CN113481183B - 一种海洋微生物脂肪酶嵌合体及其构建方法和应用 - Google Patents

一种海洋微生物脂肪酶嵌合体及其构建方法和应用 Download PDF

Info

Publication number
CN113481183B
CN113481183B CN202110679849.6A CN202110679849A CN113481183B CN 113481183 B CN113481183 B CN 113481183B CN 202110679849 A CN202110679849 A CN 202110679849A CN 113481183 B CN113481183 B CN 113481183B
Authority
CN
China
Prior art keywords
chimera
lipase
glu
gly
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110679849.6A
Other languages
English (en)
Other versions
CN113481183A (zh
Inventor
蓝东明
李爽
王永华
杨博
王方华
刘萱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110679849.6A priority Critical patent/CN113481183B/zh
Publication of CN113481183A publication Critical patent/CN113481183A/zh
Application granted granted Critical
Publication of CN113481183B publication Critical patent/CN113481183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明属于酶工程领域,公开了一种海洋微生物脂肪酶嵌合体及其构建方法和应用,脂肪酶嵌合体氨基酸序列如SEQ NO.1所示,编码脂肪酶嵌合体的基因核苷酸序列如SEQ NO.2所示。构建方法如下:(1)pcr扩增出GMGL的N端前160个氨基酸肽段;(2)无缝克隆方式将步骤(1)的氨基酸肽段替换到CoMGL对应肽段得到重组质粒;(3)将测序成功的重组质粒转化到BL21(DE3)感受态细胞内进行异源表达与纯化,得到脂肪酶嵌合体160。改造后的嵌合体160在最适条件的比酶活为741.8U/mg,是野生型CoMGL的4.9倍,是野生型GMGL的2.7倍;最适反应温度为70℃,具有良好的工业应用前景。

Description

一种海洋微生物脂肪酶嵌合体及其构建方法和应用
技术领域
本发明属于酶工程领域,具体涉及一种海洋微生物脂肪酶嵌合体及其构建方法和应用。
背景技术
甘油单酯在工业中具有重要意义,在化妆品行业,由于其良好的乳化效果,甘油单酯常作为乳化剂添加到护肤乳霜和发乳中;在医药领域,含有多不饱和脂肪酸的单甘酯(EPA,DHA)对于心血管疾病具有预防作用;月桂酸单甘酯具有防腐作用,在食品行业中常被用来作为防腐剂延长食品保质期。脂肪酶是在1856年由Claude Bernard首次发现的,它使用类似于酯酶的亲核机制来催化不同底物的水解和合成反应。(Woolley P V,Petersen SB,Industrifond N.Lipases:their structure,biochemistry and application[J].1994.)脂肪酶催化反应具有催化效率高、反应条件温和和副产物少的优点,因此在工业应用中有巨大的价值。甘油单酯脂肪酶(MGL)是一种具有特异底物选择性的脂肪酶,其只能够水解甘油单酯,生成甘油和对应的脂肪酸,而不能催化甘油二酯和甘油三酯的水解。在催化甘油和脂肪酸的合成反应中也只能生成甘油单酯而不能生成甘油二酯和甘油三酯。
在工业生产中,有很多反应需要在高温或者中高温下进行且需要反应较长时间,而很多耐热性较差的脂肪酶在遇到高温时则会迅速变性失活,这大大限制了他们在工业中的应用,因此许多野生型的脂肪酶并不能直接使用于工业应用,而需要先进行一定的分子改造。
现有的针对酶的热稳定性的改造技术不能同时起到提高比酶活的效果,例如,Mitsutaka等人采用易错PCR技术对来源于Rhizopus niveus的脂肪酶进行突变来提高酶的最适反应温度,最终筛选出了一个含有三个突变位点(P18H、A36T和E218V)的最佳突变体,最适温度提高了15℃,但纯化后突变型脂肪酶的比酶活是野生型的80%。(Kohno M,EnatsuM,Funatsu J,et al.Improvement of the optimum temperature of lipase activityfor Rhizopus niveus by random mutagenesis and its structural interpretation[J].Journal of Biotechnology,2001,87(3):203-210.)。Jeong等人通过使用二硫键设计程序(Disulfide by design TM)对Bacillus stearthermophilus No.236进行了二硫键的设计,来识别具有二硫键形成几何特征的残基对,并最终筛选出一对(Ser100和Asn150),将这两个氨基酸分别替换成半胱氨酸,结果表明突变体的T50(20min)比野生型提高了5℃,但催化活力没有变化。(Jeong M Y,Kim S,Yun C W,et al.Engineering a de novo internaldisulfide bridge to improve the thermal stability of xylanase from Bacillusstearothermophilus No.236[J].Journal of Biotechnology,2007,127(2):300-309.)
因此,需开发一种耐高温、高酶活的甘油单酯脂肪酶,来解决目前甘油单酯脂肪酶催化效率和温度耐受性不足以达到工业要求的问题。
发明内容
针对上述问题,本发明公开了一种海洋微生物脂肪酶嵌合体及其构建方法和应用,构建得到了一种能适合工业使用的,同时具有高温度耐受性和高催化活力的甘油单酯脂肪酶。
本发明通过下述技术方案实现:
一种海洋微生物脂肪酶嵌合体,所述脂肪酶嵌合体氨基酸序列如SEQ NO.1所示。
一种编码脂肪酶嵌合体的基因。
优选地,所述基因核苷酸序列如SEQ NO.2所示。
含有编码脂肪酶嵌合体基因的重组质粒。
含有重组质粒的重组菌。
一种构建所述海洋微生物脂肪酶嵌合体的方法,包括下列步骤:
(1)通过pcr扩增出GMGL的N端前160个氨基酸肽段;
(2)通过无缝克隆的方式将步骤(1)所述的氨基酸肽段替换到CoMGL对应肽段,得到重组质粒;
(3)将测序成功的重组质粒转化到BL21(DE3)感受态细胞内进行异源表达与纯化,得到脂肪酶嵌合体160。
脂肪酶嵌合体160在食品、化妆品、医疗方面的应用。
本发明具有以下有益效果:
本发明以两种海洋芽孢杆菌来源的甘油单酯脂肪酶为基础,通过拼接重组装的方式改造出了一种新型嵌合体,改造后的酶催化效率和温度耐受性都有显著提升,改造后的新酶在最适条件的比酶活为741.8U/mg,是野生型CoMGL最适条件下测定比酶活的4.9倍,是野生型GMGL最适条件下测定比酶活的2.7倍;最适反应温度为70℃,比野生型CoMGL的最适反应温度提高了20℃,比野生型GMGL的最适反应温度提高了10℃,为开发工业用酶提供了新思路,具有良好的工业应用前景。
附图说明
图1为嵌合体电泳图,泳道M:蛋白Marker;泳道1:嵌合体160。
图2为酶的催化表征图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。嵌合体160氨基酸序列如下(SEQNO.1):
MTETYPVVKGAEPFFFEGNDIGILVLHGFTGSPQSMRPLGEAYHEAGYTVCGPRLKGHGTHYEDMEKTTCQDWIDSVEAGYEWLKNRCGTIFVTGLSMGGTLTLYMAEHHPEICGIAPINAAINMPALAGALAGVGDLPRFLDAIGSDIKKPGVKELAYEKTPVKSIGEITELMKKVKGDLEKVNCPALIFVSKEDHVVPPSNSQEIYSSIKSAAKELVTLDNSYHVATLDNDQDIIIERTLHFLQRVLETSSLQG
脂肪酶嵌合体的基因的核苷酸序列如下(SEQ NO.2):
ATGACCGAAACCTACCCGGTTGTTAAAGGCGCCGAACCGTTCTTCTTCGAAGGCAACGATATCGGTATCCTGGTTCTGCACGGCTTCACCGGTAGCCCGCAGAGCATGCGTCCGCTGGGTGAAGCATACCACGAAGCGGGTTACACCGTATGCGGCCCGCGTCTGAAAGGCCACGGCACCCACTACGAAGATATGGAAAAAACCACCTGCCAGGATTGGATCGACAGCGTTGAAGCGGGCTACGAATGGCTGAAAAACCGTTGCGGCACCATCTTCGTTACCGGCCTGAGCATGGGCGGCACCCTGACGCTGTACATGGCGGAACACCACCCGGAAATCTGCGGTATCGCGCCGATCAACGCGGCGATCAACATGCCGGCGCTGGCGGGTGCGCTGGCGGGCGTTGGTGATCTGCCGCGTTTCCTGGATGCAATCGGTTCCGATATCAAAAAACCAGGTGTTAAAGAATTAGCTTATGAAAAAACCCCGGTTAAAAGCATCGGCGAAATCACCGAACTGATGAAAAAAGTTAAAGGCGATCTGGAAAAAGTTAACTGCCCGGCACTGATCTTCGTTAGCAAAGAAGATCACGTTGTTCCGCCGAGCAACAGCCAGGAAATCTACAGCAGCATCAAAAGCGCGGCGAAAGAACTGGTTACCCTGGATAACAGCTACCACGTTGCGACCCTGGATAACGATCAGGATATTATCATCGAACGTACCCTGCACTTCCTGCAGCGTGTTCTGGAAACCAGCAGCCTGCAGGGC
GMGL氨基酸序列如下(SEQ NO.3):
MTETYPVVKGAEPFFFEGNDIGILVLHGFTGSPQSMRPLGEAYHEAGYTVCGPRLKGHGTHYEDMEKTTCQDWIDSVEAGYEWLKNRCGTIFVTGLSMGGTLTLYMAEHHPEICGIAPINAAINMPALAGALAGVGDLPRFLDAIGSDIKKPGVKELAYEKTPAASIRQIVQLMERVKTDLHKITCPAILFCSDEDHVVPPDNAPFIYDHIASADKKLVRLPDSYHVATLDNDRQKIIDTSLAFFKKHADRLEHHHHHH
CoMGL氨基酸序列如下(SEQ NO.4)
MSEKYPIIEGAEPFYYEGNEIGILVSHGFTGSTQSMRPLGEAYANAGYTVCGPRLRGHGTHYEEMETTTYQDWIHSVEEGYQWLKERCSTIFVTGLSMGGTLTLYMAEKYPEIKGIIPINAAIEISYMEAAASLEDVRFLDAIGSDIKNPDIKELAYEKTPVKSIGEITELMKKVKGDLEKVNCPALIFVSKEDHVVPPSNSQEIYSSIKSAAKELVTLDNSYHVATLDNDQDIIIERTLHFLQRVLETSSLQG实施例1
嵌合体的制备:
(1)嵌合体引物的设计:
使用snapgene软件根据无缝克隆引物设计原理进行引物设计:
表1嵌合体引物设计表
Figure BDA0003122068530000051
备注:基因指GMGL,载体指pET-30a(+)-comgl
(2)通过PCR扩增出目的基因片段和线性化载体,用PCR产物纯化试剂盒进行产物纯化后,使用无缝克隆试剂盒进行无缝连接得到重组质粒。
Figure BDA0003122068530000061
备注:①X为设置的退火温度,一般比上下引物Tm值中最小值低5-10℃。T为延伸时间,按照需要扩增目的片段的长度计算,速度为3000bp/min。②产物纯化和无缝连接均按照试剂盒说明书方法进行操作。
(3)转化:
取10μL连接液,将重组质粒通过热激转化入50μL TOP 10感受态细胞中。
(4)阳性重组子的鉴定(菌液PCR法):
经过上一步操作后获得嵌合体单克隆,每个嵌合体挑取10个单克隆分别加入含有5mL LB液体培养基(含卡那霉素)的试管中37℃摇床培养过夜,制备用于菌液PCR所需的菌液。
Figure BDA0003122068530000062
备注:①X为设置的退火温度,一般比上下引物Tm值中最小值低5-10℃。T为延伸时间,按照需要扩增目的片段的长度计算,速度为3000bp/min。②以不含目的基因的空载作为对照组。将菌落PCR之后的产物进行DNA电泳检验,将阳性克隆子对应的菌液进行测序检验。
(5)嵌合体的表达与纯化
将测序正确的菌液使用柱式DNA微量提取试剂盒进行质粒提取。将所得的重组质粒采用热激转化法导入大肠杆菌BL21(DE3)中,获得的阳性克隆放大培养后,添加IPTG(终浓度为0.2mM)进行诱导表达,分别在和20℃下培养20h。待发酵过程完成后,进行超声破碎收菌获取粗酶液,粗酶液通过镍柱亲和层析的方法进行纯化(500mM咪唑洗脱目的蛋白)。
实施例2
嵌合体的表征:
(1)利用SDS-PAGE电泳检测蛋白质的分子量及纯度,电泳结果显示目的条带分子量与理论分子量一致且仅有单一条带(图1)。
(2)采用Bradford试剂盒测定蛋白质浓度。
(3)以月桂酸单甘酯为底物,采用滴定法鉴定嵌合体和野生型甘油单酯脂肪酶的酶活力。结果显示新型嵌合体最适反应温度为70℃,比野生型CoMGL最适反应温度提升了20℃,比野生型GMGL最适反应温度提升了10℃。在最适反应条件下测定的比酶活为741.8U/mg,是野生型CoMGL最适条件下测定比酶活的4.9倍,是野生型GMGL最适条件下测定比酶活的2.7倍(表1、图2)。
表1
Figure BDA0003122068530000071
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 华南理工大学
<120> 一种海洋微生物脂肪酶嵌合体及其构建方法和应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 256
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Thr Glu Thr Tyr Pro Val Val Lys Gly Ala Glu Pro Phe Phe Phe
1 5 10 15
Glu Gly Asn Asp Ile Gly Ile Leu Val Leu His Gly Phe Thr Gly Ser
20 25 30
Pro Gln Ser Met Arg Pro Leu Gly Glu Ala Tyr His Glu Ala Gly Tyr
35 40 45
Thr Val Cys Gly Pro Arg Leu Lys Gly His Gly Thr His Tyr Glu Asp
50 55 60
Met Glu Lys Thr Thr Cys Gln Asp Trp Ile Asp Ser Val Glu Ala Gly
65 70 75 80
Tyr Glu Trp Leu Lys Asn Arg Cys Gly Thr Ile Phe Val Thr Gly Leu
85 90 95
Ser Met Gly Gly Thr Leu Thr Leu Tyr Met Ala Glu His His Pro Glu
100 105 110
Ile Cys Gly Ile Ala Pro Ile Asn Ala Ala Ile Asn Met Pro Ala Leu
115 120 125
Ala Gly Ala Leu Ala Gly Val Gly Asp Leu Pro Arg Phe Leu Asp Ala
130 135 140
Ile Gly Ser Asp Ile Lys Lys Pro Gly Val Lys Glu Leu Ala Tyr Glu
145 150 155 160
Lys Thr Pro Val Lys Ser Ile Gly Glu Ile Thr Glu Leu Met Lys Lys
165 170 175
Val Lys Gly Asp Leu Glu Lys Val Asn Cys Pro Ala Leu Ile Phe Val
180 185 190
Ser Lys Glu Asp His Val Val Pro Pro Ser Asn Ser Gln Glu Ile Tyr
195 200 205
Ser Ser Ile Lys Ser Ala Ala Lys Glu Leu Val Thr Leu Asp Asn Ser
210 215 220
Tyr His Val Ala Thr Leu Asp Asn Asp Gln Asp Ile Ile Ile Glu Arg
225 230 235 240
Thr Leu His Phe Leu Gln Arg Val Leu Glu Thr Ser Ser Leu Gln Gly
245 250 255
<210> 2
<211> 768
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgaccgaaa cctacccggt tgttaaaggc gccgaaccgt tcttcttcga aggcaacgat 60
atcggtatcc tggttctgca cggcttcacc ggtagcccgc agagcatgcg tccgctgggt 120
gaagcatacc acgaagcggg ttacaccgta tgcggcccgc gtctgaaagg ccacggcacc 180
cactacgaag atatggaaaa aaccacctgc caggattgga tcgacagcgt tgaagcgggc 240
tacgaatggc tgaaaaaccg ttgcggcacc atcttcgtta ccggcctgag catgggcggc 300
accctgacgc tgtacatggc ggaacaccac ccggaaatct gcggtatcgc gccgatcaac 360
gcggcgatca acatgccggc gctggcgggt gcgctggcgg gcgttggtga tctgccgcgt 420
ttcctggatg caatcggttc cgatatcaaa aaaccaggtg ttaaagaatt agcttatgaa 480
aaaaccccgg ttaaaagcat cggcgaaatc accgaactga tgaaaaaagt taaaggcgat 540
ctggaaaaag ttaactgccc ggcactgatc ttcgttagca aagaagatca cgttgttccg 600
ccgagcaaca gccaggaaat ctacagcagc atcaaaagcg cggcgaaaga actggttacc 660
ctggataaca gctaccacgt tgcgaccctg gataacgatc aggatattat catcgaacgt 720
accctgcact tcctgcagcg tgttctggaa accagcagcc tgcagggc 768
<210> 3
<211> 259
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Thr Glu Thr Tyr Pro Val Val Lys Gly Ala Glu Pro Phe Phe Phe
1 5 10 15
Glu Gly Asn Asp Ile Gly Ile Leu Val Leu His Gly Phe Thr Gly Ser
20 25 30
Pro Gln Ser Met Arg Pro Leu Gly Glu Ala Tyr His Glu Ala Gly Tyr
35 40 45
Thr Val Cys Gly Pro Arg Leu Lys Gly His Gly Thr His Tyr Glu Asp
50 55 60
Met Glu Lys Thr Thr Cys Gln Asp Trp Ile Asp Ser Val Glu Ala Gly
65 70 75 80
Tyr Glu Trp Leu Lys Asn Arg Cys Gly Thr Ile Phe Val Thr Gly Leu
85 90 95
Ser Met Gly Gly Thr Leu Thr Leu Tyr Met Ala Glu His His Pro Glu
100 105 110
Ile Cys Gly Ile Ala Pro Ile Asn Ala Ala Ile Asn Met Pro Ala Leu
115 120 125
Ala Gly Ala Leu Ala Gly Val Gly Asp Leu Pro Arg Phe Leu Asp Ala
130 135 140
Ile Gly Ser Asp Ile Lys Lys Pro Gly Val Lys Glu Leu Ala Tyr Glu
145 150 155 160
Lys Thr Pro Ala Ala Ser Ile Arg Gln Ile Val Gln Leu Met Glu Arg
165 170 175
Val Lys Thr Asp Leu His Lys Ile Thr Cys Pro Ala Ile Leu Phe Cys
180 185 190
Ser Asp Glu Asp His Val Val Pro Pro Asp Asn Ala Pro Phe Ile Tyr
195 200 205
Asp His Ile Ala Ser Ala Asp Lys Lys Leu Val Arg Leu Pro Asp Ser
210 215 220
Tyr His Val Ala Thr Leu Asp Asn Asp Arg Gln Lys Ile Ile Asp Thr
225 230 235 240
Ser Leu Ala Phe Phe Lys Lys His Ala Asp Arg Leu Glu His His His
245 250 255
His His His
<210> 4
<211> 254
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Ser Glu Lys Tyr Pro Ile Ile Glu Gly Ala Glu Pro Phe Tyr Tyr
1 5 10 15
Glu Gly Asn Glu Ile Gly Ile Leu Val Ser His Gly Phe Thr Gly Ser
20 25 30
Thr Gln Ser Met Arg Pro Leu Gly Glu Ala Tyr Ala Asn Ala Gly Tyr
35 40 45
Thr Val Cys Gly Pro Arg Leu Arg Gly His Gly Thr His Tyr Glu Glu
50 55 60
Met Glu Thr Thr Thr Tyr Gln Asp Trp Ile His Ser Val Glu Glu Gly
65 70 75 80
Tyr Gln Trp Leu Lys Glu Arg Cys Ser Thr Ile Phe Val Thr Gly Leu
85 90 95
Ser Met Gly Gly Thr Leu Thr Leu Tyr Met Ala Glu Lys Tyr Pro Glu
100 105 110
Ile Lys Gly Ile Ile Pro Ile Asn Ala Ala Ile Glu Ile Ser Tyr Met
115 120 125
Glu Ala Ala Ala Ser Leu Glu Asp Val Arg Phe Leu Asp Ala Ile Gly
130 135 140
Ser Asp Ile Lys Asn Pro Asp Ile Lys Glu Leu Ala Tyr Glu Lys Thr
145 150 155 160
Pro Val Lys Ser Ile Gly Glu Ile Thr Glu Leu Met Lys Lys Val Lys
165 170 175
Gly Asp Leu Glu Lys Val Asn Cys Pro Ala Leu Ile Phe Val Ser Lys
180 185 190
Glu Asp His Val Val Pro Pro Ser Asn Ser Gln Glu Ile Tyr Ser Ser
195 200 205
Ile Lys Ser Ala Ala Lys Glu Leu Val Thr Leu Asp Asn Ser Tyr His
210 215 220
Val Ala Thr Leu Asp Asn Asp Gln Asp Ile Ile Ile Glu Arg Thr Leu
225 230 235 240
His Phe Leu Gln Arg Val Leu Glu Thr Ser Ser Leu Gln Gly
245 250

Claims (8)

1.一种海洋微生物脂肪酶嵌合体,其特征在于,所述脂肪酶嵌合体氨基酸序列如 SEQNO.1 所示。
2.一种编码权利要求1所述的脂肪酶嵌合体的基因。
3.根据权利要求2所述的基因,其特征在于,所述基因核苷酸序列如 SEQ NO.2 所示。
4.含有权利要求3所述的基因的重组质粒。
5.含有权利要求4所述的重组质粒重组菌。
6.一种构建权利要求1所述海洋微生物脂肪酶嵌合体的方法,其特征在于,包括下列步骤:
将GMGL的N端的160个氨基酸替换CoMGL的对应肽段得到脂肪酶嵌合体;
所述GMGL氨基酸序列如SEQ NO.3所示,所述CoMGL的氨基酸序列如SEQ NO.4所示。
7.权利要求1所述脂肪酶嵌合体在制备食品中的应用。
8.权利要求1所述脂肪酶嵌合体在制备化妆品中的应用。
CN202110679849.6A 2021-06-18 2021-06-18 一种海洋微生物脂肪酶嵌合体及其构建方法和应用 Active CN113481183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110679849.6A CN113481183B (zh) 2021-06-18 2021-06-18 一种海洋微生物脂肪酶嵌合体及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110679849.6A CN113481183B (zh) 2021-06-18 2021-06-18 一种海洋微生物脂肪酶嵌合体及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN113481183A CN113481183A (zh) 2021-10-08
CN113481183B true CN113481183B (zh) 2023-01-06

Family

ID=77935567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110679849.6A Active CN113481183B (zh) 2021-06-18 2021-06-18 一种海洋微生物脂肪酶嵌合体及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN113481183B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185290A (ja) * 2005-02-28 2005-07-14 Academia Sinica 組換カンジダルゴサリパーゼ
CN108531522B (zh) * 2018-03-09 2021-09-21 华南理工大学 一种酶法催化合成单甘酯的方法
CN108690838B (zh) * 2018-05-30 2021-09-21 华南理工大学 一种海洋来源单甘酯脂肪酶及其晶体结构和制备方法

Also Published As

Publication number Publication date
CN113481183A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
US7468429B2 (en) Recombinant Candida rugosa lipases
US20040142441A1 (en) Enzymes with lipase/acyltransferase activity, nucleic acids encoding the same and methods of use thereof
CN109182298B (zh) 一种重组脂肪酶突变体、工程菌及应用
CN109929820B (zh) 新型的甘油单-二酰酯脂肪酶
JP7063807B2 (ja) 安定性に優れたリパーゼ活性を有するポリペプチド
CN113481183B (zh) 一种海洋微生物脂肪酶嵌合体及其构建方法和应用
US20160298095A1 (en) Nucleic acid molecules for increased protein production
CN110951711B (zh) 一种具有降解手性酯活性的酯酶及其编码基因和应用
CN111944795B (zh) 谷氨酸脱羧酶突变体及其应用
CN112226422B (zh) 一种活性提高的EstWY酶突变体
JP2005185290A (ja) 組換カンジダルゴサリパーゼ
JP2587305B2 (ja) リパーゼ発現用組換え体プラスミド及びリパーゼの製造法
US6610524B2 (en) Thermostable phospholipase A1 mutants and a process for preparing the same
CN113122520A (zh) 一个新的甘油单-二酰酯脂肪酶
CN113005111A (zh) 新型的甘油单-二酰酯脂肪酶
CN113025595A (zh) 耐酸脂肪酶
CN113025596A (zh) 耐甲醇脂肪酶
KR101734935B1 (ko) 메타게놈 라이브러리로부터 유래한 신규 지질분해효소 및 그의 생산 방법
CN111117980A (zh) 一种南极土壤来源的酯酶及其编码基因和应用
JP4074078B2 (ja) 組換カンジダルゴサリパーゼ
KR101778878B1 (ko) 박테로이데스 속 미생물 유래의 gaba 생성 고활성 글루탐산탈탄산효소 및 이의 용도
CN115161304B (zh) 米黑根毛霉脂肪酶变异体及其应用
CN111073876B (zh) 热稳定性提高的枯草芽孢杆菌脂肪酶a
JPH07203976A (ja) N−アセチルヘパロサン断片化用酵素をコードするdnaフラグメント、組換え酵素、およびそれを用いるn−アセチルヘパロサンの断片化方法
JP7492817B2 (ja) モノアシルグリセロールリパーゼ変異体及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant