CN113423522A - 用于生产超导部件的基于铌锡化合物的粉末 - Google Patents

用于生产超导部件的基于铌锡化合物的粉末 Download PDF

Info

Publication number
CN113423522A
CN113423522A CN202080013039.0A CN202080013039A CN113423522A CN 113423522 A CN113423522 A CN 113423522A CN 202080013039 A CN202080013039 A CN 202080013039A CN 113423522 A CN113423522 A CN 113423522A
Authority
CN
China
Prior art keywords
powder
niobium
weight
reducing agent
ltoreq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080013039.0A
Other languages
English (en)
Inventor
H·布鲁姆
H·哈斯
C·施尼特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tantalum Niobium Obisheng Innovative Materials Co Ltd
Taniobis GmbH
Original Assignee
Tantalum Niobium Obisheng Innovative Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tantalum Niobium Obisheng Innovative Materials Co Ltd filed Critical Tantalum Niobium Obisheng Innovative Materials Co Ltd
Publication of CN113423522A publication Critical patent/CN113423522A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及用于生产超导部件的基于铌锡化合物的粉末,所述铌锡化合物的组成特别为NbxSny,其中1≤x≤6且1≤y≤5,其中所述粉末的特征在于低氧含量,涉及其生产方法和这样的粉末用于生产超导部件的用途。

Description

用于生产超导部件的基于铌锡化合物的粉末
本发明涉及用于生产超导部件的基于铌锡化合物的粉末,所述铌锡化合物的组成特别为NbxSny,其中1 ≤ x ≤ 6且1 ≤ y ≤ 5,其中所述粉末具有低氧含量,涉及其生产方法以及这样的粉末用于生产超导部件的用途。
超导体表示当温度低于特定温度,即所谓的跃变温度时电阻降至零的材料。在超导状态下,该材料的内部保持无电场和磁场,并且无损耗地传送电流。超导体尤其用于产生强的恒定磁场或用于生产低损耗变压器,该变压器在相同功率下具有比常规变压器小的尺寸和质量并因此尤其在移动运行中带来优点。
超导体可分类为各种种类,如金属超导体、陶瓷超导体和高温超导体。最迟自从发现18.05 K的铌锡(Nb3Sn)的跃变温度以来,铌及其合金已作为用于生产超导体的材料成为焦点。因此,由铌制成的超导空腔谐振器用于例如粒子加速器(尤其是位于汉堡DESY或日内瓦CERN的XFEL和FLASH)。
超导线材作为超导部件特别令人感兴趣并且它们尤其用于生产超导线圈。对于强力超导线圈,通常需要具有仅几微米粗细度的导电纤维/长丝的千米长的线材,其需要复杂的生产方法。
为了生产这样的线材,特别是基于铌锡合金的线材,基本依靠青铜法,其中使用Cu-Sn合金作为原材料。
例如,EP 0 048 313描述了基于青铜-Nb3Sn的超导线材,其可在高磁场下使用并以青铜-Nb3Sn线材中的立方相为特征并包含基于Nb的比例计0.01至7和/或基于线材中的青铜比例计0.05至10的重量%范围的选自Li、Be、Mg、Sc、Y、U、Ti、Zr、Hf、V、Ta、Mo、Re、Fe、Ru、Ni、Pd、Zn、Al、Ga、In、Tl、Si、Ge、Sb的起稳定化作用的合金成分,其基本防止四方相的形成和/或减轻四方变形(1-c/a)。
作为替代,基于铌锡合金的超导线材可通过所谓的PIT(粉末装管)法制成,其中将粉末状的含锡起始化合物引入铌管,然后拉拔以产生线材。在最后一个步骤中,通过热处理在含铌的管套与引入的含锡粉末之间形成超导Nb3Sn边界层。关于含锡起始化合物,相组成、化学纯度和粒度在此是关键的,所述粒度必须不大于成品长丝的直径。
T. Wong等人描述了例如PIT法和用于例如NbSn2的含锡起始化合物的生产(T.Wong等人, “Ti and Ta Additions to Nb3Sn by the Powder in Tube Process”, IEEE Transactions on Applied superconductivity, 第11卷, 第1期 (2001), 3584-3587)。在此,该方法的缺点在于,为了使铌与锡令人满意地反应以形成NbSn2,需要由研磨步骤和高达48小时的热处理组成的多级法。此外,一般教导在于氧含量应尽可能低。
US 7,459,030描述了通过PIT法生产超导Nb3Sn线材的方法,其中使用钽锡合金粉末作为起始化合物。为了生产这种线材,使用K2NbF7和K2TaF7,在与锡反应前将它们还原成各自的铌金属和钽金属。但是,所述方法的缺点在于,对这些铌金属和钽金属的使用有一些限制。例如,仅可以使用具有小于3000 ppm的最大氧含量和小于100 ppm的最大氢含量的那些。超过该氧含量会导致成品线材的品质较低。在高于100 ppm的氢值下,在该方法操作中出现安全技术问题,因为氢在热处理过程中逸出。此外,所述方法的缺点在于,目标化合物含有高含量的未反应锡且成品线材芯也含有含钽化合物,这可对线材的超导性质具有不良影响。此外,在起始化合物K2NbF7和K2TaF7的还原中形成难溶性金属氟化物,如MgF2或CaF2,这些无法完全分离。此外,该过程链中的所有含氟化合物都极具毒性。
A. Godeke等人提供了用于生产铌锡超导体的常规PIT法的综述(A. Godeke等人,“State of the art powder-in-tube niobium-tin superconductors”, Cyrogenics 48(2008), 308-3016)。
M. Lopez等人描述了通过机械合金化和在低温下的退火来合成纳米-金属间Nb3Sn(M. Lopez等人, “Synthesis of nano intermetallic Nb3Sn by mechanicalalloying and annealing at low temperature”, Journal of Alloys and Compounds 612 (2014), 215-220)。由此制成的Nb3Sn具有87重量%的Nb3Sn和8重量%的NbO。
但是,现有技术中已知的所有用于生产由Nb3Sn组成的超导线材的方法都具有缺点,即由于随元素铌和锡引入氧以及在该方法操作的过程中例如经由空气引入氧,将显著比例的氧转入目标化合物。因此,根据US 7,459,030的方法例如限于使用具有最多3000ppm的氧含量的铌和钽金属粉末和具有最多2000 ppm的氧含量的锡。目标化合物中的高比例的氧尤其可导致晶格间隙位置被氧原子占据以及形成单独的NbO相,这可通过X-射线衍射分析检测。以这种方式结合的铌因此不再可供进一步反应,如Nb3Sn边界层的形成。此外,形成边界层所必需的锡和铌的固态扩散受阻。这不仅对生产过程的收率和效率具有不良影响,而且氧的存在还导致目标化合物和线材的超导性质,例如临界电流密度或剩余电阻比(剩余电阻比,RRR)明显受损。
因此本发明的一个目的在于提供用于生产超导部件,特别是超导线材的合适的起始化合物,所述起始化合物能够有效反应而不损害目标化合物的超导性质。
已经令人惊讶地发现,通过以不具有单独的NbO或SnO相为特征的粉末来实现这一目的。
本发明的第一主题因此是用于生产超导部件的粉末,其包含NbxSny,其中1 ≤ x≤ 6且1 ≤ y ≤ 5,其中所述粉末不具有单独的NbO和/或SnO相。这特别可由该粉末在例如使用来自Malvern-PANalytical公司的仪器(X' Pert-MPD,具有半导体检测器、40 KV/40mA的X-射线管Cu LFF、Ni过滤器)对粉状样品测定的X-射线衍射图样中不具有NbO和/或SnO反射来证明。
在一个优选实施方案中,该NbxSnY化合物是选自Nb3Sn、Nb6Sn5、NbSn2及其混合物的化合物。
如由现有技术提供的常规粉末的分析表明,它们具有单独的NbO相,其在X-射线衍射图样中作为反射出现,如从显示常规Nb3Sn的图样的图1中可看出(也参见M. Lopez等人,“Synthesis of nano intermetallic Nb3Sn by mechanical alloying and annealingat low temperature”, Journal of Alloysand Compounds 612 (2014), 215-220)。已经令人惊讶地发现,本发明的粉末的X-射线衍射图样没有表现出这样的反射,由此可以得出结论,这些粉末不具有单独的NbO相。
在一个优选实施方案中,本发明的粉末的特征在于粉末中的氧含量为基于粉末的总重量计小于1.5重量%,优选小于1.1重量%,特别优选0.2至0.75重量%。可以例如借助载气热提取(Leco TCH600)测定该粉末的氧含量。
除低氧含量外,本发明的粉末的特征还在于优异的相纯度,这尤其通过其只有小比例的与各自的铌锡目标化合物不同的化合物的结晶相揭示。在一个优选实施方案中,本发明的粉末的特征因此在于,基于检测到的所有结晶相计且通过本发明的粉末的X-射线衍射图样的Rietveld分析,化合物Nb3Sn和/或Nb6Sn5和/或NbSn2构成在每种情况下大于92%,优选大于95%,特别优选大于98%的比例。
在一个优选实施方案中,本发明的粉末的特征在于,该粉末包含三维附聚物,其具有借助激光衍射测定的D90小于400 µm,优选220至400 µm的尺寸,所述附聚物由具有借助扫描电子显微术测定的小于15 µm,优选小于8 µm的平均粒径的初级粒子组成,且所述附聚物的孔隙的90%或更多具有借助压汞法测定的0.2至15 µm的直径。
D90值是指示该粉末中的粒度小于或等于所示尺寸的附聚物的百分比的值。
在超导线材的生产中,还已经发现有利的是使用具有小粒度的粉末。因此,优选的是本发明的粉末的一个实施方案,其中该粉末具有借助激光衍射测定的小于15 µm,优选小于8 µm,特别优选1 µm至6 µm的粒度D99。D99值在此是指示该粉末中的粒度小于15 µm的粒子的比例的值。可以例如通过粉末的研磨实现该粒度。
为了通过增材制造法,例如LBM(激光束熔化)、EBM(电子束熔化)和/或LC(激光熔覆)生产超导部件,已经发现有利的是使用具有特定球形粒子形状的粉末。在此,已经令人惊讶地发现,本发明的粉末非常容易通过已知方法雾化以产生具有类似球体的粒子的粉末,例如使用EIGA(电极感应熔炼气雾化)法。在一个优选实施方案中,本发明的粉末的所有粉末粒子的至少95%因此在雾化后具有0.7至1,优选0.8至1的费雷特直径,其中费雷特直径对本发明而言被定义为粒子的最小直径除以最大直径,其可通过SEM图像的评估测定。
本发明的粉末优选具有0.5至5 m2/g,优选1至3 m2/g的根据BET的比表面积。根据BET的比表面积可根据ASTM D3663测定。
为了生产具有可接受的性质的超导部件,必要的是,所用粉末的化学纯度高并且外来物质仅作为掺杂剂以受控形式引入。无意中引入该方法的材料,特别是金属杂质和含氟化合物应最小化。在一个优选实施方案中,本发明的粉末具有小于25 ppm,优选小于10ppm的氟含量,其中ppm基于质量比例计。在进一步优选的实施方案中,本发明的粉末具有小于0.8重量%,优选小于0.5重量%,特别优选小于0.25重量%的除钽外的无意金属杂质的总含量,在每种情况下基于粉末的总重量计。
在一个优选实施方案中,本发明的粉末另外含有掺杂剂。通过合适掺杂剂的添加,,可以按需要调适该粉末的性质,其中已经令人惊讶地发现,不对掺杂剂提出特定要求,而是可以使用本领域技术人员已知的常规掺杂剂。
现有技术中描述的用于生产基于Nb3Sn的超导线材的一些方法由钽锡合金或由基于钽和铌的金属间锡合金作为前体粉末出发。但缺点在于,钽的残留物留在稍后的Nb3Sn线材长丝中并由此损害产物的超导性质。在本发明中,已经令人惊讶地发现,可省去钽的添加而不会不利地影响反应效率。在一个优选实施方案中,本发明的粉末因此基本不含钽和钽化合物。在一个特别优选的实施方案中,钽及其化合物在本发明的粉末中的比例小于1重量%,优选小于0.5重量%,特别优选小于0.1重量%,在每种情况下基于粉末的总重量计。
本发明的粉末的特征在于其低氧含量,其尤其表现为在本发明的粉末的X-射线衍射图样中无法检测到NbO和/或SnO的反射。本发明的另一主题因此是生产本发明的粉末的方法,所述方法能够实现这种性质,其中本发明的方法包括铌金属粉末与锡金属粉末的反应以及在还原剂存在下的还原步骤,其中添加的还原剂的量基于先前测定的所用两种金属粉末中的总氧含量。反应试剂是选自镁、钙、CaH2和MgH2及其混合物的反应试剂。
在本发明的方法的一个优选实施方案中,在第一步骤中使铌金属粉末与锡金属粉末反应,且所得产物随后经受在还原剂存在下的还原步骤,其中添加的还原剂的量基于先前测定的获自第一反应的产物中的氧含量。
为了使该方法操作高效,已经发现有利的是直接在还原剂存在下进行铌金属粉末与锡金属粉末的反应。因此,优选的是本发明的方法的一个实施方案,其中铌金属粉末与锡金属粉末的反应在还原剂存在下进行。
已经令人惊讶地发现,当金属起始化合物的反应在气态还原剂存在下进行时,可进一步减少单独的含氧相如NbO和SnO的形成。特别地,反应试剂是选自镁、钙及其混合物的反应试剂。已经令人惊讶地发现,通过使用这些还原剂,尤其是气态还原剂,能够减少粉末中的NbO相和SnO相的形成,而还原剂的残留物可简单地且无残留物地从产物粉末中去除。
可通过洗涤以简单方式实现氧化的还原剂的去除。因此,优选的是本发明的方法的一个实施方案,其中使所得粉末另外经受洗涤步骤。已经令人惊讶地发现,当使用无机酸作为洗液时,可实现还原剂的可能的残留物的特别高效的去除。因此,优选的是一个实施方案,其中洗涤步骤是用无机酸洗涤。无机酸优选选自硫酸、盐酸和硝酸。
由于在本发明的方法中使用基于总氧含量计一定量的还原剂另外处理,如现有技术中,例如US 7,459,030中所述对所用原材料的氧含量的限制不再存在。在目标化合物的相纯度改进的同时,可容许明显更高的氧含量。尽管如此,氧含量不应太高。因此,优选的是本发明的方法的一个实施方案,其中使用含有少于3重量%,优选0.4至2.5重量%,特别优选0.5至1.5重量%的氧的铌金属粉末,和/或含有少于1.5重量%,特别优选0.4至1.4重量%的氧的锡金属粉末,其中这些数值在每种情况下基于粉末的总重量计。
已经令人惊讶地发现,所用的铌金属粉末的形态不受限制。可以使用包含由三维连接的初级粒子组成的多孔附聚物的粉末,也可以使用由无孔隙的不规则或球形粒子组成的粉末。
为了防止在本发明的粉末中形成难溶性MgF2和CaF2,具有尽可能低氟含量的铌金属粉末是优选的。因此,通过铌氧化物的还原制成的铌金属粉末优于通过含氟化合物,例如K2NbF7的还原制成的铌金属粉末。在一个优选实施方案中,所用铌金属粉末含有小于10ppm,优选小于5 ppm,特别优选小于2 ppm的氟。
本发明的粉末特别适用于生产超导部件。本发明的另一主题因此是本发明的粉末用于生产超导部件,特别是用于生产超导线材的用途。在此优选通过粉末冶金法或增材制造法来生产超导部件。在一个优选实施方案中,通过PIT法来生产超导线材。
本发明的另一主题是本发明的粉末在增材制造法中的用途。增材制造法可以是例如LBM(激光束熔化)、EBM(电子束熔化)和/或LC(激光熔覆)。
借助下列实施例更详细例示本发明,但这些绝对不应被解释为对发明思想的限制。
实施例:
在镁作为还原剂存在下在各种条件下使铌金属粉末与锡金属粉末反应,且所得产物用硫酸洗涤并分析。使用在没有还原剂和后续洗涤的情况下如常规进行起始化合物反应的粉末作为对比实验。在所有实验中,所用锡金属粉末具有小于150 µm的粒度和6800 ppm的氧含量。
结果概括在表1中,其中借助载气热提取(Leco TCH600)测定关于氧含量的数据并根据BET(ASTM D3663,Tristar 3000,Micromeritics)测定比表面积。在每种情况下借助激光衍射(MasterSizer S,分散在水和Daxad11中,5 min超声处理)测定粒度。使用下列分析仪器PQ 9000(Analytik Jena)或Ultima 2(Horiba)借助ICP-OES进行金属杂质如Mg的痕量分析。使用来自Malvern-PANalytical公司的仪器(X' Pert-MPD,具有半导体检测器、40KV/40 mA的X-射线管Cu LFF、Ni过滤器)对粉状样品进行X-射线衍射。
Figure 557003DEST_PATH_IMAGE001
用于生产实施例2和4的粉末的铌金属粉末与WO 00/67936中描述的生产方法类似地通过NbO2与镁蒸气的反应获得。所得铌金属粉末具有8500 ppm的氧含量、230 ppm的氢含量、2 ppm的氟含量和205 µm的附聚物粒度D50和290 µm的D90。初级粒子的平均粒度为0.6µm且附聚物的孔径分布是双峰的,其中最大值位于0.5和3 µm。这样的铌金属粉末的特征在于其高孔隙率,其与预期相反,没有导致NbSn粉末中的更高氧含量和NbO和SnO相的形成。相应地,具有高孔隙率的铌金属粉末也可用于本发明的方法。
在实施例1和3和两个对比实验的粉末的情况下,使用无粒子的内部孔隙的根据现有技术的铌金属粉末,其中它们具有2900 ppm的氧含量、10 ppm的氢含量和D90值为95 µm的粒度。实施例1和3表明,通过这些原材料也可实现低氧含量和避免NbO和SnO相。
实施例2的粉末随后在无氧气氛中研磨,由此得到3.1 µm的D90值和4.9 µm的D99值。令人惊讶地观察到,与预期相反,该粉末的研磨不导致氧含量提高,氧含量在研磨后的粉末中也为0.78重量%,也不导致NbO和SnO相的形成。
还令人惊讶地发现,在镁存在下的金属反应不导致还原剂的残留物留在产物中。相反,发现本发明的粉末中的Mg含量在正常范围内。
图2至4显示本发明的粉末的X-射线衍射图样,其中图2显示实施例2中获得的NbSn2,图3显示实施例4中获得的Nb3Sn,且图4显示实施例3中获得的Nb3Sn。从所有图像中可清楚看出,本发明的粉末不具有单独的NbO相。图1显示如例如M. Lopez等人(“Synthesisof nano intermetallic Nb3Sn by mechanical alloying and annealing at lowtemperature”, Journal of Alloys and Compounds 612 (2014), 215-220)描述的根据现有技术的粉末的X-射线衍射图样,其中可清楚看见出现单独的NbO相和SnO相。

Claims (16)

1.用于生产超导部件的包含NbxSny的粉末,其中1 ≤ x ≤ 6且1 ≤ y ≤ 5,其特征在于所述粉末不具有单独的NbO和/或SnO相。
2.如权利要求1中所述的粉末,其特征在于所述粉末中的氧含量为基于粉末的总重量计小于1.5重量%,优选小于1.1重量%,特别优选0.2至0.75重量%。
3.如前述权利要求的一项或多项中所述的粉末,其特征在于基于检测到的所有结晶相计和基于所述粉末的X-射线衍射图样的Rietveld分析,所述粉末中的Nb3Sn或Nb6Sn5或NbSn2的比例在每种情况下大于92%,优选大于95%,特别优选大于98%。
4.如前述权利要求的一项或多项中所述的粉末,其特征在于所述粉末具有借助激光衍射测定的小于15 µm,优选小于8 µm,特别优选1 µm至6 µm的粒度D99。
5.如前述权利要求的一项或多项中所述的粉末,其特征在于所述粉末具有0.5至5 m2/g,优选1至3 m2/g的根据BET的比表面积。
6.如前述权利要求的一项或多项中所述的粉末,其特征在于本发明的粉末的所有粉末粒子的95%在雾化后具有0.7至1的费雷特直径,其中费雷特直径被定义为粒子的最小直径除以最大直径。
7.生产如权利要求1至6的一项或多项中所述的粉末的方法,其特征在于其包括铌金属粉末与锡金属粉末的反应以及在还原剂存在下的还原步骤。
8.如权利要求7中所述的方法,其特征在于在第一步骤中使铌金属粉末与锡金属粉末反应,且所得产物经受在还原剂存在下的还原步骤。
9.如权利要求7至8的一项或多项中所述的方法,其特征在于所用铌金属粉末包含少于3重量%,优选0.4至2.5重量%,特别优选0.5至1.5重量%的氧,和/或锡金属粉末包含少于1.5重量%,特别优选0.4至1.4重量%的氧,在每种情况下基于粉末的总重量计。
10.如权利要求7至9的一项或多项中所述的方法,其特征在于所述还原剂是气态还原剂。
11.如权利要求7至10的一项或多项中所述的方法,其特征在于所述还原剂是选自镁、钙、CaH2、MgH2及其混合物的还原剂。
12.如权利要求7至11的一项或多项中所述的方法,其特征在于所述方法进一步包括所得产物的洗涤步骤。
13.如权利要求12中所述的方法,其特征在于所述洗涤步骤是用无机酸洗涤,其中无机酸优选选自硫酸、盐酸和硝酸。
14.如权利要求1至6的一项或多项中所述的粉末用于生产超导部件,特别是用于生产超导线材的用途。
15.如权利要求14中所述的用途,其特征在于通过粉末冶金法或增材制造法来生产超导部件。
16.如权利要求1至6的一项或多项中所述的粉末在增材制造法,特别是LBM(激光束熔化)、EBM(电子束熔化)和/或LC(激光熔覆)中的用途。
CN202080013039.0A 2019-02-08 2020-02-05 用于生产超导部件的基于铌锡化合物的粉末 Pending CN113423522A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019000905.3 2019-02-08
DE102019000905.3A DE102019000905A1 (de) 2019-02-08 2019-02-08 Pulver auf Basis von Niobzinnverbindungen für die Herstellung von supraleitenden Bauteilen
PCT/EP2020/052826 WO2020161170A1 (de) 2019-02-08 2020-02-05 Pulver auf basis von niobzinnverbindungen für die herstellung von supraleitenden bauteilen

Publications (1)

Publication Number Publication Date
CN113423522A true CN113423522A (zh) 2021-09-21

Family

ID=69468569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080013039.0A Pending CN113423522A (zh) 2019-02-08 2020-02-05 用于生产超导部件的基于铌锡化合物的粉末

Country Status (10)

Country Link
US (1) US20220118515A1 (zh)
EP (1) EP3921100B1 (zh)
JP (1) JP2022519748A (zh)
KR (1) KR20210124240A (zh)
CN (1) CN113423522A (zh)
BR (1) BR112021013713A2 (zh)
CA (1) CA3126447A1 (zh)
DE (1) DE102019000905A1 (zh)
IL (1) IL284813A (zh)
WO (1) WO2020161170A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019000906A1 (de) * 2019-02-08 2020-08-13 Taniobis Gmbh Pulver auf Basis von Niobzinnverbindungen für die Herstellung von supraleitenden Bauteilen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123205A (zh) * 1994-11-24 1996-05-29 中国科学院化工冶金研究所 一种钛镍合金粉末的制造方法
CA2331707A1 (en) * 1998-05-06 2000-11-16 H.C. Starck Inc. Reduction of nb or ta oxide powder by a gaseous light metal or a hydride thereof
CN103071794A (zh) * 2013-02-25 2013-05-01 苏州南航腾龙科技有限公司 金属粉末及其烧结制品的呼吸式还原方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035220A1 (de) * 1980-09-18 1982-04-29 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Supraleitende draehte auf der basis von bronze-nb (pfeil abwaerts)3(pfeil abwaerts)sn und verfahren zu deren herstellung
JPS6097514A (ja) * 1983-10-31 1985-05-31 株式会社東芝 複合超電導線の製造方法
JPS6210229A (ja) * 1985-07-05 1987-01-19 Univ Kyoto Nb↓3Snの製造方法
DE3531769A1 (de) * 1985-09-06 1987-03-19 Kernforschungsz Karlsruhe Verfahren zur herstellung von multifilament-supraleiterdraehten aus nb(pfeil abwaerts)3(pfeil abwaerts)sn- oder v(pfeil abwaerts)3(pfeil abwaerts)ga-filamenten, eingebettet in einer cu- oder cu-legierungs-matrix, welche metallische zusatzelemente enthalten, mit vorbestimmten supraleitenden eigenschaften
JP2916382B2 (ja) * 1994-09-22 1999-07-05 学校法人東海大学 Nb3 Sn超電導体の製造方法
WO2000067936A1 (en) * 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
KR100583702B1 (ko) * 1998-05-06 2006-05-26 에이치. 씨. 스타아크 아이앤씨 가스상의 환원제로 산화물을 환원시켜 금속 분말을 제조하는 방법 및 그로부터 제조된 금속 분말
EP1750287A1 (en) * 2004-05-25 2007-02-07 Kabushiki Kaisha Kobe Seiko Sho METHOD FOR PRODUCING Nb<sb>3</sb>Sn SUPERCONDUCTIVE WIRE BY POWDER PROCESS
JP4728024B2 (ja) * 2005-03-24 2011-07-20 株式会社神戸製鋼所 粉末法Nb3Sn超電導線材の製造方法
US20170317048A1 (en) * 2014-11-07 2017-11-02 Nippon Steel & Sumitomo Metal Corporation Conductive bonded assembly of electronic component, semiconductor device using same, and method of production of conductive bonded assembly
DE102017201035A1 (de) * 2017-01-23 2018-07-26 Bruker Eas Gmbh Verfahren zur Fertigung einer zumindest zweiteiligen Struktur, insbesondere eines Halbzeugs für einen Supraleiterdraht

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123205A (zh) * 1994-11-24 1996-05-29 中国科学院化工冶金研究所 一种钛镍合金粉末的制造方法
CA2331707A1 (en) * 1998-05-06 2000-11-16 H.C. Starck Inc. Reduction of nb or ta oxide powder by a gaseous light metal or a hydride thereof
CN103071794A (zh) * 2013-02-25 2013-05-01 苏州南航腾龙科技有限公司 金属粉末及其烧结制品的呼吸式还原方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.N.PATANKAR,F.H.FROES: "Formation of Nb3Sn using mechanically alloyed Nb-Sn powder", SOLID STATE SCIENCES, pages 887 - 890 *
SUZUKI, SUZUKI, R.O., NAGAI, H., OISHI, T. ET AL.: "Processes to produce superconducting Nb3Sn powders from Nb-Sn oxide", pages 1999 - 2005 *

Also Published As

Publication number Publication date
BR112021013713A2 (pt) 2021-09-21
DE102019000905A1 (de) 2020-08-13
EP3921100B1 (de) 2024-04-10
WO2020161170A1 (de) 2020-08-13
JP2022519748A (ja) 2022-03-24
CA3126447A1 (en) 2020-08-13
EP3921100A1 (de) 2021-12-15
KR20210124240A (ko) 2021-10-14
US20220118515A1 (en) 2022-04-21
IL284813A (en) 2021-08-31

Similar Documents

Publication Publication Date Title
US11508529B2 (en) Anodes containing spherical powder and capacitors
KR101629816B1 (ko) 커패시터용 탄탈륨 분말의 제조방법
US20110176983A1 (en) Method for purifying elemental boron
CN113423522A (zh) 用于生产超导部件的基于铌锡化合物的粉末
JP7490661B2 (ja) 超伝導部品を製造するためのニオブスズ化合物系粉末
JP6242814B2 (ja) ニオブコンデンサ陽極用化成体及びその製造方法
CN107267815B (zh) 氢氧化铝纳米棒及其制备方法
AU2005281918A1 (en) Deoxidisation of valve metal powders
JP6258222B2 (ja) ニオブコンデンサ陽極用化成体及びその製造方法
CN116441556B (zh) 一种氢气辅助的超纯铜粉湿热合成方法及超纯铜粉材料
JP2024018487A (ja) ニッケル合金粉末及び、ニッケル合金粉末の製造方法
JP2024018489A (ja) ニッケル合金粉末及び、ニッケル合金粉末の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40060618

Country of ref document: HK