CN113471310B - 一种基于混维体系的高增益光探测器及其制备方法 - Google Patents

一种基于混维体系的高增益光探测器及其制备方法 Download PDF

Info

Publication number
CN113471310B
CN113471310B CN202110708829.7A CN202110708829A CN113471310B CN 113471310 B CN113471310 B CN 113471310B CN 202110708829 A CN202110708829 A CN 202110708829A CN 113471310 B CN113471310 B CN 113471310B
Authority
CN
China
Prior art keywords
layer
indium selenide
cdse
channel layer
selenide nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110708829.7A
Other languages
English (en)
Other versions
CN113471310A (zh
Inventor
李京波
霍能杰
但智颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202110708829.7A priority Critical patent/CN113471310B/zh
Publication of CN113471310A publication Critical patent/CN113471310A/zh
Application granted granted Critical
Publication of CN113471310B publication Critical patent/CN113471310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于混维体系的高增益光探测器及其制备方法,包括绝缘衬底,位于绝缘衬底上的硒化铟纳米片沟道层,位于硒化铟纳米片沟道层上两侧端的第一和第二电极,位于硒化铟纳米片沟道层上、第一和第二电极之间的大尺寸梯度合金CdSe@ZnxCd1‑xS量子点光敏层;本发明首次采用能带弯曲的梯度合金量子点作为混合体系的光敏层,且首次采用InSe纳米片作为混合体系的沟道层,解决了界面处费米能级钉扎效应,实现了,低噪声,高增益,高灵敏度的光探测。同时本发明的制备过程简单,技术成熟,设备易得,成本低廉,非常有利于商业化推广。

Description

一种基于混维体系的高增益光探测器及其制备方法
技术领域
本发明涉及可见光波段实现高增益光探测的技术领域,尤其涉及一种基于混维体系的高增益光探测器及其制备方法。
背景技术
光电探测技术是影响人类现代生活众多技术的核心,极大丰富和方便了人们日常生活。传统薄膜半导体(如InGaAs和InSb等)探测器虽工艺成熟,但同时也面临着材料制备困难、工艺复杂、低温工作、成本昂贵等难题。因此,迫切需要发展新材料和新结构,以满足不断提高的红外探测技术的快速发展需求。
随着低维材料(包括二维原子晶体和溶胶量子点)的快速发展,结合它们独特的原子/电子结构、强烈光-物相互作用、易于大规模制备、CMOS兼容等重要优势,尤其是二维-量子点混合材料体系(例如石墨烯-量子点、MoS2-量子点)已经成为新一代低成本高性能红外探测器的候选材料体系。然而,以往研发的混合体系存在着界面处费米能级钉扎效应等问题,从而容易导致较大的暗电流和噪声,降低器件的灵敏度和响应时间;同时,二维原子晶体表面没有悬挂键,使得量子点简单的堆垛在二维半导体表面,严重影响了两者之间高效的电荷转移。
发明内容
针对现有技术中存在的技术问题,本发明的首要目的是提供一种新型的混合材料体系,用于探测器的响应率、响应时间的高增益。其首次采用能带弯曲的梯度合金CdSe@ZnxCd1-xS量子点作为混合体系的光敏层,首次以InSe纳米薄片作为混合体系的沟道层,构建了InSe-CdSe@ZnxCd1-xS混合体系,进一步开发了一种稳定高效的光电探测器。InSe纳米薄片表面的Se空位具有大量表面悬键,利于能带弯曲的梯度合金CdSe@ZnxCd1-xS量子点与之有效交联,促进两者间更加高效的电荷转移,克服了以往混合体系中存在的界面费米能级钉扎效应,在保持了InSe固有的高迁移率和高响应率的基础上,实现了低噪声,高增益和高灵敏度的光探测。
在本发明提供的制备方法中,采用逐层生长法旋涂一定浓度的梯度合金CdSe@ZnxCd1-xS量子点于InSe纳米片的表面,选用EDT进行配体交换,在尽可能维持量子点结构稳定的同时,实现了能量的高效转移。本发明的设计方案提供了一种新型的探测混合材料、解决了该领域中的关键科学问题,同时制备过程简单,技术成熟,设备易得,成本低廉,非常有利于商业化推广。
为了达到上述目的,本发明至少采用如下技术方案:
本发明提供一种基于混维体系的高增益光探测器,包括:
绝缘衬底;位于绝缘衬底上的硒化铟纳米片沟道层;位于硒化铟纳米片沟道层上两侧端的第一和第二电极;位于硒化铟纳米片沟道层上、第一和第二电极之间的大尺寸梯度合金CdSe@ZnxCd1-xS量子点光敏层,其中,0<x<1。
进一步地,所述硒化铟纳米片沟道层的厚度为1~100nm。
进一步地,所述梯度合金CdSe@ZnxCd1-xS量子点尺寸在5~15nm,其层数为1~10层。
进一步地,取适量的溶于有机溶剂中浓度为20~50mg/ml的梯度合金CdSe@ZnxCd1-xS量子点,通过逐层生长法旋涂于硒化铟纳米片表面获得梯度合金CdSe@ZnxCd1-xS量子点光敏层。
进一步地,所述逐层生长法包含以下工艺步骤:取适量的有机溶剂清洗硒化铟纳米片表面,接着取适量的浓度为20~50mg/ml的梯度合金CdSe@ZnxCd1-xS量子点有机溶剂旋涂于硒化铟纳米片表面,之后取适量的浓度为2%的乙二硫醇旋涂于硒化铟纳米片表面进行配体交换,即在硒化铟纳米片表面生长一层梯度合金CdSe@ZnxCd1-xS量子点层。
进一步地,所述逐层生长法之后,还包括在惰性气体中进行退火处理。
进一步地,所述退火温度为70~150℃,退火时间为5~20分钟。
进一步地,所述有机溶剂选用乙腈、甲苯、辛烷、油酸中的一种或两种。
进一步地,所述第一和第二电极优选Au电极,其厚度优选50nm。
进一步地,其特征在于,所述衬底优选SiO2/Si衬底。
总的来看,本发明提供的InSe-CdSe@ZnxCd1-xS混合体系,克服了以往混合体系中存在的界面费米能级钉扎效应,保持了InSe固有的高迁移率和高响应率的基础上,实现大的光增益和较低的噪声;该新型混合体系的探测器具有对可见光有快响应(毫秒量级)、高灵敏度(响应度达30.16A/W,探测率超过1012琼斯),可广泛应用在光通讯、医疗成像等重要领域。
附图说明
图1是本发明一实施例制备获得的InSe纳米薄片和InSe-CdSe@ZnxCd1-xS混合体系的高增益光探测器的光学显微镜图。
图2是本发明一实施例的混合材料体系的高增益光探测器示意图。
图3是本发明一实施例的混合材料体系的高增益光探测器与对比例的响应度-光强测试曲线。
图4是本发明一实施例的混合材料体系的高增益光探测器在不同光功率下的响应时间测试频谱。
图5是本发明一对比例在不同光功率下的响应时间测试频谱。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从公开商业途径获得。下面来对本发明做进一步详细的说明。
本说明书中使用例如“之下”、“下方”、“下”、“之上”、“上方”、“上”等空间相对性术语,以解释一个元件相对于第二元件的定位。除了与图中所示那些不同的取向以外,这些术语意在涵盖器件的不同取向。
另外,使用诸如“第一”、“第二”等术语描述各个元件、层、区域、区段等,并非意在进行限制。使用的“具有”、“含有”、“包含”、“包括”等是开放式术语,表示存在所陈述的元件或特征,但不排除额外的元件或特征。除非上下文明确做出不同表述。
如图1和图2所示,本发明一实施例提供一种基于混维体系的高增益光探测器,包括绝缘衬底、硒化铟纳米片沟道层、第一和第二电极以及大尺寸梯度合金CdSe@ZnxCd1-xS量子点光敏层。绝缘衬底优选SiO2/Si衬底。硒化铟纳米片沟道层位于绝缘衬底上,硒化铟纳米片沟道层的厚度优选1~100nm。第一和第二电极分别位于硒化铟纳米片沟道层上的两侧端。第一和第二电极优选Au电极,其厚度优选50nm。大尺寸梯度合金CdSe@ZnxCd1-xS量子点光敏层位于硒化铟纳米片沟道层上的第一和第二电极之间。梯度合金CdSe@ZnxCd1-xS量子点的尺寸在5~15nm之间,其层数为1~10层,其中,0<x<1。在一优选实施例中,Zn与Cd的原子比约为3.9。
由于InSe纳米薄片表面的Se空位具有大量表面悬键,利于能带弯曲的梯度合金CdSe@ZnxCd1-xS量子点与之有效交联,促进两者间更加高效的电荷转移,本发明将InSe纳米薄片作为沟道层,梯度合金CdSe@ZnxCd1-xS量子点作为光敏层,构建了InSe-CdSe@ZnxCd1-xS混合体系,克服了以往混合体系中存在的界面费米能级钉扎效应,保持了InSe固有的高迁移率和高响应率的基础上,实现大的光增益和较低的噪声。
为了更容易理解本发明的混维体系的高增益光探测器,下边将进一步介绍该高增益光探测器的制备方法,该制备方法包括以下步骤:
首先选用SiO2/Si衬底,用丙酮、异丙醇、乙醇各超声清洗衬底30min。然后用臭氧紫外或者氧气等离子体清洗衬底20min,其中氧气流量为50sccm,等离子功率为100W。
接着,选用微机械剥离法转移InSe纳米薄片于SiO2/Si衬底上,或者选用化学/物理气相沉积工艺,例如生长温度为630℃,时间为15~20分钟,载气为氮气或氩气,气体流量为60sccm,生长InSe层,作为混合体系的沟道层。
继续在沟道层上制备第一和第二电极。第一和第二电极选用Au电极,采用激光直写和电子束蒸镀工艺,在InSe沟道层的两端制备50nm厚度的Au电极。随后在惰性气体中退火,惰性气体优选氮气和氩气,退火温度为80~150℃,退火时间为0.5~2小时,用以提高电接触质量。
接着,在InSe沟道层上,在第一和第二电极之间通过逐层生长法旋涂生长梯度合金CdSe@ZnxCd1-xS量子点。
首先取适量的浓度为20~50mg/ml的梯度合金CdSe@ZnxCd1-xS量子点有机溶剂。例如该梯度合金CdSe@ZnxCd1-xS量子点有机溶剂可以通过以下工艺步骤制备获得:步骤a.取0.1422g硒(Se)添加至4ml的三辛基膦(TOP)中,溶液在150℃下搅拌30分钟,然后将温度保持在140℃制备获得硒前体。同时,在另一个烧瓶中加入64.1mg Se和19.2mg硫(S)至2毫升的TOP中,在170℃搅拌下得到Se和S前体。同时,准备容积为100毫升的三颈瓶,取14毫升的油酸(OA)和15毫升的1-十八烯(ODE)于该三颈瓶中,接着将2.2018g乙酸锌[Zn(acet)2]和0.1027克氧化镉(CdO)分别加入该三颈瓶中,获得镉和锌的前体。然后在100℃下对三颈烧瓶进行脱气,以保持真空状态不变,消除反应过程中多余的无结果的气泡,以提高产品的最终性能。随后,当镉和锌的前体达到300℃的稳定温度时,滴入4mL Se前体。反应10分钟后,注入2mL Se&S前体。反应完成后,将反应液冷却至室温后,用甲苯和无水甲醇反复溶解得到的QDs,沉淀,然后用离心法提纯。最后,得到拥有漏斗状能级结构的梯度合金CdSe@ZnxCd1- xS量子点,其开口逐渐增大。然后将获得的量子点溶解至有机溶剂中获得量子点溶液,该实施例中,有机溶剂优选辛烷,控制量子点的浓度为20~50mg/ml。
取上述获得的量子点溶液,通过逐层生长的步骤,在InSe沟道层表面旋涂获得量子点:首先设置转速为转速1300rpm,取1滴乙腈清洗InSe纳米片的表面,接着取2滴辛烷清洗去除乙腈,然后取2滴浓度为50mg/ml的量子点溶液至InSe纳米片的表面,接着取1滴浓度为2%的EDT溶液进行配体交换,其中EDT溶液中的溶剂为乙腈。使用EDT短链配体,能够在尽可能维持量子点结构稳定的同时,缩短配体长度,便于电荷和非辐射能量转移的通道构建,实现能量的高效转移。最后取2滴乙腈去除多余的溶液,完成一层梯度合金CdSe@ZnxCd1-xS量子点层的生长。具体的可根据实际器件结构的需要重复上述步骤完成2至10层量子点层的生长。
最后,将量子点层生长结束的衬底放在惰性气体中进行退火,退火温度优选70~150℃,退火时间优选5~20分钟,优选地,退火温度为70℃,退火时间为20分钟。以提高探测器的性能,最终获得稳定高效的高增益可见光探测器。
对比例
首先选用SiO2/Si衬底,用丙酮、异丙醇、乙醇各超声清洗衬底30min。然后用臭氧紫外或者氧气等离子体清洗衬底20min,其中氧气流量为50sccm,等离子功率为100W。
接着,选用微机械剥离法转移InSe纳米薄片于SiO2/Si衬底上,或者选用化学/物理气相沉积工艺,例如生长温度为630℃,时间为15~20分钟,载气为氮气或氩气,气体流量为60sccm,生长InSe层。
继续在InSe层上制备第一和第二电极。第一和第二电极选用Au电极,采用激光直写和电子束蒸镀工艺,在InSe层的两端制备50nm厚度的Au电极。随后在惰性气体中退火,惰性气体优选氮气和氩气,退火温度为80~150℃,退火时间为0.5~2小时,用以提高电接触质量。
图3是本发明一实施例的高增益光探测器与对比例的响应度-光强测试曲线,图4和图5分别是本发明一实施例的高增益光探测器和对比例在不同光功率下的响应时间测试频谱。参见图3至图5,与对比例相比,在未增加梯度合金CdSe@ZnxCd1-xS量子点层的对比例中,其响应度为0.101A/W,在增加了梯度合金CdSe@ZnxCd1-xS量子点层之后的本发明实施例中,该混合材料体系的响应度提升至30.16A/W。且本发明混合材料体系的灵敏度超过1.1×1012琼斯。本发明的光探测器对635nm的光呈现出了毫秒量级的快响应和高的灵敏度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种基于混维体系的高增益光探测器,其特征在于,包括:
绝缘衬底;
位于绝缘衬底上的硒化铟纳米片沟道层;
位于硒化铟纳米片沟道层上两侧端的第一和第二电极;
位于硒化铟纳米片沟道层上、第一和第二电极之间的大尺寸梯度合金CdSe@ZnxCd1-xS量子点光敏层,其中,0<x<1,所述梯度合金CdSe@ZnxCd1-xS量子点尺寸在5~15nm,其层数为1~10层;
通过逐层生长法生长梯度合金CdSe@ZnxCd1-xS量子点光敏层:取适量的有机溶剂清洗硒化铟纳米片表面,接着取适量的浓度为20~50mg/ml的梯度合金CdSe@ZnxCd1-xS量子点有机溶剂旋涂于硒化铟纳米片表面,之后取适量的浓度为2%的乙二硫醇旋涂于硒化铟纳米片表面进行配体交换,即在硒化铟纳米片表面生长一层梯度合金CdSe@ZnxCd1-xS量子点层。
2.根据权利要求1的所述高增益光探测器,其特征在于,所述硒化铟纳米片沟道层的厚度为1~100nm。
3.根据权利要求1或2的所述高增益光探测器,其特征在于,所述逐层生长法之后,还包括在惰性气体中进行退火处理。
4.根据权利要求3的所述高增益光探测器,其特征在于,退火温度为70~150℃,退火时间为5~20分钟。
5.根据权利要求1或2的所述高增益光探测器,其特征在于,所述有机溶剂选用乙腈、甲苯、辛烷、油酸中的一种或两种。
6.根据权利要求1、2或4的所述高增益光探测器,其特征在于,所述第一和第二电极选用Au电极,其厚度选用50nm。
7.根据权利要求6的所述高增益光探测器,其特征在于,所述衬底选用SiO2/Si衬底。
CN202110708829.7A 2021-06-25 2021-06-25 一种基于混维体系的高增益光探测器及其制备方法 Active CN113471310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110708829.7A CN113471310B (zh) 2021-06-25 2021-06-25 一种基于混维体系的高增益光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110708829.7A CN113471310B (zh) 2021-06-25 2021-06-25 一种基于混维体系的高增益光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113471310A CN113471310A (zh) 2021-10-01
CN113471310B true CN113471310B (zh) 2023-04-07

Family

ID=77872864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110708829.7A Active CN113471310B (zh) 2021-06-25 2021-06-25 一种基于混维体系的高增益光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113471310B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497248A (zh) * 2021-12-08 2022-05-13 华南师范大学 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275421B (zh) * 2017-06-07 2020-01-14 华中科技大学 一种量子点光电探测器及其制备方法
US11629053B2 (en) * 2017-06-29 2023-04-18 Northwestern University Optoelectronically-active two-dimensional indium selenide and related layered materials via surfactant-free deoxygenated co-solvent processing
JP2019057701A (ja) * 2017-09-20 2019-04-11 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール、太陽光発電システム及び太陽電池の製造方法
CN108447924A (zh) * 2018-03-19 2018-08-24 齐鲁工业大学 基于二维硒化铟和黑磷的范德瓦尔斯异质结的光探测器及其制备
CN108565301B (zh) * 2018-04-08 2020-04-17 哈尔滨工业大学 基于金属表面等离子诱导双波段响应的光电探测器及制备方法
CN111799342A (zh) * 2020-07-22 2020-10-20 深圳大学 一种基于硒化亚锡/硒化铟异质结的光电探测器及其制备方法
CN112133777A (zh) * 2020-09-24 2020-12-25 南京邮电大学 一种核-壳结构量子点宽光谱光电探测器及其制备方法

Also Published As

Publication number Publication date
CN113471310A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
KR101154347B1 (ko) 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
US8163589B2 (en) Active layer for solar cell and the manufacturing method making the same
US20120291861A1 (en) Photovoltaic cell, including a crystalline silicon oxide passivation thin film, and method for producing same
WO2022012180A1 (zh) 一种基于lpcvd的高效掺杂非晶硅技术的交叉指式背接触异质结太阳电池
US8962137B2 (en) Branched nanowire and method for fabrication of the same
TW201017907A (en) Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom
CN109950332B (zh) 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
CN113471310B (zh) 一种基于混维体系的高增益光探测器及其制备方法
CN108091766A (zh) 一种n型掺杂电子传输层和TiO2层的钙钛矿电池的制备方法
TW201227994A (en) Solar cell and method of making the same
CN111341875A (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN113972262B (zh) 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法
CN108565343B (zh) 高性能量子点中间带石墨烯肖特基结太阳电池及制备
CN112366521B (zh) 一种在平面超晶格纳米线上组装量子点激光器的方法
CN111952395B (zh) 一种可见光与红外双波段光输运管探测器及其制备方法
CN111987173B (zh) 一种可集成的二维光电突触器件阵列及其制备方法
CN210805800U (zh) 生长在石墨烯基板上GaN纳米柱阵列的柔性紫外探测器
JP3727387B2 (ja) 結晶性珪素膜の作製方法、デバイス、液晶表示装置、薄膜トランジスタおよび電子機器
CN115775848A (zh) 垂直结构GaN紫外光探测器及其制备方法
CN116072749A (zh) 一种紫磷/二硫化钼异质结光电探测器及制备方法
CN109616533A (zh) 一种晶硅异质结太阳电池及其制备方法
JP2011187646A (ja) 光学変換装置及び同装置を含む電子機器
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN114122155A (zh) 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant