempted to correct chromatic aberration only by using a refracting surface without using a diffractive optical surface, the refractive power of the positive lens and the negative lens increases due to achromatism. It is difficult to configure the first lens unit L1 with a small number of lenses, such as two positive and negative single lenses.

【0019】第1レンズ群L1の色消し効果を回折光学
面に分担させるには、回折光学面の屈折力は正の屈折力
を持つことが望ましい。回折光学面の屈折力が負になる
と、通常の屈折光学系と発生する色収差が同じになって
しまい、回折光学面による色消し効果が生ぜず、光学系
全域で十分な色収差の補正が行えない。
In order for the achromatizing effect of the first lens unit L1 to be shared by the diffractive optical surface, it is desirable that the diffractive optical surface has a positive refractive power. If the refractive power of the diffractive optical surface becomes negative, the chromatic aberration generated by the ordinary refractive optical system becomes the same, the achromatic effect by the diffractive optical surface does not occur, and it is not possible to sufficiently correct the chromatic aberration over the entire optical system .

【0020】第1レンズ群L1で発生する色収差を補正
しながら、レンズ枚数の削減を達成するには、第1レン
ズ群L1の全体、及びその負レンズの焦点距離をそれぞ
れf1 、f1nとするとき、次の条件式を満足するように
することが好ましい。
In order to reduce the number of lenses while correcting the chromatic aberration generated in the first lens unit L1, it is necessary to set the focal lengths of the entire first lens unit L1 and its negative lens to f1 and f1n, respectively. It is preferable to satisfy the following conditional expressions.

【0021】 2.2<|f1n/f1 |<4.5 …(1) 2.2 <| f1n / f1 | <4.5 (1)

【0022】条件式(1) の下限を超えて負レンズの屈折
力が強くなり過ぎると、正レンズの屈折力も強くなり、
その曲率も大きくなって第1レンズ群L1を2枚構成に
することが困難になる。逆に、負レンズの屈折力が弱く
なり過ぎると、回折光学面での色消し効果が大きくなり
過ぎて、2次スペクトルによる光学性能劣化が大きくな
るので好ましくない。
When the refractive power of the negative lens becomes too strong beyond the lower limit of the conditional expression (1), the refractive power of the positive lens also becomes strong.
The curvature becomes large, and it becomes difficult to form the first lens unit L1 into two lenses. Conversely, if the refractive power of the negative lens becomes too weak, the achromatizing effect on the diffractive optical surface becomes too large, and the optical performance is deteriorated due to the secondary spectrum, which is not preferable.

【0023】変倍全域で球面収差やコマ収差、歪曲等の
諸収差の補正を十分に行うには、第1レンズ群L1で発
生する球面収差やコマ収差、歪曲等を補正する必要があ
り、このためには第1レンズ群L1内の少なくとも1面
に非球面を設けることがよい。
In order to sufficiently correct spherical aberration, coma, distortion, and other aberrations throughout the zooming range, it is necessary to correct spherical aberration, coma, distortion, and the like generated in the first lens unit L1. For this purpose, it is preferable to provide at least one aspheric surface in the first lens unit L1.

【0024】この非球面形状は、光軸方向にX、光軸と
垂直方向にH、光の進行方向を正とし、Rを近軸曲率半
径、A、B、C、D、Eをそれぞれ非球面係数としたと
き、次式で表している。
In this aspherical shape, X is in the optical axis direction, H is in the direction perpendicular to the optical axis, the traveling direction of light is positive, R is the paraxial radius of curvature, and A, B, C, D, and E are aspherical, respectively. When the spherical coefficient is used, it is expressed by the following equation.

【0025】 X=(H2 /R)/[1+{1−(1+K)(H/R)2}1/2]+BH4 +CH6 +DH8 +EH10 …(2) X = (H 2 / R) / [1+ {1- (1 + K) (H / R) 2 } 1/2 ] + BH 4 + CH 6 + DH 8 + EH 10 (2)

【0026】実施例1では、第1レンズ群L1の最も物
体側のレンズ面に非球面を設けることにより、特に望遠
端で発生する球面収差やコマ収差を良好に補正してい
る。第1レンズ群L1の非球面は周辺にゆくに従って正
の屈折力が弱まる形状が、球面収差やコマ収差の補正に
は効果的である。
In the first embodiment, by providing an aspherical surface on the lens surface closest to the object in the first lens unit L1, spherical aberration and coma occurring particularly at the telephoto end are favorably corrected. The shape of the aspherical surface of the first lens unit L1 whose positive refractive power decreases as it goes to the periphery is effective for correcting spherical aberration and coma.

【0027】また、第2レンズ群L2を2枚の負レンズ
と1枚の正レンズで構成して、第2レンズ群L2で発生
する色収差や他の諸収差を良好に補正することが好まし
い。更に、この第2レンズ群L2は物体側から順に像側
に強い凹面を向けた負メニスカスレンズ、両凹レンズ、
物体側に強い凸面を向けた正レンズで構成することが望
ましい。
It is preferable that the second lens unit L2 is composed of two negative lenses and one positive lens so that chromatic aberration and other various aberrations generated in the second lens unit L2 can be satisfactorily corrected. Further, the second lens unit L2 includes a negative meniscus lens having a strong concave surface facing the image side in order from the object side, a biconcave lens,
It is desirable to use a positive lens with a strong convex surface facing the object side.

【0028】更に、第3レンズ群L3の最も物体側のレ
ンズ面と第4レンズ群L4の最も物体側のレンズ面が非
球面とされている。
The most object side lens surface of the third lens unit L3 and the most object side lens surface of the fourth lens unit L4 are aspherical.

【0029】また、第1レンズ群L1の最も像側のレン
ズ面が回折光学面とされている。
The lens surface closest to the image in the first lens unit L1 is a diffractive optical surface.

【0030】図2、図3はそれぞれ実施例2、3のレン
ズ断面図である。これらの実施例2、3では、第2レン
ズ群L2は2枚の負レンズで構成されている。実施例
2、3における非球面は実施例1の場合以外に、第2レ
ンズ群L2の物体側のレンズの像面側レンズ面が非球面
とされている。
FIGS. 2 and 3 are sectional views of lenses of Examples 2 and 3, respectively. In the second and third embodiments, the second lens unit L2 includes two negative lenses. The aspheric surfaces in the second and third embodiments are different from those in the first embodiment in that the image-side lens surface of the object-side lens of the second lens unit L2 is aspheric.

【0031】また、第1レンズ群L1の最も物体側のレ
ンズ面及び第2レンズ群L2の像面側のレンズの物体側
レンズ面に回折光学面が設けられ、少ない枚数で第2レ
ンズ群L2内の色収差を補正し、変倍全域に渡って色収
差の発生を低減している。また、第2レンズ群L2を2
枚といった少ない枚数で構成することができるため、更
にレンズ全長を短縮することができる。
A diffractive optical surface is provided on the lens surface closest to the object side of the first lens unit L1 and the object side lens surface of the lens on the image plane side of the second lens unit L2. Is corrected to reduce the occurrence of chromatic aberration over the entire zoom range. Also, the second lens unit L2 is set to 2
Since it can be composed of a small number of lenses, for example, the total length of the lens can be further reduced.

【0032】第2レンズ群L2の回折光学面は負の屈折
力を持つことが、第2レンズ群L2内で色収差補正を行
う点で効果的である。特に、第2レンズ群L2のみに回
折光学面を設けた場合に、2波長に限っては色収差が補
正できるが、2次スペクトルの補正が困難になる。
It is effective that the diffractive optical surface of the second lens unit L2 has a negative refractive power in that chromatic aberration is corrected in the second lens unit L2. In particular, when the diffractive optical surface is provided only in the second lens unit L2, chromatic aberration can be corrected only for two wavelengths, but it becomes difficult to correct the secondary spectrum.

【0033】それに対して、前述のように第1レンズ群
L1を正レンズ、負レンズの2枚構成として回折光学面
を設けることで、第2レンズ群L2で発生する色の2次
スペクトルの影響を相殺することができ、変倍全域、全
可視波長範囲で良好に色収差を補正することが可能とな
る。
On the other hand, as described above, by providing the first lens unit L1 as a two-lens structure of a positive lens and a negative lens and providing a diffractive optical surface, the influence of the secondary spectrum of the color generated in the second lens unit L2 is obtained. Can be canceled out, and chromatic aberration can be favorably corrected in the entire zoom range and in the entire visible wavelength range.

【0034】実施例2、3と同様の構成のレンズにおい
て、第2レンズ群L2で発生する歪曲や非点収差を補正
し、変倍に伴うこれらの収差の変動を抑制するために
は、第2レンズ群L2は物体側から順に像面側に強い凹
面を向けた負メニスカスレンズと物体側に強い凹面を向
けた負メニスカスレンズで構成することがよい。
In order to correct distortion and astigmatism generated in the second lens unit L2 and to suppress the fluctuation of these aberrations due to zooming in a lens having the same configuration as that of the second and third embodiments, The two-lens unit L2 is preferably composed of a negative meniscus lens having a strong concave surface facing the image surface side and a negative meniscus lens having a strong concave surface facing the object side in order from the object side.

【0035】更に、第2レンズ群L2中の像側の負レン
ズの物体側面、及び像側の曲率半径(非球面の場合は軸
上と有効径で決定される参照球面)を、それぞれRa、
Rbとするとき、次の条件式を満足することが好まし
い。
Further, the object side surface of the image-side negative lens in the second lens unit L2 and the image-side radius of curvature (in the case of an aspherical surface, the reference spherical surface determined by the on-axis and effective diameter) are Ra,
When Rb is satisfied, it is preferable that the following conditional expression is satisfied.

【0036】 1<(Rb+Ra)/(Rb−Ra)<2 …(3) 1 <(Rb + Ra) / (Rb−Ra) <2 (3)

【0037】条件式(3) の下限を超えると広角端で発生
する歪曲収差が負に大きくなり過ぎ、逆に上限を超える
と望遠端での歪曲収差が補正しきれなくなる。
If the lower limit of conditional expression (3) is exceeded, the distortion generated at the wide-angle end becomes too negative, whereas if the upper limit is exceeded, the distortion at the telephoto end cannot be corrected completely.

【0038】また、第2レンズ群L2中に回折光学面と
は別に、実施例2、3のように少なくとも1面の非球面
を設けるか、回折光学面のベースの面を非球面にする
と、更に光学性能が改善される。
If at least one aspherical surface is provided in the second lens unit L2 separately from the diffractive optical surface as in Embodiments 2 and 3, or if the base surface of the diffractive optical surface is made aspherical, Further, the optical performance is improved.

【0039】実施例1〜3において、回折光学面は位相
をφ(h)、λを基準波長(d線)、hを光軸からの距
離とすると、次の式で表される。
In Examples 1 to 3, when the phase of the diffractive optical surface is φ (h), λ is the reference wavelength (d-line), and h is the distance from the optical axis, it is expressed by the following equation.

【0040】 φ(h)=2π/λ(C2・h2 +C4・h4 +・・+C2・i・h2・i )…(4) Φ (h) = 2π / λ (C 2 · h 2 + C 4 · h 4 + ·· + C 2 · i · h 2 · i ) (4)

【0041】第1レンズ群L1で十分な色収差補正が行
うためには、第1レンズ群L1の2枚のレンズの焦点距
離、アッべ数をそれぞれf1i、ν1i(i=1、2)、第
1レンズ群L1の回折光学面の2次項の係数をC2とする
とき、次式の条件を満足することが望ましい。
In order for the first lens unit L1 to perform sufficient chromatic aberration correction, the focal lengths and Abbe numbers of the two lenses of the first lens unit L1 must be f1i, v1i (i = 1, 2), the coefficients of the second order term of the diffractive optical surface of the first lens group L1 when the C 2, it is preferable that the following conditional expression is satisfied:.

【0042】 |0.5797・C2+Σ(1/(f1i・ν1i)|・f1 <0.02…(5) | 0.5797 · C 2 + Σ (1 / (f1i · ν1i) | · f1 <0.02 (5)

【0043】条件式(5) は第1レンズ群L1に関して屈
折光学面と回折光学面での色消し効果が合成されて、十
分に色収差が補正されるための条件である。条件式(5)
の範囲内を超えると、第1レンズ群L1で発生する色収
差の補正が不十分になってしまうので好ましくない。
Conditional expression (5) is a condition for the first lens unit L1 in which the achromatic effect on the refracting optical surface and the diffractive optical surface is combined to sufficiently correct chromatic aberration. Conditional expression (5)
Exceeds the range, it is not preferable because correction of chromatic aberration generated in the first lens unit L1 becomes insufficient.

【0044】一般に、屈折光学系のアッべ数(分散値)
は、d、C、F線の各波長における屈折力をNd、N
C、NFとしたとき、次式で表される。
In general, the Abbe number (dispersion value) of a refractive optical system
Represents the refractive power at each wavelength of the d, C, and F lines as Nd, N
When C and NF are set, they are expressed by the following equations.

【0045】νd=(Nd−1)/(NF−NC)Νd = (Nd-1) / (NF-NC)

【0046】一方、回折光学面でのd線による分散値ν
dは、d線、C線、F線の各波長をλd、λC、λFと
したとき、νd=λd/(λF一λC)で表され、νd
=−3.45となる。
On the other hand, the dispersion value ν due to d-line on the diffractive optical surface
d is represented by νd = λd / (λF-λC), where λd, λC, and λF are d-line, C-line, and F-line wavelengths, respectively.
= −3.45.

【0047】また、回折光学面の主波長における近軸的
な1次回折光の屈折力ψは、回折光学面の位相を表す前
式から2次項の係数をC2としたとき、ψ=−2・C2で表
される。
The refractive power 近 of the paraxial first-order diffracted light at the main wavelength of the diffractive optical surface is given by the following formula representing the phase of the diffractive optical surface, where the coefficient of the second-order term is C 2 ψ = −2 - represented by C 2.

【0048】或るレンズ群で発生する色収差はψ/νに
比例するので、これに相当する量は回折光学面では、次
の通りとなる。
Since the chromatic aberration generated in a certain lens group is proportional to ψ / ν, the amount corresponding to this is as follows on the diffractive optical surface.

【0049】 −2・C2/(−3.45)=0.5797・C2 … (6)−2 · C 2 /(−3.45)=0.5797·C 2 (6)

【0050】また、屈折光学系ではこの量はΣ1/(f
・ν)となる。従って、この和が0に近い程、そのレン
ズ群の色収差補正が十分に行われていることが分かる。
In a refractive optical system, this amount is Σ1 / (f
· Ν). Therefore, it can be seen that the closer the sum is to 0, the more the chromatic aberration of the lens group is sufficiently corrected.

【0051】実施例において、第2レンズ群L2の移動
量を少なくして、ズーム部のレンズ全長を短縮するに
は、第2レンズ群L2、全系の広角端、望遠端の焦点距
離をそれぞれf2 、fw、ftとするとき、次の条件式
を満足することが好ましい。
In the embodiment, in order to reduce the amount of movement of the second lens unit L2 and to shorten the overall length of the zoom unit, the focal lengths of the second lens unit L2, the wide-angle end and the telephoto end of the entire system must be respectively set. When f2, fw, and ft are satisfied, it is preferable to satisfy the following conditional expressions.

【0052】 0.25<|f2 /(fw・ft)1/2 |<0.35 …(7) 0.25 <| f 2 / (fw · ft) 1/2 | <0.35 (7)

【0053】条件式(7) は第2レンズ群L2の屈折力に
関するものであり、変倍に伴う収差変動を少なくしなが
ら所定の変倍比を効果的に得るためのものである。下限
値を超えて第2レンズ群L2の屈折力が強くなり過ぎる
と小型化には有利になるが、べッツヴァール和が負の方
向に増大し、像面湾曲が大きくなると共に変倍に伴う収
差変動が大きくなり過ぎるので良くない。逆に、上限値
を超えると第2レンズ群L2の移動量が大きくなり過ぎ
て、レンズ全長が長くなってしまう。
Conditional expression (7) relates to the refractive power of the second lens unit L2, and is intended to effectively obtain a predetermined zoom ratio while reducing aberration fluctuations caused by zooming. If the refractive power of the second lens unit L2 exceeds the lower limit and becomes too strong, it is advantageous for miniaturization. However, the Betzwal sum increases in the negative direction, the field curvature increases, and aberrations associated with zooming increase. It is not good because the fluctuation becomes too large. Conversely, if the value exceeds the upper limit, the amount of movement of the second lens unit L2 becomes too large, and the overall length of the lens becomes longer.

【0054】次に、実施例1〜3の数値実施例1〜3を
示す。これらの数値実施例において、riは物体側から順
に第i番目のレンズ面の曲率半径、diは第i番目のレン
ズ厚又は空気間隔、niとνi は第i番目のレンズのガラ
スの屈折率とアッべ数である。なお、数値実施例におけ
る最も像面側の屈折力を持たない17面、18面は、光
学フィルタ、フェースプレート等を表している。
Next, Numerical Embodiments 1 to 3 of Embodiments 1 to 3 will be described. In these numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness or air gap, and ni and νi are the refractive indexes of the glass of the i-th lens. Abbe number. The seventeenth and eighteenth surfaces having no refracting power closest to the image plane in the numerical examples represent optical filters, face plates, and the like.

【0055】 数値実施例1 f =4.19000 〜41.78 fno =1:1.85〜2.37 2ω=59.6°〜 6.6° r1 = 14.921(非球面) d1 =0.70 n1 =1.84666 ν1 =23.8 r2 = 11.300 d2 =4.90 n2 =1.69680 ν2 =55.5 r3 = -263.343(回折面) d3 =可変 r4 = 11.229 d4 =0.50 n3 =1.83481 ν3 =42.7 r5 = 3.919 d5 =2.44 r6 = -5.438 d6 =0.50 n4 =1.67003 ν4 =47.3 r7 = 5.605 d7 =1.80 n5 =1.84666 ν5 =23.8 r8 = 350.015 d8 =可変 r9 = 0.000(絞り) d9 =1.00 r10= 5.130(非球面) d10 =3.02 n6 =1.58313 ν6 =59.4 r11=-2039.298 d11 =0.08 r12= 7.029 d12 =0.55 n7 =1.84666 ν7 =23.8 r13= 4.337 d13 = 可変 r14= 8.962(非球面) d14 =2.09 n8 =1.58313 ν8 =59.4 r15= -9.351 d15 =0.50 n9 =1.84666 ν9 =23.8 r16= -15.459 d16 =0.75 r17= ∞ d17 =3.27 n10 =1.51633 ν10 =64.2 r18= ∞Numerical Example 1 f = 4.19000 to 41.78 fno = 1: 1.85 to 2.37 2ω = 59.6 ° to 6.6 ° r1 = 14.921 (aspherical surface) d1 = 0.70 n1 = 1.84666 ν1 = 23.8 r2 = 11.300 d2 = 4.90 n2 = 1.69680 ν2 = 55.5 r3 = -263.343 (diffraction surface) d3 = variable r4 = 11.229 d4 = 0.50 n3 = 1.83481 ν3 = 42.7 r5 = 3.919 d5 = 2.44 r6 = -5.438 d6 = 0.50 n4 = 1.67003 ν4 = 47.3 r7 = 5.605 d7 = 1.80 n5 = 1.84666 ν5 = 23.8 r8 = 350.015 d8 = variable r9 = 0.000 (aperture) d9 = 1.00 r10 = 5.130 (aspheric) d10 = 3.02 n6 = 1.58313 ν6 = 59.4 r11 = -2039.298 d11 = 0.08 r12 = 7.029 d12 = 0.55 n7 = 1.84666 ν7 = 23.8 r13 = 4.337 d13 = Variable r14 = 8.962 (aspheric surface) d14 = 2.09 n8 = 1.58313 ν8 = 59.4 r15 = -9.351 d15 = 0.50 n9 = 1.84666 ν9 = 23.8 r16 = -15.459 d16 = 0.75 r17 = ∞ d17 = 3.27 n10 = 1.51633 ν10 = 64.2 r18 =

【0056】 非球面係数 1面 K=-5.34084・10-1 B= 6.74185・10-6 C=-9.64841・10-9 D= 2.43360・10-10 E= 0.00000・100 10面 K=-1.31216・100 B= 4.96251・10-4 C=-2.61862・10-7 D= 3.09567・10-8 E= 1.87661・10-9 14面 K=-1.97016・10-1 B=-2.58615・10-4 C= 2.43614・10-7 D= 4.02213・10-7 E=-1.92905・10-8 Aspherical surface coefficient 1 surface K = -5.34084 · 10 −1 B = 6.74185 · 10 -6 C = −9.64841 · 10 -9 D = 2.43360 · 10 -10 E = 0.00000 · 10 0 10 surface K = −1.31216・ 10 0 B = 4.96251 ・ 10 -4 C = -2.61862 ・ 10 -7 D = 3.09567 ・ 10 -8 E = 1.87661 ・ 10 -9 14 surface K = -1.97016 ・ 10 -1 B = -2.58615 ・ 10 -4 C = 2.43614 ・ 10 -7 D = 4.02213 ・ 10 -7 E = -1.92905 ・ 10 -8

【0057】 位相係数 3面 C2=-6.49067・10-4 C4=3.43622・10-6 Phase coefficient 3 plane C 2 = -6.49067 · 10 -4 C 4 = 3.43622 · 10 -6

【0058】 焦点距離 4.19 4.07 41.78 d3 0.52 7.32 11.66 d8 11.95 5.15 0.80 d13 5.45 2.36 5.37 The focal length 4.19 4.07 41.78 d3 0.52 7.32 11.66 d8 11.95 5.15 0.80 d13 5.45 2.36 5.37

【0059】 数値実施例2 f =4.19000 〜41.75 fno =1:1.85〜2.45 2ω=59.6°〜 6.6° r1 = 16.059(非球面) d1 =0.70 n1 =1.84666 ν1 =23.8 r2 = 12.399 d2 =0.10 r3 = 12.343 d3 =4.60 n2 =1.69680 ν2 =55.5 r4 = -115.928(回折面) d4 =可変 r5 = 20.044 d5 =0.50 n3 =1.83481 ν3 =42.7 r6 = 4.936(非球面) d6 =2.20 r7 = -6.451(回折面) d7 =0.70 n4 =1.60311 ν4 =60.7 r8 = -26.325 d8 =可変 r9 = 0.000(絞り) d9 =1.00 r10= 4.702(非球面) d10 =2.70 n5 =1.58313 ν5 =59.4 r11= -254.183 d11 =0.08 r12= 7.971 d12 =0.55 n6 =1.84666 ν6 =23.8 r13= 4.274 d13 = 可変 r14= 7.324(非球面) d14 =2.40 n7 =1.48749 ν7 =70.2 r15= -7.852 d15 =0.50 n8 =1.84666 ν8 =23.8 r16= -9.884 d16 =0.75 r17= ∞ d17 =3.27 n9 =1.51633 ν9 =64.2 r18= ∞Numerical Example 2 f = 4.19000 to 41.75 fno = 1: 1.85 to 2.45 2ω = 59.6 ° to 6.6 ° r1 = 16.059 (aspherical surface) d1 = 0.70 n1 = 1.84666 ν1 = 23.8 r2 = 12.399 d2 = 0.10 r3 = 12.343 d3 = 4.60 n2 = 1.69680 ν2 = 55.5 r4 = -115.928 (diffractive surface) d4 = variable r5 = 20.044 d5 = 0.50 n3 = 1.83481 ν3 = 42.7 r6 = 4.936 (aspheric surface) d6 = 2.20 r7 = -6.451 (diffractive surface) ) D7 = 0.70 n4 = 1.60311 ν4 = 60.7 r8 = -26.325 d8 = variable r9 = 0.000 (aperture) d9 = 1.00 r10 = 4.702 (aspherical surface) d10 = 2.70 n5 = 1.58313 ν5 = 59.4 r11 = -254.183 d11 = 0.08 r12 = 7.971 d12 = 0.55 n6 = 1.84666 ν6 = 23.8 r13 = 4.274 d13 = variable r14 = 7.324 (aspheric) d14 = 2.40 n7 = 1.48749 ν7 = 70.2 r15 = -7.852 d15 = 0.50 n8 = 1.84666 ν8 = 23.8 r16 = -9.884 d16 = 0.75 r17 = ∞ d17 = 3.27 n9 = 1.51633 ν9 = 64.2 r18 =

【0060】 非球面係数 1面 K=-7.63654・10-1 B= 8.96265・10-6 C=3.99567・10-9 D= 0.00000・100 E= 0.00000・100 6面 K=-1.93285・10-1 B= 1.97008・10-4 C=1.70009・10-5 D= 0.00000・100 E= 0.00000・100 10面 K=-1.23635・100 B= 5.72033・10-4 C=4.16392・10-6 D=-4.05099・10-7 E= 1.41200・10-8 14面 K=-2.64097・100 B=-5.22539・10-5 C=2.27981・10-5 D=-1.19783・10-6 E= 2.91817・10-8 Aspherical surface coefficient 1 surface K = -7.63654 · 10-1 B = 8.96265 / 10-6 C = 3.99567 · 10-9 D = 0.00000 ・ 100 E = 0.00000 ・ 100 6 sides K = -1.93285 ・ 10-1 B = 1.97008 ・ 10-Four C = 1.70009 ・ 10-Five D = 0.00000 ・ 100 E = 0.00000 ・ 100 10 K = -1.23635 ・ 100 B = 5.72033 ・ 10-Four C = 4.16392 / 10-6 D = -4.05099 ・ 10-7 E = 1.41200 ・ 10-8  14 K = -2.64097 ・ 100 B = -5.22539 ・ 10-Five C = 2.27981 · 10-Five D = -1.19783 ・ 10-6 E = 2.91817.10-8

【0061】 位相係数 4面 C2=-1.13061・10-3 C4=6.25966・10-6 7面 C2=-8.67646・10-3 C4=-1.66169・10-4 Phase coefficient 4 plane C 2 = -1.13061 ・ 10 -3 C 4 = 6.25966 ・ 10 -6 7 plane C 2 = -8.67646 ・ 10 -3 C 4 = -1.66169 ・ 10 -4

【0062】 焦点距離 4.19 13.50 41.75 d4 0.50 7.32 11.68 d8 12.00 5.18 0.82 d13 5.67 3.44 7.53 [0062] Focal length 4.19 13.50 41.75 d4 0.50 7.32 11.68 d8 12.00 5.18 0.82 d13 5.67 3.44 7.53

【0063】 数値実施例3 f =4.19000 〜41.75 fno =1:1.85〜2.44 2ω=59.6°〜 6.6° r1 = 15.874 d1 =0.70 n1 =1.84666 ν1 =23.8 r2 = 12.311 d2 =0.10 r3 = 12.308 d3 =4.60 n2 =1.69680 ν2 =55.5 r4 = -110.908(回折面) d4 =可変 r5 = 17.955 d5 =0.50 n3 =1.83481 ν3 =42.7 r6 = 4.856(非球面) d6 =2.20 r7 = -6.316(回折面) d7 =0.70 n4 =1.60311 ν4 =60.7 r8 = -31.296 d8 =可変 r9 = 0.000(絞り) d9 =1.00 r10= 4.743(非球面) d10 =2.70 n5 =1.58313 ν5 =59.4 r11= 516.605 d11 =0.08 r12= 7.272 d12 =0.55 n6 =1.84666 ν6 =23.8 r13= 4.165 d13 = 可変 r14= 7.478(非球面) d14 =2.40 n7 =1.48749 ν7 =70.2 r15= -7.398 d15 =0.50 n8 =1.84666 ν8 =23.8 r16= -9.458 d16 =0.75 r17= ∞ d17 =3.27 n9=1.51633 ν9 =64.2 r18= ∞ Numerical Example 3 f = 4.19000 to 41.75 fno = 1: 1.85 to 2.44 2ω = 59.6 ° to 6.6 ° r1 = 15.874 d1 = 0.70 n1 = 1.84666 ν1 = 23.8 r2 = 12.311 d2 = 0.10 r3 = 12.308 d3 = 4.60 n2 = 1.69680 ν2 = 55.5 r4 = -110.908 (diffractive surface) d4 = variable r5 = 17.955 d5 = 0.50 n3 = 1.83481 ν3 = 42.7 r6 = 4.856 (aspheric surface) d6 = 2.20 r7 = -6.316 (diffractive surface) d7 = 0.70 n4 = 1.60311 ν4 = 60.7 r8 = -31.296 d8 = variable r9 = 0.000 (aperture) d9 = 1.00 r10 = 4.743 (aspheric surface) d10 = 2.70 n5 = 1.58313 ν5 = 59.4 r11 = 516.605 d11 = 0.08 r12 = 7.272 d12 = 0.55 n6 = 1.84666 ν6 = 23.8 r13 = 4.165 d13 = variable r14 = 7.478 (aspheric surface) d14 = 2.40 n7 = 1.48749 ν7 = 70.2 r15 = -7.398 d15 = 0.50 n8 = 1.84666 ν8 = 23.8 r16 = -9.458 d16 = 0.75 r17 = ∞ d17 = 3.27 n9 = 1.51633 ν9 = 64.2 r18 =

【0064】 非球面係数 4面 K=-1.97516・102 B= 1.81711・10-5 C=-7.53338・10-9 D=-1.04227・10-10 E= 0.00000・100 6面 K=-7.82659・10-1 B= 6.74067・10-4 C= 5.62605・10-5 D= 0.00000・100 E= 0.00000・100 10面 K=-1.29090・100 B= 6.39965・10-4 C= 3.53800・10-6 D=-1.82729・10-8 E= 1.82729・10-8 14面 K=-3.70606・100 B= 2.46517・10-4 C= 1.39476・10-5 D=-1.20129・10-6 E=-1.76827・10-9 Aspherical surface coefficient 4 surface K = -1.97516 · 10Two B = 1.81711 ・ 10-Five C = -7.53338.10-9 D = -1.04227 ・ 10-Ten E = 0.00000 ・ 100 6 K = -7.82659 ・ 10-1 B = 6.74067 / 10-Four C = 5.62605 / 10-Five D = 0.00000 ・ 100 E = 0.00000 ・ 100 10 K = -1.29090 ・ 100 B = 6.39965 / 10-Four C = 3.53800 ・ 10-6 D = -1.82729 ・ 10-8 E = 1.82729 ・ 10-8  14 K = -3.70606 / 100 B = 2.46517 / 10-Four C = 1.39476 / 10-Five D = -1.20129 ・ 10-6 E = -1.76827 ・ 10-9

【0065】 位相係数 4面 C2=-1.10208 ・10-3 C4= 4.86972 ・10-6 7面 C2= 8.20287 ・10-3 C4=-2.26796 ・10-4 Phase coefficient 4 plane C 2 = -1.10208 ・ 10 -3 C 4 = 4.86972 ・ 10 -6 7 plane C 2 = 8.20287 ・ 10 -3 C 4 = -2.26796 ・ 10 -4

【0066】 焦点距離 4.19 13.60 41.75 d4 0.46 7.20 11.51 d8 11.87 5.13 0.82 d13 5.52 3.24 7.36 Focal length 4.19 13.60 41.75 d4 0.46 7.20 11.51 d8 11.87 5.13 0.82 d13 5.52 3.24 7.36

【0067】なお、次表は前述の各条件式(1) 、(3) 、
(5) 、(7) と数値実施例1〜3の関係を示す。
The following table shows the above-mentioned conditional expressions (1), (3),
The relationship between (5) and (7) and Numerical Examples 1 to 3 is shown.

【0068】 数値実施例1 数値実施例2 数値実施例3 条件式(1) 2.844 3.410 3.479 条件式(3) 1.649 1.506 条件式(5) 9.64・10-3 1.062・10-2 1.078・10-2 条件式(7) 0.296 0.323 0.318 Numerical Example 1 Numerical Example 2 Numerical Example 3 Conditional expression (1) 2.844 3.410 3.479 Conditional expression (3) 1.649 1.506 Conditional expression (5) 9.64 · 10 -3 1.062 · 10 -2 1.078 · 10 -2 Conditional expression (7) 0.296 0.323 0.318

【0069】図4〜図12は実施例1〜3の広角状態、
中間状態、望遠状態の収差図である。
FIGS. 4 to 12 show the wide-angle state of the first to third embodiments.
It is an aberration figure of an intermediate state and a telephoto state.

【0070】回折光学面はホログラフィック光学素子
(HOE)の製作手法であるリソグラフィック手法で2
値的に製作した光学素子であるバイナリオプテイックス
(BINARY OPTICS )で製作してもよい。この場合に、更
に回折効率を上げるために、図12に示すようなキノフ
ォームと呼ばれる鋸状の形状にすることもできる。ま
た、これらの方法で製作した型によって成形により製造
してもよい。
The diffractive optical surface is formed by a lithographic technique which is a technique for manufacturing a holographic optical element (HOE).
The optical element may be manufactured by a binary optics (BINARY OPTICS) which is an optical element manufactured in a value manner. In this case, in order to further increase the diffraction efficiency, a saw-like shape called a kinoform as shown in FIG. 12 can be used. Further, it may be manufactured by molding using a mold manufactured by these methods.

【0071】図13は回折光学素子の断面図を示し、基
材1の表面に紫外線硬化樹脂を塗布し、この樹脂部2に
波長530nmで1次回折効率が100%となるような
格子厚dの格子3を成形している。図14はこの回折光
学素子の1次回折効率の波長依存性を示し、設計次数で
の回折効率は最適化した波長530nmから離れるに従
って低下し、一方で設計次数近傍の次数0次、2次回折
光が増大している。この設計次数以外の回折光の増加は
フレアとなり、光学系の解像度の低下につながる。
FIG. 13 is a cross-sectional view of the diffractive optical element, in which an ultraviolet curable resin is applied to the surface of the substrate 1, and the resin portion 2 has a grating thickness d such that the primary diffraction efficiency becomes 100% at a wavelength of 530 nm. Is formed. FIG. 14 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element. The diffraction efficiency at the design order decreases as the distance from the optimized wavelength 530 nm increases, while the 0th-order and second-order diffracted light near the design order. Is increasing. This increase in diffracted light other than the design order causes a flare, which leads to a decrease in the resolution of the optical system.

【0072】図15は図13の格子形状を前述の数値実
施例1を作成した場合の場合の望遠端の軸上における空
間周波数に対するMTF(Modulation Transfer Functi
on)特性を示しており、低周波数領域のMTFが所望の
値より低下していることが分かる。
FIG. 15 shows an MTF (Modulation Transfer Functi) with respect to the spatial frequency on the axis at the telephoto end in the case where the above-mentioned numerical example 1 is prepared for the lattice shape of FIG.
on) characteristic, indicating that the MTF in the low frequency region is lower than a desired value.

【0073】更に、回折効率を改善するためには、次に
説明するような積層構造の回折光学素子にすることが好
ましい。そこで、図16に示すような積層型の回折格子
を実施例における回折光学素子の格子形状とすることが
考えられる。基材1上に紫外線硬化樹脂(Nd=1.4
99、νd=54)から成る第1の回折格子4が構成さ
れ、その上に別の紫外線硬化樹脂(nd=1.598、
νd=28)から成る第2の回折格子5が形成されてい
る。
In order to further improve the diffraction efficiency, it is preferable to use a diffractive optical element having a laminated structure as described below. Therefore, it is conceivable to use a stacked diffraction grating as shown in FIG. 16 as the grating shape of the diffractive optical element in the embodiment. An ultraviolet curable resin (Nd = 1.4) is provided on the base material 1.
99, νd = 54) is formed, on which another ultraviolet curable resin (nd = 1.598,
νd = 28) is formed.

【0074】この材質の組み合わせでは、第1の回折格
子4の格子厚dlはdl=13.8μm、第2の回折格
子5の格子厚d2はd2=10.5μmとしている。図
17はこの構成の回折光学素子の1次回折効率の波長依
存性を示し、このように積層構造の回折格子にすること
により、設計次数の回折効率は使用波長全域で95%以
上の高い回折劾率が得られる。
In this combination of materials, the grating thickness dl of the first diffraction grating 4 is dl = 13.8 μm, and the grating thickness d2 of the second diffraction grating 5 is d2 = 10.5 μm. FIG. 17 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element having this configuration. By using a diffraction grating having a laminated structure as described above, the diffraction efficiency of the design order can be as high as 95% or more over the entire used wavelength range. The impeachment rate is obtained.

【0075】図18はこの場合の空間周波数に対するM
TF特性を示し、積層構造の回折格子を用いることで、
低周波のMTFは改善され、所望のMTF特性が得られ
ている。このように、実施例の回折光学素子として積層
構造の回折格子を用いることで、光学性能は更に改善さ
れる。
FIG. 18 shows M with respect to the spatial frequency in this case.
By exhibiting TF characteristics and using a diffraction grating with a laminated structure,
The low-frequency MTF is improved, and a desired MTF characteristic is obtained. As described above, by using the diffraction grating having the laminated structure as the diffractive optical element of the embodiment, the optical performance is further improved.

【0076】なお、前述の回折光学素子として、材質を
紫外線硬化樹脂に限定するものでなく、他のプラスチッ
ク材なども使用できるし、基材によっては第1の回折格
子4を直接基材に形成してもよい。また、各格子の厚み
が必ずしも異なる必要はなく、材料の組み合わせによっ
ては図19に示すように2つの格子厚を等しくできる。
この場合に、回折光学素子の表面に格子形状が形成され
ないので、防塵性に優れ、回折光学素子の組み立て作業
性が向上し、より安価な光学系が得られる。
The material of the above-mentioned diffractive optical element is not limited to an ultraviolet curable resin, but other plastic materials can be used. Depending on the base material, the first diffraction grating 4 may be formed directly on the base material. May be. Also, the thicknesses of the gratings do not necessarily have to be different, and depending on the combination of materials, the two gratings can have the same thickness as shown in FIG.
In this case, since the lattice shape is not formed on the surface of the diffractive optical element, it is excellent in dust resistance, the workability of assembling the diffractive optical element is improved, and a less expensive optical system can be obtained.

【0077】[0077]

【発明の効果】本発明に係る小型のズームレンズによれ
ば、第1レンズ群を正、負それぞれ1枚ずつの2枚のレ
ンズで構成し、光軸に対して回転対称な少なくとも1枚
の回折光学面を有するような構成とすることにより、レ
ンズ枚数の削減を可能とし、光学性能を良好に維持した
ままレンズ全長の短縮化を達成することが可能になる。
According to the compact zoom lens of the present invention, the first lens group is composed of two positive and negative lenses, and at least one lens rotationally symmetric with respect to the optical axis. With the configuration having the diffractive optical surface, the number of lenses can be reduced, and the overall length of the lens can be reduced while maintaining good optical performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のレンズ断面図である。FIG. 1 is a sectional view of a lens according to a first embodiment.

【図2】実施例2のレンズ断面図である。FIG. 2 is a sectional view of a lens according to a second embodiment.

【図3】実施例3のレンズ断面図である。FIG. 3 is a sectional view of a lens according to a third embodiment.

【図4】実施例1の広角状態の収差図である。FIG. 4 is an aberration diagram of a wide-angle state according to the first embodiment.

【図5】実施例1の中間状態の収差図である。FIG. 5 is an aberration diagram of the intermediate state of the first embodiment.

【図6】実施例1の望遠状態の収差図である。FIG. 6 is an aberration diagram of a telephoto state according to the first embodiment.

【図7】実施例2の広角状態の収差図である。FIG. 7 is an aberration diagram of a wide-angle state according to the second embodiment.

【図8】実施例2の中間状態の収差図である。FIG. 8 is an aberration diagram of the intermediate state of the second embodiment.

【図9】実施例2の望遠状態の収差図である。FIG. 9 is an aberration diagram of a telephoto state according to the second embodiment.

【図10】実施例3の広角状態の収差図である。FIG. 10 is an aberration diagram of a wide-angle state according to the third embodiment.

【図11】実施例3の中間状態の収差図である。FIG. 11 is an aberration diagram of the intermediate state of the third embodiment.

【図12】実施例3の望遠状態の収差図である。FIG. 12 is an aberration diagram of a telephoto state according to the third embodiment.

【図13】回折光学素子の断面図である。FIG. 13 is a sectional view of a diffractive optical element.

【図14】1次回折効率波長特性のグラフ図である。FIG. 14 is a graph of a first-order diffraction efficiency wavelength characteristic.

【図15】MTF特性のグラフ図である。FIG. 15 is a graph showing MTF characteristics.

【図16】多層構造の回折光学素子の断面図である。FIG. 16 is a cross-sectional view of a diffractive optical element having a multilayer structure.

【図17】1次回折効率波長特性多層構造のグラフ図で
ある。
FIG. 17 is a graph of a first-order diffraction efficiency wavelength characteristic multilayer structure.

【図18】MTF特性のグラフ図である。FIG. 18 is a graph showing MTF characteristics.

【図19】他の多層構造の回折光学素子の断面図であ
る。
FIG. 19 is a sectional view of another diffractive optical element having a multilayer structure.

【符号の説明】[Explanation of symbols]

L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群 L4 第4レンズ群 1 基材 2 樹脂部 3、4、5 回折格子 △M メリディオナル像面 △S サジタル像面 L1 First lens group L2 Second lens group L3 Third lens group L4 Fourth lens group 1 Base material 2 Resin section 3, 4, 5 Diffraction grating ΔM Meridional image plane ΔS Sagittal image plane

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に正の屈折力を有する第1
レンズ群、負の屈折力を有する第2レンズ群、正の屈折
力を有する第3レンズ群、正の屈折力を有する第4レン
ズ群を有し、少なくとも前記第2レンズ群と第4レンズ
群を移動させて変倍を行うと共に、フォーカシングを前
記第4レンズ群を移動させて行い、前記第1レンズ群は
正、負それぞれ1枚ずつの2枚のレンズで構成し、光軸
に対して回転対称な少なくとも1つの回折光学面を有す
ることを特徴とするズームレンズ。
1. A first lens having a positive refractive power in order from the object side.
A lens group, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and at least the second lens group and the fourth lens group Is moved to change the magnification, and focusing is performed by moving the fourth lens group. The first lens group is composed of two lenses, one each for positive and negative, and A zoom lens having at least one rotationally symmetric diffractive optical surface.
【請求項2】 前記第1レンズ群の回折光学面は正の屈
折力を有する請求項1に記載のズームレンズ。
2. The zoom lens according to claim 1, wherein the diffractive optical surface of the first lens group has a positive refractive power.
【請求項3】 前記第1レンズ群全体、及びその負レン
ズの焦点距離をそれぞれf1 、f1nとするとき、 2.2<|f1n/f1 |<4.5 なる条件式を満足する請求項1に記載のズームレンズ。
3. The conditional expression of 2.2 <| f1n / f1 | <4.5 is satisfied, where f1 and f1n are the focal lengths of the entire first lens unit and its negative lens, respectively. A zoom lens according to claim 1.
【請求項4】 前記第1レンズ群は前記回折光学面以外
に少なくとも1枚の非球面を有する請求項1に記載のズ
ームレンズ。
4. The zoom lens according to claim 1, wherein the first lens group has at least one aspheric surface other than the diffractive optical surface.
【請求項5】 前記第2レンズ群は少なくとも2枚の負
レンズと1枚の正レンズを有する請求項1〜3の何れか
1つの請求項に記載のズームレンズ。
5. The zoom lens according to claim 1, wherein the second lens group includes at least two negative lenses and one positive lens.
【請求項6】 前記第2レンズ群は少なくとも2枚以上
の負レンズのみで構成した請求項1〜3の何れか1つの
請求項に記載のズームレンズ。
6. The zoom lens according to claim 1, wherein the second lens group includes only at least two or more negative lenses.
【請求項7】 前記第2レンズ群は少なくとも1枚の前
記回折光学面を有する請求項5又は6に記載のズームレ
ンズ。
7. The zoom lens according to claim 5, wherein the second lens group has at least one diffractive optical surface.
【請求項8】 前記回折光学面は基板ガラス上に2つの
回折格子を積層して形成した積層型回折格子とした請求
項1に記載の小型のズームレンズ。
8. The compact zoom lens according to claim 1, wherein the diffractive optical surface is a laminated diffraction grating formed by laminating two diffraction gratings on a substrate glass.
JP22105797A 1996-09-19 1997-08-01 Zoom lens Expired - Fee Related JP3792846B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22105797A JP3792846B2 (en) 1997-08-01 1997-08-01 Zoom lens
US09/421,367 US6606200B1 (en) 1996-09-19 1999-10-19 Zoom lens device and optical apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22105797A JP3792846B2 (en) 1997-08-01 1997-08-01 Zoom lens

Publications (2)

Publication Number Publication Date
JPH1152244A true JPH1152244A (en) 1999-02-26
JP3792846B2 JP3792846B2 (en) 2006-07-05

Family

ID=16760827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22105797A Expired - Fee Related JP3792846B2 (en) 1996-09-19 1997-08-01 Zoom lens

Country Status (1)

Country Link
JP (1) JP3792846B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324674A (en) * 2000-03-08 2001-11-22 Canon Inc Optical system and optical equipment
JP2002031755A (en) * 1999-11-29 2002-01-31 Canon Inc Optical system and manuscript reader
US6763186B2 (en) 2002-01-25 2004-07-13 Canon Kabushiki Kaisha Zoom lens, and camera incorporating such zoom lens
US6791754B2 (en) 2000-03-08 2004-09-14 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
JP2004258240A (en) * 2003-02-25 2004-09-16 Nikon Corp Variable focal length lens system
KR100484718B1 (en) * 2001-09-28 2005-04-22 캐논 가부시끼가이샤 Zoom lens and camera with the zoom lens
JP2006031002A (en) * 2004-07-13 2006-02-02 Samsung Electronics Co Ltd Zoom lens optical system
JP2008102166A (en) * 2006-10-17 2008-05-01 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
JP2009075581A (en) * 2007-08-30 2009-04-09 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
US7692872B2 (en) 2007-12-26 2010-04-06 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
US7800833B2 (en) 2007-10-30 2010-09-21 Olympus Imaging Corp. Electronic imaging apparatus
JP2011002503A (en) * 2009-06-16 2011-01-06 Olympus Imaging Corp Zoom lens and image capturing apparatus with the same
US7885013B2 (en) 2008-01-08 2011-02-08 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7944622B2 (en) 2007-10-17 2011-05-17 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031755A (en) * 1999-11-29 2002-01-31 Canon Inc Optical system and manuscript reader
JP2001324674A (en) * 2000-03-08 2001-11-22 Canon Inc Optical system and optical equipment
US6791754B2 (en) 2000-03-08 2004-09-14 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
US6825979B2 (en) 2000-03-08 2004-11-30 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
KR100484718B1 (en) * 2001-09-28 2005-04-22 캐논 가부시끼가이샤 Zoom lens and camera with the zoom lens
US6763186B2 (en) 2002-01-25 2004-07-13 Canon Kabushiki Kaisha Zoom lens, and camera incorporating such zoom lens
JP2004258240A (en) * 2003-02-25 2004-09-16 Nikon Corp Variable focal length lens system
JP2006031002A (en) * 2004-07-13 2006-02-02 Samsung Electronics Co Ltd Zoom lens optical system
JP2008102166A (en) * 2006-10-17 2008-05-01 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
JP2009075581A (en) * 2007-08-30 2009-04-09 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
US7817347B2 (en) 2007-08-30 2010-10-19 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
US7944622B2 (en) 2007-10-17 2011-05-17 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7948687B2 (en) 2007-10-17 2011-05-24 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US8014078B2 (en) 2007-10-17 2011-09-06 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7800833B2 (en) 2007-10-30 2010-09-21 Olympus Imaging Corp. Electronic imaging apparatus
US7692872B2 (en) 2007-12-26 2010-04-06 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
US7885013B2 (en) 2008-01-08 2011-02-08 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
JP2011002503A (en) * 2009-06-16 2011-01-06 Olympus Imaging Corp Zoom lens and image capturing apparatus with the same

Also Published As

Publication number Publication date
JP3792846B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US7133221B2 (en) Lens system and optical device having the same
US6577450B2 (en) Zoom lens and optical apparatus using the same
JPH11295598A (en) Zoom lens using diffraction optical element
JPH1164726A (en) Wide-angle lens
JP3832935B2 (en) Zoom lens
JP7396473B2 (en) Optical system and optical equipment
JP3359277B2 (en) Diffractive refraction rear attachment lens
JP5202025B2 (en) Imaging optical system and imaging apparatus having the same
JP3314021B2 (en) Zoom lens
US6268969B1 (en) Image forming optical system having diffractive optical element
JPH1152244A (en) Small-sized zoom lens
JPH11119096A (en) Front converter lens using diffraction surface
JPH1152235A (en) Zoom lens
JP3505980B2 (en) Imaging device
WO2019116569A1 (en) Optical system, optical equipment, and method for manufacturing optical system
WO2019116566A1 (en) Optical system, optical equipment, and optical-system manufacturing method
JP2000147379A (en) Zoom lens
JPH11149043A (en) Small zoom lens
JPH1152236A (en) Rear focus type zoom lens
JPH1184229A (en) Single focus lens
JP3320347B2 (en) Diffractive refraction imaging optical system
JPH1152238A (en) Zoom lens
US6757103B2 (en) Zoom lens and optical equipment using the same
JP2000121821A (en) Rear focusing zoom lens having diffraction optical elements
WO2019116567A1 (en) Optical system, optical equipment, and method for manufacturing optical system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees