CN113474889A - 互补式开关元件 - Google Patents

互补式开关元件 Download PDF

Info

Publication number
CN113474889A
CN113474889A CN201980092971.4A CN201980092971A CN113474889A CN 113474889 A CN113474889 A CN 113474889A CN 201980092971 A CN201980092971 A CN 201980092971A CN 113474889 A CN113474889 A CN 113474889A
Authority
CN
China
Prior art keywords
electrode
group
semiconductor substrate
compound semiconductor
tfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980092971.4A
Other languages
English (en)
Inventor
富冈克广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Publication of CN113474889A publication Critical patent/CN113474889A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8122Vertical transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明的互补式开关元件具有具备第一导电型的沟道的第一TFET和具备第二导电型的沟道的第二TFET。第一TFET及第二TFET各自具有:掺杂为第一导电型的IV族半导体基板;配置于IV族半导体基板上的由III‑V族化合物半导体构成的纳米线;与IV族半导体基板连接的第一电极;与纳米线连接的第二电极;以及向IV族半导体基板与纳米线之间的界面施加电场的栅极电极。纳米线包含与IV族半导体基板连接的第一区域和掺杂为第二导电型的第二区域。第一TFET中,第二电极为源极电极,且第一电极为漏极电极。第二TFET中,第一电极为源极电极,且第二电极为漏极电极。

Description

互补式开关元件
技术领域
本发明涉及互补式开关元件。
背景技术
半导体微处理器及高度集成电路是在半导体基板上集成了金属氧化物半导体(以下,称为“MOS”)场效应晶体管(以下,称为“FET”)等元件而制造的。一般来说,互补式MOSFET(以下,称为“CMOS”)为集成电路的基本元件(开关元件)。作为半导体基板的材料,主要使用作为IV族半导体的硅。通过将构成CMOS的晶体管小型化,能够提高半导体微处理器及高度集成电路的集成度及性能。将CMOS小型化时的技术问题之一是功耗的增大。作为功耗增大的主要原因,可以举出以下两点:一个微芯片所能搭载的CMOS的数量增加;以及短沟道效应引起的漏电流增大。上述原因中,漏电流的增大导致供电电压的增大。因此,关于各CMOS,需要抑制漏电流以降低工作电压。
作为表示CMOS的开关特性的指标,使用亚阈值(mV/dec)。亚阈值相当于用于使MOSFET为导通状态的最低驱动电压。以往的MOSFET的开关特性基于电子和空穴(载流子)的扩散现象。因此,以往的MOSFET中,亚阈值斜率的理论最小值为60mV/dec,无法实现表现出比这更小的亚阈值的开关特性。
作为超过该物理上的理论极限而以较小的亚阈值工作的开关元件,已有关于隧道FET(以下,称为“TFET”)的报告(例如,参照非专利文献1、2)。TFET没有短沟道效应,且能够以低电压来实现较高的ON/OFF比,因此,可认为是下一代开关元件的有力候补。
现有技术文献
专利文献
非专利文献1:Bhuwalka,K.K.,Schulze,J.and Eisele,I.,"Scaling thevertical tunnel FET with tunnel bandgap modulation and gate workfunctionengineering",IEEE transactions on electron devices,Vol.52,No.5,May(2005),pp.909-917.
非专利文献2:Bhuwalka,K.K.,Schulze,J.and Eisele,I.,"Asimulationapproach to optimize the electrical parameters of a vertical tunnel FET",IEEEtransactions on electron devices,Vol.52,No.7,July(2005),pp.1541-1547.
发明内容
发明要解决的问题
在使用TFET构成CMOS那样的互补式开关元件的情况下,需要将TFET如MOSFET那样进行集成化。然而,TFET的源极区域和漏极区域的结构是非对称的,因此,不像源极区域与漏极区域的结构对称的MOSFET那样容易进行集成化。
本发明的目的在于,提供能够容易地进行集成化的包含TFET的互补式开关元件。
解决问题的方案
本发明的第一方式的互补式开关元件具有具备第一导电型的沟道的第一隧道场效应晶体管、以及具备与所述第一导电型不同的第二导电型的沟道的第二隧道场效应晶体管,所述互补式开关元件中,所述第一隧道场效应晶体管及所述第二隧道场效应晶体管各自具有:IV族半导体基板,其具有(111)面,且掺杂为所述第一导电型;III-V族化合物半导体纳米线,其配置于所述(111)面上,且包含与所述(111)面连接的第一区域和掺杂为所述第二导电型的第二区域;第一电极,其与所述IV族半导体基板连接;第二电极,其与所述第二区域连接;以及栅极电极,其向所述(111)面与所述第一区域之间的界面施加电场,在所述第一隧道场效应晶体管中,所述第二电极为源极电极且所述第一电极为漏极电极,在所述第二隧道场效应晶体管中,所述第一电极为源极电极且所述第二电极为漏极电极。
本发明的第二方式的互补式开关元件具有具备第一导电型的沟道的第一隧道场效应晶体管、以及具备与所述第一导电型不同的第二导电型的沟道的第二隧道场效应晶体管,所述互补式开关元件中,所述第一隧道场效应晶体管及所述第二隧道场效应晶体管各自具有:IV族半导体基板,其包含具有(111)面的第一区域和掺杂为所述第一导电型的第二区域;III-V族化合物半导体纳米线,其配置于所述(111)面上,且其未掺杂或掺杂为所述第二导电型;第一电极,其与所述III-V族化合物半导体纳米线连接;第二电极,其与所述第二区域连接;以及栅极电极,其向所述III-V族化合物半导体纳米线与所述(111)面之间的界面施加电场,在所述第一隧道场效应晶体管中,所述第一电极为源极电极且所述第二电极为漏极电极,在所述第二隧道场效应晶体管中,所述第二电极为源极电极且所述第一电极为漏极电极。
发明效果
根据本发明,可以提供能够容易地进行集成化的包含TFET的互补式开关元件。因此,根据本发明,可以提供功耗少的半导体微处理器及高度集成电路。
附图说明
图1是表示实施方式一的互补式开关元件的结构的剖面图。
图2是实施方式一的互补式开关元件的第一TFET及第二TFET的能带结构图。
图3是表示第一TFET(p-TFET)及第二TFET(n-TFET)的电气特性的图表。
图4A是表示第二TFET(n-TFET)的电气特性的图表,图4B是表示第一TFET(p-TFET)的电气特性的图表。
图5A是表示使用实施方式一的互补式开关元件而构成的逆变器的例子的立体图,图5B是图5A所示的逆变器的电路图。
图6A~图6D是表示实施方式一的互补式开关元件的制造方法的一例的示意图。
图7是表示实施方式二的互补式开关元件的结构的剖面图。
图8是实施方式二的互补式开关元件的第一TFET及第二TFET的能带结构图。
图9是表示实施方式三的互补式开关元件的结构的剖面图。
图10是实施方式三的互补式开关元件的第一TFET及第二TFET的能带结构图。
图11是表示第一TFET(n-TFET)及第二TFET(p-TFET)的电气特性的图表。
图12A是表示使用实施方式三的互补式开关元件而构成的逆变器的例子的立体图,图12B是图12A所示的逆变器的电路图。
图13是表示鳍式的第一TFET(n-TFET)及鳍式的第二TFET(p-TFET)的电气特性的图表。
图14A~图14D是表示实施方式三的互补式开关元件的制造方法的一例的示意图。
图15是表示实施方式四的互补式开关元件的结构的剖面图。
图16是实施方式四的互补式开关元件的第一TFET及第二TFET的能带结构图。
具体实施方式
下面,参照附图对本发明的实施方式详细地进行说明。
[实施方式一]
在实施方式一中,示出III-V族化合物半导体纳米线从p型高掺杂的IV族半导体基板的表面向垂直方向延伸的、本发明的互补式开关元件的例子。
(互补式开关元件的结构)
图1是表示实施方式一的互补式开关元件100的结构的剖面图。如图1所示,实施方式一的开关元件100具有:至少一个的第一隧道场效应晶体管(第一TFET)101和至少一个的第二隧道场效应晶体管(第二TFET)102。
第一TFET101是具有p型沟道的TFET(p-TFET),第二TFET102是具有n型沟道的TFET(n-TFET)。第一TFET101和第二TFET102具有实质上相同的结构,但是,第一TFET101和第二TFET102中,源极电极(图1中,用“S”表示)和漏极电极(图1中,用“D”表示)之间的位置关系是相反的。
第一TFET101具有IV族半导体基板111、绝缘膜112、III-V族化合物半导体纳米线113、栅极介电膜114、绝缘保护膜115、第一电极(漏极电极)116、第二电极(源极电极)117和栅极电极118。III-V族化合物半导体纳米线113包括:未掺杂的第一区域113a和n型高掺杂的第二区域113b。第一TFET101中,第一电极116是漏极电极,第二电极117是源极电极。第一TFET101中,在IV族半导体基板111的(111)面与III-V族化合物半导体纳米线113之间的接合界面,产生隧道现象。
第二TFET102具有IV族半导体基板111、绝缘膜112、III-V族化合物半导体纳米线123、栅极介电膜124、绝缘保护膜125、第一电极(源极电极)126、第二电极(漏极电极)127和栅极电极128。III-V族化合物半导体纳米线123包括:未掺杂的第一区域123a和n型高掺杂的第二区域123b。第二TFET102中,第一电极126是源极电极,第二电极127是漏极电极。第二TFET102中,在IV族半导体基板111的(111)面与III-V族化合物半导体纳米线123之间的接合界面,产生隧道现象。
IV族半导体基板111由硅或锗等IV族半导体构成,是其上表面为(111)面的基板。IV族半导体基板111例如是硅(111)基板。本实施方式中,IV族半导体基板111为p型高掺杂。可以整个IV族半导体基板111被掺杂,也可以只是IV族半导体基板111的一部分被掺杂。
此外,构成第一TFET101的IV族半导体基板111和构成第二TFET102的IV族半导体基板111在电气上或空间上分离。例如,也可以在构成第一TFET101的IV族半导体基板111与构成第二TFET102的IV族半导体基板111之间,配置导电型与IV族半导体基板111不同的结构,从而将构成第一TFET101的IV族半导体基板111和构成第二TFET102的IV族半导体基板111在电气上分离。另外,也可以将在BOX(掩埋氧化物,buried oxide)层上以相互不接触的方式形成的两个硅细线结构分别设为构成第一TFET101的IV族半导体基板111和构成第二TFET102的IV族半导体基板111,从而将构成第一TFET101的IV族半导体基板111和构成第二TFET102的IV族半导体基板111在空间上分离。
绝缘膜112是至少覆盖IV族半导体基板111的两个面中的配置有III-V族化合物半导体纳米线113及III-V族化合物半导体纳米线123的面((111)面)的绝缘性的膜。在IV族半导体基板111的另一个面(未配置III-V族化合物半导体纳米线113及III-V族化合物半导体纳米线123的面)可以形成绝缘膜112,也可以不形成绝缘膜112。第一TFET101中,在IV族半导体基板111与III-V族化合物半导体纳米线113之间、及IV族半导体基板111与第一电极(漏极电极)116之间,不存在绝缘膜112。第二TFET102中,在IV族半导体基板111与III-V族化合物半导体纳米线123之间、及IV族半导体基板111与第一电极(源极电极)126之间,不存在绝缘膜112。绝缘膜112的例子包括:氧化硅膜、氮化硅膜。例如,绝缘膜112是膜厚20nm的氧化硅膜。
III-V族化合物半导体纳米线113、123是由III-V族化合物半导体构成的、直径为2nm~100nm且长度为50nm~10μm的结构体。III-V族化合物半导体纳米线113、123是以其长轴与(111)面垂直的方式配置在IV族半导体基板111的(111)面上的。III-V族化合物半导体可以是由两种元素构成的半导体、由三种元素构成的半导体、由四种元素构成的半导体、以及由上述数量以上的种类的元素构成的半导体中的任意一种。由两种元素构成的III-V族化合物半导体的例子包括:InAs、InP、GaAs、GaN、InSb、GaSb及AlSb。由三种元素构成的III-V族化合物半导体的例子包括:AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb及AlInSb。由四种以上的元素构成的III-V族化合物半导体的例子包括:InGaAlN、AlInGaP、InGaAsP、GaInAsN、InGaAlSb、InGaAsSb及AlInGaPSb。
如上所述,III-V族化合物半导体纳米线113、123包括:未掺杂的第一区域113a、123a(本征半导体)和n型高掺杂的第二区域113b、123b(n型半导体)。第一区域113a、123a与IV族半导体基板111的(111)面连接。第二区域113b、123b与第二电极117、127连接。III-V族化合物半导体纳米线113、123的第一区域113a、123a与IV族半导体基板111的(111)面形成基本上无位错且无缺陷的接合界面。
栅极介电膜114、124是覆盖III-V族化合物半导体纳米线113、123的侧面的至少一部分的绝缘膜。本实施方式中,栅极介电膜114、124覆盖III-V族化合物半导体纳米线113、123的整个侧面及IV族半导体基板111的一个面(更准确地,绝缘膜112)。栅极介电膜114、124例如是铝酸铪(HfAlOx)膜等高介电膜。
绝缘保护膜115、125是覆盖III-V族化合物半导体纳米线113、123、栅极介电膜114、124及栅极电极118、128的、由绝缘树脂构成的膜。对于绝缘树脂的种类,不特别地进行限定,绝缘树脂例如是BCB树脂。
第一电极116、126配置于IV族半导体基板111上,且与IV族半导体基板111(p型半导体)连接。第一电极116、126例如是Ti/Au合金膜。第一电极116、126可以配置于IV族半导体基板111的两个面中的配置有III-V族化合物半导体纳米线113、123的面,也可以配置于IV族半导体基板111的另一个面(未配置III-V族化合物半导体纳米线113、123的面)。第一TFET101中,第一电极116作为漏极电极发挥功能。另一方面,第二TFET102中,第一电极126作为源极电极发挥功能。
第二电极117、127配置于III-V族化合物半导体纳米线113、123及绝缘保护膜115、125上,且与III-V族化合物半导体纳米线113、123的第二区域113b、123b(n型半导体)连接。第二电极117、127例如是Ti/Au合金膜或Ge/Au/Ni/Au合金膜。第一TFET101中,第二电极117作为源极电极发挥功能。另一方面,第二TFET102中,第二电极127作为漏极电极发挥功能。
栅极电极118、128以能够向IV族半导体基板111与III-V族化合物半导体纳米线113、123的第一区域113a、123a之间的接合界面施加电场的方式配置。本实施方式中,栅极电极118、128以覆盖III-V族化合物半导体纳米线113、123的第一区域113a、123a的周围的方式配置于栅极介电膜114、124上。栅极电极118、128例如是Ti/Au合金膜。
第一TFET101及第二TFET102中,IV族半导体基板111的(111)面与III-V族化合物半导体纳米线113、123的第一区域113a、123a之间的接合界面作为隧道层发挥功能。如上所述,第一TFET101和第二TFET102具有实质上相同的结构,但是,第一TFET101和第二TFET102中,源极电极(图1中,用“S”表示)与漏极电极(图1中,用“D”表示)之间的位置关系是相反的。本发明的发明人发现,仅通过这样将电极的位置对调,即可如图2所示,使得第一TFET101作为具有p型沟道的TFET(p-TFET)工作,且第二TFET102作为具有n型沟道的TFET(n-TFET)工作。图3是表示第一TFET101(p-TFET)及第二TFET102(n-TFET)的电气特性的图表。如该图表所示,第一TFET101及第二TFET102的亚阈值都在40mV/dec以下。
图4A是按每个相对于源极电极的漏极电极的电位VDS表示室温的第二TFET102(n-TFET)中栅极电压VG与漏极电流ID或栅极电流IG之间的关系的图表。另外,图4B是按每个相对于源极电极的漏极电极的电位VDS表示室温的第一TFET101(p-TFET)中栅极电压VG与漏极电流ID之间的关系的图表。根据这些图表可知,即使使相对于源极电极的漏极电极的电位VDS变化,第一TFET101及第二TFET102的亚阈值也为如下,即,第二TFET102的亚阈值最小为21mV/dec,平均为40mV/dec以下,第一TFET101的亚阈值最小为6mV/dec,平均为40mV/dec。另外也可知,通过将源极电极和漏极电极对调,能够以同一结构实现互补的开关动作。
本实施方式的开关元件100中,通过将1个或2个以上的第一TFET101与1个或2个以上的第二TFET102适当地连接,从而能够作为各种互补式开关元件发挥功能。图5A是表示使用互补式开关元件100而构成的逆变器的例子的立体图,图5B是图5A所示的逆变器的电路图。图5A中,示出了在BOX层上形成有互补式开关元件100的例子,其中,省略了绝缘膜112、栅极介电膜114、124和绝缘保护膜115、125。图5A中,将在BOX层上以相互不接触的方式形成的两个硅细线结构分别设为构成第一TFET101的IV族半导体基板111和构成第二TFET102的IV族半导体基板111。
(互补式开关元件的制造方法)
对于本实施方式的开关元件100的制造方法,不特别地进行限定。例如可以通过国际公开第2011/040012号中记载的方法制造第一TFET101及第二TFET102。
图6A~图6D是表示开关元件100的制造方法的一例的示意图。能够以相同的步骤同时制作第一TFET101及第二TFET102,因此,图6A~图6D中,仅就第一TFET101示出了其制造方法。下面,参照图6A~图6D对开关元件100的制造方法进行说明。
首先,如图6A所示,准备p型高掺杂的IV族半导体基板111。在该IV族半导体基板111的(111面)上通过热氧化法等形成有绝缘膜112。接着,如图6B所示,使用光刻法等在IV族半导体基板111上的绝缘膜112形成规定大小(例如,直径20nm)的开口部。接着,如图6C所示,利用MOVPE(有机金属化学气相外延,Metal-Organic Vapor Phase Epitaxy)法,从通过开口部露出的IV族半导体基板111的(111)面起,使III-V族化合物半导体纳米线113成长。这时,优选在使III-V族化合物半导体纳米线113成长之前,利用交替原料供给调制法,在IV族半导体基板111的(111)面形成III-V族化合物半导体的薄膜(参照国际公开第2011/040012号)。另外,在刚刚形成III-V族化合物半导体纳米线113后,紧接着对III-V族化合物半导体纳米线113的第二区域113b进行掺杂,来形成未掺杂的第一区域113a和n型高掺杂的第二区域113b。最后,如图6D所示,形成栅极介电膜114、绝缘保护膜115、第一电极116、第二电极117和栅极电极118。
(效果)
本实施方式的开关元件100中,第一TFET101(p-TFET)和第二TFET102(n-TFET)具有实质上相同的结构。因此,本实施方式的开关元件100在是包含TFET的互补式开关元件的同时,还能够容易地进行集成化。
[实施方式二]
在实施方式二中,示出III-V族化合物半导体纳米线从n型高掺杂的IV族半导体基板的表面向垂直方向延伸的、本发明的互补式开关元件的例子。
(互补式开关元件的结构)
图7是表示实施方式二的互补式开关元件200的结构的剖面图。关于与实施方式一的TFET相同的构成要素,赋予相同的附图标记并省略重复部分的说明。
如图7所示,实施方式二的开关元件200具有:至少一个的第一隧道场效应晶体管(第一TFET)201和至少一个的第二隧道场效应晶体管(第二TFET)202。
第一TFET201是具有n型沟道的TFET(n-TFET),第二TFET202是具有p型沟道的TFET(p-TFET)。第一TFET201和第二TFET202具有实质上相同的结构,但是,第一TFET201和第二TFET202中,源极电极(图7中,用“S”表示)和漏极电极(图7中,用“D”表示)之间的位置关系是相反的。
第一TFET201具有IV族半导体基板211、绝缘膜112、III-V族化合物半导体纳米线213、栅极介电膜114、绝缘保护膜115、第一电极(漏极电极)116、第二电极(源极电极)117和栅极电极118。III-V族化合物半导体纳米线213包括:未掺杂的第一区域213a和p型高掺杂的第二区域213b。第一TFET201中,第一电极116是漏极电极,第二电极117是源极电极。第一TFET201中,在IV族半导体基板211的(111)面与III-V族化合物半导体纳米线213之间的接合界面,产生隧道现象。
第二TFET202具有IV族半导体基板211、绝缘膜112、III-V族化合物半导体纳米线223、栅极介电膜124、绝缘保护膜125、第一电极(源极电极)126、第二电极(漏极电极)127和栅极电极128。III-V族化合物半导体纳米线223包括:未掺杂的第一区域223a和p型高掺杂的第二区域223b。第二TFET202中,第一电极126是源极电极,第二电极127是漏极电极。第二TFET202中,在IV族半导体基板211的(111)面与III-V族化合物半导体纳米线223之间的接合界面,产生隧道现象。
IV族半导体基板211由硅或锗等IV族半导体构成,是其上表面为(111)面的基板。IV族半导体基板211例如是硅(111)基板。本实施方式中,IV族半导体基板211为n型高掺杂。可以整个IV族半导体基板211被掺杂,也可以只是IV族半导体基板211的一部分被掺杂。
此外,构成第一TFET201的IV族半导体基板211和构成第二TFET202的IV族半导体基板211在电气上或空间上分离。例如,也可以在构成第一TFET201的IV族半导体基板211与构成第二TFET202的IV族半导体基板211之间,配置导电型与IV族半导体基板211不同的结构,从而将构成第一TFET201的IV族半导体基板211和构成第二TFET202的IV族半导体基板211在电气上分离。另外,也可以将在BOX层上以相互不接触的方式形成的两个硅细线结构分别设为构成第一TFET201的IV族半导体基板211和构成第二TFET202的IV族半导体基板211,从而将构成第一TFET201的IV族半导体基板211和构成第二TFET202的IV族半导体基板211在空间上分离。
III-V族化合物半导体纳米线213、223是由III-V族化合物半导体构成的、直径为2nm~100nm且长度为50nm~10μm的结构体。III-V族化合物半导体纳米线213、223是以其长轴与(111)面垂直的方式配置在IV族半导体基板211的(111)面上的。III-V族化合物半导体可以是由两种元素构成的半导体、由三种元素构成的半导体、由四种元素构成的半导体、以及由上述数量以上的种类的元素构成的半导体中的任意一种。
III-V族化合物半导体纳米线213、223包括:未掺杂的第一区域213a、223a(本征半导体)和p型高掺杂的第二区域213b、223b(p型半导体)。第一区域213a、223a与IV族半导体基板211的(111)面连接。第二区域213b、223b与第二电极117、127连接。III-V族化合物半导体纳米线213、223的第一区域213a、223a与IV族半导体基板211的(111)面形成基本上无位错且无缺陷的接合界面。
第一TFET201及第二TFET202中,IV族半导体基板211的(111)面与III-V族化合物半导体纳米线213、223的第一区域213a、223a之间的接合界面作为隧道层发挥功能。如上所述,第一TFET201和第二TFET202具有实质上相同的结构,但是,第一TFET201和第二TFET202中,源极电极(图7中,用“S”表示)和漏极电极(图7中,用“D”表示)之间的位置关系是相反的。本发明的发明人发现,仅通过这样将电极的位置对调,即可如图8所示,使得第一TFET201作为具有n型沟道的TFET(n-TFET)工作,且第二TFET202作为具有p型沟道的TFET(p-TFET)工作。因此,通过将1个或2个以上的第一TFET201与1个或2个以上的第二TFET202适当地连接,从而能够作为各种互补式开关元件发挥功能。
(互补式开关元件的制造方法)
对于本实施方式的开关元件200的制造方法,不特别地进行限定。可以通过与实施方式一的开关元件100相同的步骤制作实施方式二的开关元件200。
(效果)
本实施方式的开关元件200中,第一TFET201(n-TFET)和第二TFET202(p-TFET)具有实质上相同的结构。因此,本实施方式的开关元件200在是包含TFET的互补式开关元件的同时,还能够容易地进行集成化。
[实施方式三]
在实施方式三中,示出III-V族化合物半导体纳米线从p型低掺杂的IV族半导体基板的表面向倾斜方向延伸的、本发明的互补式开关元件的例子。
(互补式开关元件的结构)
图9是表示实施方式三的互补式开关元件300的结构的剖面图。如图9所示,实施方式三的开关元件300具有:至少一个的第一隧道场效应晶体管(第一TFET)301和至少一个的第二隧道场效应晶体管(第二TFET)302。
第一TFET301是具有n型沟道的TFET(n-TFET),第二TFET302是具有p型沟道的TFET(p-TFET)。第一TFET301和第二TFET302具有实质上相同的结构,但是,第一TFET301和第二TFET302中,源极电极(图9中,用“S”表示)和漏极电极(图9中,用“D”表示)之间的位置关系是相反的。
第一TFET301具有IV族半导体基板311、III-V族化合物半导体纳米线312、绝缘膜(栅极介电膜)313、第一电极(源极电极)314、第二电极(漏极电极)315和栅极电极316。绝缘膜313的一部分区域作为栅极介电膜发挥功能。IV族半导体基板311包括:未掺杂的第一区域311a和n型高掺杂的第二区域311b。第一TFET301中,第一电极314是源极电极,第二电极315是漏极电极。第一TFET301中,在IV族半导体基板311的(111)面311c与III-V族化合物半导体纳米线312之间的接合界面,产生隧道现象。
第二TFET302具有IV族半导体基板311、III-V族化合物半导体纳米线322、绝缘膜(栅极介电膜)323、第一电极(漏极电极)324、第二电极(源极电极)325和栅极电极326。绝缘膜323的一部分区域作为栅极介电膜发挥功能。IV族半导体基板311包括:未掺杂的第一区域321a和n型高掺杂的第二区域321b。第二TFET302中,第一电极324是漏极电极,第二电极325是源极电极。第二TFET302中,在IV族半导体基板311的(111)面321c与III-V族化合物半导体纳米线322之间的接合界面,产生隧道现象。
IV族半导体基板311由硅或锗等IV族半导体构成,是其上表面为(100)面的基板。IV族半导体基板311例如是硅(100)基板。本实施方式中,IV族半导体基板311为p型低掺杂。第一TFET301中,在IV族半导体基板311的两个面中的配置有III-V族化合物半导体纳米线312的面,以使未掺杂的第一区域311a(本征半导体)与n型高掺杂的第二区域311b(n型半导体)相互邻接的方式,形成有第一区域311a和第二区域311b。第一区域311a不仅具有(100)面,还具有(111)面311c。同样地,第二TFET302中,也在IV族半导体基板311的两个面中的配置有III-V族化合物半导体纳米线322的面,以使未掺杂的第一区域321a(本征半导体)与n型高掺杂的第二区域321b(n型半导体)相互邻接的方式,形成有第一区域321a和第二区域321b。第一区域321a不仅具(100)面,还具有(111)面321c。
III-V族化合物半导体纳米线312、322是由III-V族化合物半导体构成的、直径为2nm~100nm且长度为50nm~10μm的结构体。III-V族化合物半导体纳米线312、322是以其长轴与(111)面311c、321c垂直的方式配置在IV族半导体基板311的(111)面311c、321c上的。III-V族化合物半导体可以是由两种元素构成的半导体、由三种元素构成的半导体、由四种元素构成的半导体、以及由上述数量以上的种类的元素构成的半导体中的任意一种。由两种元素构成的III-V族化合物半导体的例子包括:InAs、InP、GaAs、GaN、InSb、GaSb及AlSb。由三种元素构成的III-V族化合物半导体的例子包括:AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb及AlInSb。由四种以上的元素构成的III-V族化合物半导体的例子包括:InGaAlN、AlInGaP、InGaAsP、GaInAsN、InGaAlSb、InGaAsSb及AlInGaPSb。
III-V族化合物半导体纳米线312、322未掺杂,或为p型低掺杂。本实施方式中,III-V族化合物半导体纳米线312、322为p型低掺杂。III-V族化合物半导体纳米线312、322与IV族半导体基板311的(111)面311c、321c形成基本上无位错且无缺陷的接合界面。
绝缘膜313、323是至少覆盖IV族半导体基板311的第一区域311a、321a的表面((100)面)的全部和第二区域311b、321b的表面((100)面)的一部分的绝缘性的膜。如上所述,绝缘膜313、323的一部分区域作为栅极介电膜发挥功能。本实施方式中,绝缘膜313、323覆盖第一区域311a、321a的表面的全部、第二区域311b、321b的表面的一部分、以及IV族半导体基板311的位于第一电极314、324之下的部分。绝缘膜313、323例如是铝酸铪(HfAlOx)膜等高介电膜。
第一电极314、324隔着绝缘膜313、323配置在IV族半导体基板311上,且与III-V族化合物半导体纳米线312、322(p型半导体)连接。第一电极314、324例如是Ti/Au合金膜。第一TFET301中,第一电极314作为源极电极发挥功能。另一方面,第二TFET302中,第一电极324作为漏极电极发挥功能。
第二电极315、325配置于IV族半导体基板311的第二区域311b、321b上,且与第二区域311b、321b(n型半导体)连接。第二电极315、325例如是Ti/Au合金膜或Ge/Au/Ni/Au合金膜。第一TFET301中,第二电极315作为漏极电极发挥功能。另一方面,第二TFET302中,第二电极325作为源极电极发挥功能。
栅极电极316、326以能够向IV族半导体基板311的第一区域311a、321a与III-V族化合物半导体纳米线312、322之间的接合界面施加电场的方式配置。本实施方式中,栅极电极316、326配置于第一区域311a、321a上的绝缘膜(栅极介电膜)313、323上。栅极电极316、326例如是Ti/Au合金膜。
第一TFET301及第二TFET302中,IV族半导体基板311的(111)面311c、321c与III-V族化合物半导体纳米线312、322之间的接合界面作为隧道层发挥功能。如上所述,第一TFET301和第二TFET302具有实质上相同的结构,但是,第一TFET301和第二TFET302中,源极电极(图9中,用“S”表示)和漏极电极(图9中,用“D”表示)之间的位置关系是相反的。本发明的发明人发现,仅通过这样将电极的位置对调,即可如图10所示,使得第一TFET301作为具有n型沟道的TFET(n-TFET)工作,且第二TFET302作为具有p型沟道的TFET(p-TFET)工作。图11是表示第一TFET301(n-TFET)及第二TFET302(p-TFET)的电气特性的图表。如该图表所示,第一TFET301及第二TFET302的亚阈值的最小值均为50mV/dec。
本实施方式的开关元件300中,通过将1个或2个以上的第一TFET301与1个或2个以上的第二TFET302适当地连接,从而能够作为各种互补式开关元件发挥功能。图12A是表示使用互补式开关元件300构成的逆变器的例子的立体图,图12B是图12A所示的逆变器的电路图。图12A中,示出了通过在BOX层上形成鳍式的第一TFET301及鳍式的第二TFET302来形成互补式开关元件300的例子,其中,省略了IV族半导体基板311的一部分。图13是表示鳍式的第一TFET301(n-TFET)及鳍式的第二TFET302(p-TFET)的电气特性的图表。如该图表所示,第一TFET301和第二TFET302的亚阈值都在40mV/dec以下。
(互补式开关元件的制造方法)
对于本实施方式的开关元件300的制造方法,不特别地进行限定。例如可以通过国际公开第2011/040012号中记载的方法制造第一TFET301及第二TFET302。
图14A~图14D是表示开关元件300的制造方法的一例的示意图。能够以相同的步骤同时制作第一TFET301及第二TFET302,因此,图14A~图14D中,仅就第一TFET301示出了其制造方法。下面,参照图14A~图14D对开关元件300的制造方法进行说明。
首先,如图14A所示,准备IV族半导体基板311。在该IV族半导体基板311中形成有未掺杂的第一区域311a和n型高掺杂的第二区域311b。接着,如图14B所示,对IV族半导体基板311的第一区域311a进行各向异性刻蚀,使(111)面311c露出。另外,在IV族半导体基板311的表面通过热氧化法等形成绝缘膜313。在该绝缘膜313上,以使IV族半导体基板311的第一区域311a的(111)面311c露出的方式,形成有开口部。接着,如图14C所示,利用MOVPE法,从第一区域311a的(111)面311c起,使III-V族化合物半导体纳米线312从开口部通过而成长。这时,优选在使III-V族化合物半导体纳米线312成长之前,利用交替原料供给调制法,在第一区域311a的(111)面311c形成III-V族化合物半导体的薄膜(参照国际公开第2011/040012号)。最后,如图14D所示,形成第一电极314、第二电极315和栅极电极316。
(效果)
本实施方式的开关元件300中,第一TFET301(n-TFET)和第二TFET302(p-TFET)具有实质上相同的结构。因此,本实施方式的开关元件300在是包含TFET的互补式开关元件的同时,还能够容易地进行集成化。
[实施方式四]
在实施方式四中,示出III-V族化合物半导体纳米线从n型低掺杂的IV族半导体基板的表面向倾斜方向延伸的、本发明的互补式开关元件的例子。
(互补式开关元件的结构)
图15是表示实施方式四的互补式开关元件400的结构的剖面图。关于与实施方式三的TFET相同的构成要素,赋予相同的附图标记并省略重复部分的说明。
如图15所示,实施方式四的开关元件400具有:至少一个的第一隧道场效应晶体管(第一TFET)401和至少一个的第二隧道场效应晶体管(第二TFET)402。
第一TFET401是具有p型沟道的TFET(p-TFET),第二TFET402是具有n型沟道的TFET(n-TFET)。第一TFET401和第二TFET402具有实质上相同的结构,但是,第一TFET401和第二TFET402中,源极电极(图15中,用“S”表示)和漏极电极(图15中,用“D”表示)之间的位置关系是相反的。
第一TFET401具有IV族半导体基板411、III-V族化合物半导体纳米线412、绝缘膜(栅极介电膜)313、第一电极(源极电极)314、第二电极(漏极电极)315和栅极电极316。绝缘膜313的一部分区域也作为栅极介电膜发挥功能。IV族半导体基板411包括:未掺杂的第一区域411a和p型高掺杂的第二区域411b。第一TFET401中,第一电极314是源极电极,第二电极315是漏极电极。第一TFET401中,在IV族半导体基板411的(111)面411c与III-V族化合物半导体纳米线412之间的接合界面,产生隧道现象。
第二TFET402具有IV族半导体基板411、III-V族化合物半导体纳米线422、绝缘膜(栅极介电膜)323、第一电极(漏极电极)324、第二电极(源极电极)325和栅极电极326。绝缘膜323的一部分区域也作为栅极介电膜发挥功能。IV族半导体基板411包括:未掺杂的第一区域421a和p型高掺杂的第二区域421b。第二TFET402中,第一电极324是漏极电极,第二电极325是源极电极。第二TFET402中,在IV族半导体基板411的(111)面421c与III-V族化合物半导体纳米线422之间的接合界面,产生隧道现象。
IV族半导体基板411由硅或锗等IV族半导体构成,是其上表面为(100)面的基板。IV族半导体基板411例如是硅(100)基板。本实施方式中,IV族半导体基板411为n型低掺杂。第一TFET401中,在IV族半导体基板411的两个面中的配置有III-V族化合物半导体纳米线412的面,以使未掺杂的第一区域411a(本征半导体)与p型高掺杂的第二区域411b(p型半导体)相互邻接的方式,形成有第一区域411a和第二区域411b。第一区域411a不仅具有(100)面,还具有(111)面411c。同样地,第二TFET402中,也在IV族半导体基板411的两个面中的配置有III-V族化合物半导体纳米线422的面,以使未掺杂的第一区域421a(本征半导体)与p型高掺杂的第二区域421b(n型半导体)相互邻接的方式,形成有第一区域421a和第二区域421b。第一区域421a不仅具有(100)面,还具有(111)面421c。
III-V族化合物半导体纳米线412、422是由III-V族化合物半导体构成的、直径为2nm~100nm且长度为50nm~10μm的结构体。III-V族化合物半导体纳米线412、422是以其长轴与(111)面411c、421c垂直的方式配置在IV族半导体基板411的(111)面411c、421c上的。III-V族化合物半导体可以是由两种元素构成的半导体、由三种元素构成的半导体、由四种元素构成的半导体、以及由上述数量以上的种类的元素构成的半导体中的任意一种。
III-V族化合物半导体纳米线412、422未掺杂,或为n型低掺杂。本实施方式中,III-V族化合物半导体纳米线412、422为p型低掺杂。III-V族化合物半导体纳米线412、422与IV族半导体基板411的(111)面411c、421c形成基本上无位错且无缺陷的接合界面。
第一TFET401及第二TFET402中,IV族半导体基板411的(111)面411c、421c与III-V族化合物半导体纳米线412、422之间的接合界面作为隧道层发挥功能。如上所述,第一TFET401和第二TFET402具有实质上相同的结构,但是,第一TFET401和第二TFET402中,源极电极(图15中,用“S”表示)和漏极电极(图15中,用“D”表示)之间的位置关系是相反的。本发明的发明人发现,仅通过这样将电极的位置对调,即可如图16所示,使得第一TFET401作为具有p型沟道的TFET(p-TFET)工作,且第二TFET402作为具有n型沟道的TFET(n-TFET)工作。因此,通过将1个或2个以上的第一TFET401与1个或2个以上的第二TFET402适当地连接,从而能够作为各种互补式开关元件发挥功能。
(互补式开关元件的制造方法)
对于本实施方式的开关元件400的制造方法,不特别地进行限定。可以通过与实施方式三的开关元件300同样的步骤制作实施方式四的开关元件400。
(效果)
本实施方式的开关元件400中,第一TFET401(p-TFET)和第二TFET402(n-TFET)具有实质上相同的结构。因此,本实施方式的开关元件400在是包含TFET的互补式开关元件的同时,还能够容易地进行集成化。
此外,本实施方式中,说明了具有针对一个沟道配置一个栅极电极的单栅型的TFET的开关元件,但是,各个TFET中也可以具有针对一个沟道配置有多个栅极电极的多栅型的TFET。
本申请主张基于在2018年12月28日提出的日本专利申请特愿2018-247228的优先权。该申请的说明书及附图中记载内容全部被引用到本申请的说明书中。
工业实用性
本发明的互补式开关元件例如作为半导体微处理器及高度集成电路中所形成的开关元件是有用的。
附图标记说明
100、200 互补式开关元件
101、201 第一隧道场效应晶体管(第一TFET)
102、202 第二隧道场效应晶体管(第二TFET)
111、211 IV族半导体基板
112 绝缘膜
113、123、213、223 III-V族化合物半导体纳米线
113a、123a、213a、223a 第一区域
113b、123b、213b、223b 第二区域
114、124 栅极介电膜
115、125 绝缘保护膜
116、126 第一电极
117、127 第二电极
118、128 栅极电极
300、400 互补式开关元件
301、401 第一隧道场效应晶体管(第一TFET)
302、402 第二隧道场效应晶体管(第二TFET)
311、411 IV族半导体基板
311a、321a、411a、421a 第一区域
311b、321b、411b、421b 第二区域
311c、321c、411c、421c (111)面
312、322、412、422 III-V族化合物半导体纳米线
313、323 绝缘膜(栅极介电膜)
314、324 第一电极
315、325 第二电极
316、326 栅极电极

Claims (6)

1.一种互补式开关元件,其具有具备第一导电型的沟道的第一隧道场效应晶体管、以及具备与所述第一导电型不同的第二导电型的沟道的第二隧道场效应晶体管,所述互补式开关元件中,
所述第一隧道场效应晶体管及所述第二隧道场效应晶体管各自具有:
IV族半导体基板,其具有(111)面,且掺杂为所述第一导电型;
III-V族化合物半导体纳米线,其配置于所述(111)面上,且包含与所述(111)面连接的第一区域和掺杂为所述第二导电型的第二区域;
第一电极,其与所述IV族半导体基板连接;
第二电极,其与所述第二区域连接;以及
栅极电极,其向所述(111)面与所述第一区域之间的界面施加电场,
在所述第一隧道场效应晶体管中,所述第二电极为源极电极且所述第一电极为漏极电极,
在所述第二隧道场效应晶体管中,所述第一电极为源极电极且所述第二电极为漏极电极。
2.如权利要求1所述的互补式开关元件,其中,
构成所述IV族半导体基板的IV族半导体是硅或锗,
构成所述III-V族化合物半导体纳米线的III-V族化合物半导体是InAs、InP、GaAs、GaN、InSb、GaSb、AlSb、AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb、AlInSb、InGaAlN、AlInGaP、InGaAsP、GaInAsN、InGaAlSb、InGaAsSb或AlInGaPSb,
所述III-V族化合物半导体纳米线的长轴与所述(111)面垂直。
3.如权利要求1或2所述的互补式开关元件,其中,
所述第一隧道场效应晶体管及所述第二隧道场效应晶体管各自还具有配置于所述III-V族化合物半导体纳米线的侧面上的栅极介电膜,
所述栅极电极配置于所述栅极介电膜上。
4.一种互补式开关元件,其具有具备第一导电型的沟道的第一隧道场效应晶体管、以及具备与所述第一导电型不同的第二导电型的沟道的第二隧道场效应晶体管,所述互补式开关元件中,
所述第一隧道场效应晶体管及所述第二隧道场效应晶体管各自具有:
IV族半导体基板,其包含具有(111)面的第一区域和掺杂为所述第一导电型的第二区域;
III-V族化合物半导体纳米线,其配置于所述(111)面上,且其未掺杂或掺杂为所述第二导电型;
第一电极,其与所述III-V族化合物半导体纳米线连接;
第二电极,其与所述第二区域连接;以及
栅极电极,其向所述III-V族化合物半导体纳米线与所述(111)面之间的界面施加电场,
在所述第一隧道场效应晶体管中,所述第一电极为源极电极且所述第二电极为漏极电极,
在所述第二隧道场效应晶体管中,所述第二电极为源极电极且所述第一电极为漏极电极。
5.如权利要求4所述的互补式开关元件,其中,
构成所述IV族半导体基板的IV族半导体是硅或锗,
构成所述III-V族化合物半导体纳米线的III-V族化合物半导体是InAs、InP、GaAs、GaN、InSb、GaSb、AlSb、AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb、AlInSb、InGaAlN、AlInGaP、InGaAsP、GaInAsN、InGaAlSb、InGaAsSb或AlInGaPSb,
所述III-V族化合物半导体纳米线的长轴与所述(111)面垂直。
6.如权利要求4或5所述的互补式开关元件,其中,
所述第一隧道场效应晶体管及所述第二隧道场效应晶体管各自还具有配置于所述IV族半导体基板的表面上的栅极介电膜,
所述栅极电极配置于所述栅极介电膜上。
CN201980092971.4A 2018-12-28 2019-12-25 互补式开关元件 Pending CN113474889A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018247228 2018-12-28
JP2018-247228 2018-12-28
PCT/JP2019/050823 WO2020138168A1 (ja) 2018-12-28 2019-12-25 相補型スイッチ素子

Publications (1)

Publication Number Publication Date
CN113474889A true CN113474889A (zh) 2021-10-01

Family

ID=71129502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980092971.4A Pending CN113474889A (zh) 2018-12-28 2019-12-25 互补式开关元件

Country Status (7)

Country Link
US (1) US11972985B2 (zh)
EP (1) EP3905327A4 (zh)
JP (1) JP7465480B2 (zh)
KR (1) KR102608554B1 (zh)
CN (1) CN113474889A (zh)
TW (1) TWI832950B (zh)
WO (1) WO2020138168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230215917A1 (en) * 2022-01-06 2023-07-06 Globalfoundries U.S. Inc. Device with vertical nanowire channel region
WO2023182099A1 (ja) * 2022-03-24 2023-09-28 国立大学法人北海道大学 電界効果トランジスタおよびスイッチ素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652827B2 (ja) * 2009-09-30 2015-01-14 国立大学法人北海道大学 トンネル電界効果トランジスタおよびその製造方法
EP2378557B1 (en) * 2010-04-19 2015-12-23 Imec Method of manufacturing a vertical TFET
JP5936247B2 (ja) 2011-07-22 2016-06-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation トンネル電界効果トランジスタ
JP2013038336A (ja) * 2011-08-10 2013-02-21 Toshiba Corp 半導体装置
US9634114B2 (en) * 2013-08-13 2017-04-25 National University Corporation Hakkaido University Tunnel field-effect transistor, method for manufacturing same, and switch element
EP3065179B1 (en) 2013-10-31 2019-12-04 Japan Science and Technology Agency Group iii-v compound semiconductor nanowire, field effect transistor, and switching element
US9472468B2 (en) 2014-12-11 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Nanowire CMOS structure and formation methods
US9385195B1 (en) 2015-03-31 2016-07-05 Stmicroelectronics, Inc. Vertical gate-all-around TFET
US10381489B2 (en) 2015-09-30 2019-08-13 National University Corporation Hokkaido University Tunnel field effect trasnsistor

Also Published As

Publication number Publication date
TW202046486A (zh) 2020-12-16
EP3905327A1 (en) 2021-11-03
US11972985B2 (en) 2024-04-30
TWI832950B (zh) 2024-02-21
KR102608554B1 (ko) 2023-11-30
WO2020138168A1 (ja) 2020-07-02
EP3905327A4 (en) 2022-08-17
US20220084891A1 (en) 2022-03-17
JPWO2020138168A1 (ja) 2021-11-11
KR20210106558A (ko) 2021-08-30
JP7465480B2 (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
US9214538B2 (en) High performance multigate transistor
US8941117B2 (en) Monolithically integrated vertical JFET and Schottky diode
US8164117B2 (en) Nitride semiconductor device
US9293538B2 (en) Diode having trenches in a semiconductor region
US20120019284A1 (en) Normally-Off Field Effect Transistor, a Manufacturing Method Therefor and a Method for Programming a Power Field Effect Transistor
US20070252178A1 (en) Semiconductor device
CN112490285B (zh) 半导体装置及其制作方法
JP7465480B2 (ja) 相補型スイッチ素子
US12087763B2 (en) Nitride-based semiconductor bidirectional switching device and method for manufacturing the same
JP2010056250A (ja) 半導体装置及び半導体装置の製造方法
US10923581B2 (en) Method for forming semiconductor structure
US11251266B2 (en) Power semiconductor device and method of processing a power semiconductor device
WO2023182099A1 (ja) 電界効果トランジスタおよびスイッチ素子
TWI834365B (zh) 半導體裝置
US20240014291A1 (en) Monolithic integration of enhancement-mode and depletion-mode galium nitride high electron mobility transistors
US20240194669A1 (en) Semiconductor device
JP2722849B2 (ja) 共鳴トンネル電界効果トランジスタ
JPH03270077A (ja) 電界効果半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination